On ranges of adjoint operators in Hilbert space

ZOLTÁN SEBESTYÉN

Introduction

Let A be a given densely defined operator in the (complex) Hilbert space H. Let further y and z be elements in H. The relation

(1)
$$(Ax, z) = (x, y) \quad (x \in \mathcal{D}(A)),$$

where $\mathscr{D}(A)$ stands as usual for the domain of A, is fundamental for the definition of A^* , the adjoint of A. Namely, z is in $\mathscr{D}(A^*)$ if

$$\sup \{ |(Ax, z)| \colon x \in \mathcal{D}(A), ||x|| \le 1 \} < \infty$$

holds, that is by the Riesz Representation Theorem if and only if there is an y in H satisfying (1). The reverse problem is the characterization of $\mathscr{R}(A^*)$, the range of $A^*: y$ is in $\mathscr{R}(A^*)$ if there is an element, z in $\mathscr{D}(A^*)$ for which (1) holds. We shall show that this is the case if and only if

$$\sup \{ |(x, y)| \colon x \in \mathcal{D}(A), \|Ax\| \le 1 \} < \infty$$

holds (Theorem 1).

As an application we obtain results concerning the factorization of a given densely defined operator C in H in the form $C \subset A^*B$ by which we mean that B is an operator in H defined at least on $\mathcal{D}(C)$, and for any x in $\mathcal{D}(C)$, $Bx \in \mathcal{O}(A^*)$ and $Cx = A^*(Bx)$. In general, as a Zorn's argument shows, $\mathcal{R}(A^*) \supset \mathcal{R}(C)$ is sufficient for such a factorization, but we produce a minimal B in the sense that

(2)
$$||Bx|| \leq ||u||$$
 for $x \in \mathcal{D}(C)$, $u \in \mathcal{D}(A^*)$; $Cx = A^*u$.

The question of the boundedness of B is also analyzed in the hope that we shall be able to answer the question raised by R. G. DOUGLAS [1] concerning the factorization of unbounded operators, especially with a bounded cofactor.

Our constant reference is [2].

Received March 5, 1982, and in revised form December 14, 1982.

Results

Theorem 1. Let y and A be a unit vector and a densely defined operator, respectively, in a Hilbert space H. The following two assertions are equivalent:

(i) There exists a unique vector z in H such that

(3)
$$y = A^*z$$
 and $||z|| \leq ||u||$ for $u \in \mathcal{D}(A^*)$, $y = A^*u$.

(ii) $M_y := \sup \{ |(x, y)| : x \in \mathcal{D}(A), ||Ax|| \le 1 \} < \infty.$

If (i) and (ii) are valid, then $M_y = ||z||$.

Proof. (ii) simply follows from (i) since for any x in $\mathcal{D}(A)$,

$$|(x, y)| = |(x, A^*z)| = |(Ax, z)| \le ||z|| \cdot ||Ax||;$$

we see also that $M_{\nu} \leq ||z||$.

(ii) implies (i): Assuming (ii) we have $|(x, y)| \leq M_y ||Ax||$ for any x in $\mathcal{D}(A)$. So the map $Ax \mapsto (x, y)$ is a bounded linear functional on $\mathcal{R}(A)$. It has a unique bounded linear extension to $\overline{\mathcal{R}(A)}$, the norm closure of $\mathcal{R}(A)$. By the Riesz Representation Theorem there exists a unique vector, z, in $\overline{\mathcal{R}(A)}$ for which (1) holds. Then z is in $\mathcal{D}(A^*)$ and $y = A^*z$.

If $u \neq z$ is from $\mathcal{D}(A^*)$ and $y = A^*u$, then $(Ax, z) = (x, A^*z) = (x, A^*u) = (Ax, u)$ for every x in $\mathcal{D}(A)$. Since z is, while u is not in $\overline{\mathcal{R}(A)}$, it follows that

 $||z|| = \sup \{ |(Ax, z)| \colon x \in \mathcal{D}(A), ||Ax|| \le 1 \} =$ $= \sup \{ |(Ax, u)| \colon x \in \mathcal{D}(A), ||Ax|| \le 1 \} < ||u||$

Thus (3) holds and the z with this property is unique. The proof is complete.

