On ranges of adjoint operators in Hilbert space

ZOLTÁN SEBESTYÉN

Introduction

Let A be a given densely defined operator in the (complex) Hilbert space H. Let further y and z be elements in H. The relation

$$
\begin{equation*}
(A x, z)=(x, y) \quad(x \in \mathscr{D}(A)) \tag{1}
\end{equation*}
$$

where $\mathscr{D}(A)$ stands as usual for the domain of A, is fundamental for the definition of A^{*}, the adjoint of A. Namely, z is in $\mathscr{D}\left(A^{*}\right)$ if

$$
\sup \{|(A x, z)|: x \in \mathscr{D}(A),\|x\| \leqq 1\}<\infty
$$

holds, that is by the Riesz Representation Theorem if and only if there is an y in H satisfying (1). The reverse problem is the characterization of $\mathscr{R}\left(A^{*}\right)$, the range of $A^{*}: y$ is in $\mathscr{R}\left(A^{*}\right)$ if there is an element, z in $\mathscr{D}\left(A^{*}\right)$ for which (1) holds. We shall show that this is the case if and only if

$$
\sup \{|(x, y)|: x \in \mathscr{D}(A),\|A x\| \leqq 1\}<\infty
$$

holds (Theorem 1).
As an application we obtain results concerning the factorization of a given densely defined operator C in H in the form $C \subset A^{*} B$ by which we mean that B is an operator in H defined at least on $\mathscr{D}(C)$, and for any x in $\mathscr{D}(C), B x \in$ $\in \mathscr{D}\left(A^{*}\right)$ and $C x=A^{*}(B x)$. In general, as a Zorn's argument shows, $\mathscr{R}\left(A^{*}\right) \supset \mathscr{R}(C)$ is sufficient for such a factorization, but we produce a minimal B in the sense that

$$
\begin{equation*}
\|B x\| \leqq\|u\| \quad \text { for } \quad x \in \mathscr{D}(C), u \in \mathscr{D}\left(A^{*}\right) ; C x=A^{*} u \tag{2}
\end{equation*}
$$

The question of the boundedness of B is also analyzed in the hope that we shall be able to answer the question raised by R. G. Douglas [1] concerning the factorization of unbounded operators, especially with a bounded cofactor.

Our constant reference is [2].

[^0]
Results

Theorem 1. Let y and A be a unit vector and a densely defined operator, respectively, in a Hilbert space H. The following two assertions are equivalent:
(i) There exists a unique vector z in H such that

$$
\begin{equation*}
y=A^{*} z \quad \text { and } \quad\|z\| \leqq\|u\| \quad \text { for } \quad u \in \mathscr{D}\left(A^{*}\right), y=A^{*} u \tag{3}
\end{equation*}
$$

(ii) $M_{y}:=\sup \{|(x, y)|: x \in \mathscr{D}(A),\|A x\| \leqq 1\}<\infty$.

If (i) and (ii) are valid, then $M_{y}=\|z\|$.
Proof. (ii) simply follows from (i) since for any x in $\mathscr{D}(A)$,

$$
|(x, y)|=\left|\left(x, A^{*} z\right)\right|=|(A x, z)| \leqq\|z\| \cdot\|A x\| ;
$$

we see also that $M_{y} \leqq\|z\|$.
(ii) implies (i): Assuming (ii) we have $|(x, y)| \leqq M_{y}\|A x\|$ for any x in $\mathscr{D}(A)$. So the map $A x \mapsto(x, y)$ is a bounded linear functional on $\mathscr{R}(A)$. It has a unique bounded linear extension to $\overline{\mathscr{R}(A)}$, the norm closure of $\mathscr{R}(A)$. By the Riesz Representation Theorem there exists a unique vector, z, in $\overline{\mathscr{R}(A)}$ for which (1) holds. Then z is in $\mathscr{D}\left(A^{*}\right)$ and $y=A^{*} z$.

If $u \neq z$ is from $\mathscr{D}\left(A^{*}\right)$ and $y=A^{*} u$, then $(A x, z)=\left(x, A^{*} z\right)=\left(x, A^{*} u\right)=$ $=(A x, u)$ for every x in $\mathscr{D}(A)$. Since z is, while u is not in $\overline{\mathscr{R}(A)}$, it follows that

$$
\begin{aligned}
& \|z\|=\sup \{|(A x, z)|: x \in \mathscr{D}(A),\|A x\| \leqq 1\}= \\
& =\sup \{|(A x, u)|: x \in \mathscr{D}(A),\|A x\| \leqq 1\}<\|u\|
\end{aligned}
$$

Thus (3) holds and the z with this property is unique. The proof is complete.
Theorem 2. Let A and C be densely defined operators in a Hilbert space H. The following three assertions are equivalent:
(i) There exists an operator B in H such that

$$
\begin{equation*}
C \subset A^{*} B \text { and } B \text { fulfils (2). } \tag{4}
\end{equation*}
$$

(ii) $\mathscr{R}(C) \subset \mathscr{R}\left(A^{*}\right)$.
(iii) $M_{y}(C):=\sup \{|(x, C y)|: x \in \mathscr{D}(A),\|A x\| \leqq 1\}<\infty \quad(y \in \mathscr{D}(C))$.

Proof. (i) clearly implies (ii). Further (ii) implies (iii) since for any y in $\mathscr{D}(C)$ there exists (by assumption) a u in $\mathscr{D}\left(A^{*}\right)$ such that $C y=A^{*} u$ whence for any x in $\mathscr{D}(A)$,

$$
|(x, C y)|=\left|\left(x, A^{*} u\right)\right|=|(A x, u)| \leqq\|u\| \cdot\|A x\|,
$$

and thus (iii) follows.
Lastly assume (iii) and prove (i). For a fixed x in $\mathscr{D}(C)$ there exists, by Theorem 1, a unique vector z in H such that (3) holds with $y=C x$. Writing
$z=B \dot{x}$ we get just (2) as desired. We have to show only that $B x$ is a linear function of x if x varies on $\mathscr{D}(C)$.

Recall that, as the proof of Theorem 1 indicates, $B x$ is in $\overline{\mathscr{R}(A)}$ for any x in $\mathscr{D}(C)$. Thus if x, x^{\prime} are arbitrary vectors from $\mathscr{D}(C)$, for any y belonging to $\mathscr{D}(A)$ we have

$$
\begin{aligned}
0= & \left(C\left(x+x^{\prime}\right), y\right)-(C x, y)-\left(C x^{\prime} y\right)=\left(A^{*} B\left(x+x^{\prime}\right), y\right)-\left(A^{*} B x, y\right)-\left(A^{*} B x^{\prime}, y\right)= \\
& =\left(B\left(x+x^{\prime}\right), A y\right)-(B x, A y)-\left(B x^{\prime}, A y\right)=\left(B\left(x+x^{\prime}\right)-B x+B x^{\prime}, A y\right)
\end{aligned}
$$

which shows that $B\left(x+x^{\prime}\right)=B x+B x^{\prime}$. The proof of $B(\lambda x)=\lambda B x$ for a scalar λ is similar. The proof is complete.

The following is analogous to [1, Theorem 2, (3)] due to Douglas.
Corollary 1. If C of Theorem 2 is closed then

$$
\sup \{\|B x\|: x \in \mathscr{D}(C),\|x\|+\|C x\| \leqq 1\}<\infty .
$$

In particular, B