Theorem 2. Let A and C be densely defined operators in a Hilbert space H. The following three assertions are equivalent:

(i) There exists an operator B in H such that

(4)
$$C \subset A^*B$$
 and B fulfils (2).

(ii)
$$\mathscr{R}(C) \subset \mathscr{R}(A^*)$$

(iii) $M_{y}(C) := \sup \{ |(x, Cy)| : x \in \mathcal{D}(A), ||Ax|| \le 1 \} < \infty \quad (y \in \mathcal{D}(C)).$

Proof. (i) clearly implies (ii). Further (ii) implies (iii) since for any y in $\mathcal{D}(C)$ there exists (by assumption) a u in $\mathcal{D}(A^*)$ such that $Cy = A^*u$ whence for any x in $\mathcal{D}(A)$,

$$|(x, Cy)| = |(x, A^*u)| = |(Ax, u)| \le ||u|| \cdot ||Ax||,$$

and thus (iii) follows.

Lastly assume (iii) and prove (i). For a fixed x in $\mathcal{D}(C)$ there exists, by Theorem 1, a unique vector z in H such that (3) holds with y=Cx. Writing

z=Bx we get just (2) as desired. We have to show only that Bx is a linear function of x if x varies on $\mathcal{D}(C)$.

Recall that, as the proof of Theorem 1 indicates, Bx is in $\overline{\mathscr{R}(A)}$ for any x in $\mathscr{D}(C)$. Thus if x, x' are arbitrary vectors from $\mathscr{D}(C)$, for any y belonging to $\mathscr{D}(A)$ we have

$$0 = (C(x+x'), y) - (Cx, y) - (Cx' y) = (A^*B(x+x'), y) - (A^*Bx, y) - (A^*Bx', y) = = (B(x+x'), Ay) - (Bx, Ay) - (Bx', Ay) = (B(x+x') - Bx + Bx', Ay),$$

which shows that B(x+x')=Bx+Bx'. The proof of $B(\lambda x)=\lambda Bx$ for a scalar λ is similar. The proof is complete.

The following is analogous to [1, Theorem 2, (3)] due to Douglas.

Corollary 1. If C of Theorem 2 is closed then

 $\sup \{ \|Bx\| \colon x \in \mathcal{D}(C), \|x\| + \|Cx\| \le 1 \} < \infty.$

In particular, B is bounded if C is.

Proof. By assumption, C has a closed graph. Hence we have to show that the linear operator given by $\{x, Cx\} \rightarrow Bx \ (x \in \mathcal{D}(C))$ also has a closed graph. In other words, assuming that $x_n \rightarrow x$, $Cx_n \rightarrow Cx$ and $Bx_n \rightarrow u$, we must conclude u=Bx. Since $Cx_n \rightarrow Cx$ means that $A^*Bx_n \rightarrow Cx$, by the closedness of A^* we get $A^*u=Cx=A^*Bx$. But since Bx_n is in $\overline{\mathcal{R}(A)}$, u is in $\overline{\mathcal{R}(A)}$, too. As (Ay, u)= $=(y, A^*u)=(y, A^*Bx)=(Ay, Bx)$ for every $y \in \mathcal{D}(A)$, it follows that

$$\|u\| = \sup \{ |(Ay, u)|: y \in \mathcal{D}(A), \|Ay\| \le 1 \} =$$

= sup $\{ |(Ay, Bx)|: y \in \mathcal{D}(A), \|Ay\| \le 1 \} \le \|Bx\|,$

whence by the uniqueness of Bx we have u=Bx indeed.

Remark 1. If in Theorem 2 the operator A is bounded and C is closed, further if we take $\mathcal{D}(B) = \mathcal{D}(C)$, then B is closed. Indeed, if $x_n \to x$ and $Bx_n \to u$, where $x_n \in \mathcal{D}(C)$ (n=1, 2, ...), then $Cx_n = A^*Bx_n \to A^*u$ so that $A^*u = Cx = A^*Bx$, and an argument similar to that appearing in the proof of Corollary 1 shows u = Bx.

Theorem 3. The following four assertions are equivalent:

- (i) The operator B in Theorem 2 (i) is bounded.
- (ii) $\mathscr{R}(A^*) \supset \mathscr{R}(C)$ and

 $\sup \{\inf \{ \|z\| \colon z \in \mathcal{D}(A^*), Cy = A^*z \} \colon y \in \mathcal{D}(C), \|y\| \le 1 \} < \infty.$

- (iii) $\sup \{ |(x, Cy)| : x \in \mathcal{D}(A), ||Ax|| \le 1, y \in \mathcal{D}(C), ||y|| \le 1 \} < \infty.$
- (iv) $\mathcal{D}(C^*) \supset \mathcal{D}(A)$ and

$$\sup \{ \|C^*x\| \colon x \in \mathcal{D}(A), \|Ax\| \leq 1 \} < \infty.$$

Proof. Assume first (i). We know from Theorem 2 that for any y in $\mathcal{D}(C)$,

$$\inf [\|z\|: z \in \mathscr{D}(A^*), \ Cy = A^*z] = \|By\| \le \|B\| \|y\|$$

holds. This proves (ii). But (ii) implies (iii) since we know also from Theorem 2 that

$$\sup \{ \|(x, Cy)\| \colon x \in \mathcal{D}(A), \|Ax\| \le 1 \} = \inf [\|z\| \colon z \in \mathcal{D}(A)^*, Cy = A^*z]$$

for any y in $\mathscr{D}(C)$. For the same reason (iii) implies (i). But (iv) also follows from (iii) since by (iii) $\mathscr{D}(A) \subset \mathscr{D}(C^*)$ and since for any x in $\mathscr{D}(A)$,

$$||C^*x|| = \sup \{ |(C^*x, y)| : y \in \mathcal{D}(C), ||y|| \le 1 \} =$$

= sup { |(x, Cy)| : y \in \mathcal{D}(C), ||y|| \le 1 }.

Finally (iv) implies (iii) since for any x in $\mathcal{D}(A)$, x is in $\mathcal{D}(C^*)$ and

$$|(x, Cy)| = |(C^*x, y)| \le ||C^*x|| \cdot ||y||$$

holds for any y in $\mathcal{D}(C)$.

Remark 2. Assuming that A^* is densely defined or, what is the same, that A^{**} exists, assertions (i)—(iv) in Theorem 3 are equivalent to

(iv)' sup { $||C^*x||: x \in \mathcal{D}(A^{**}), ||A^{**}x|| \leq 1$ } < ∞ .

Indeed, since $A^{**} \supset A$ in this case, (iv)' implies (iv). On the other hand, (i) implies now that $C^* \supset (A^*B)^* \supset B^*A^{**}$ and that

$$||C^*x|| = ||B^*A^{**}x|| \le ||B^*|| \cdot ||A^{**}x||$$

holds for any x in $\mathcal{D}(A^{**})$, which proves (iv)'.

References

 R. G. DOUGLAS, On majorization, factorization, and range inclusion of operators on Hilbert spaces, Proc. Amer. Math. Soc., 17 (1966), 413-415.

[2] F. RIESZ and B. SZ.-NAGY, Functional Analysis, Ungar (New York; 1960).

DEPARTMENT OF MATH. ANALYSIS II EÖTVÖS LORÁND UNIVERSITY MÚZEUM KÖRUT 6—8 1088 BUDAPEST, HUNGARY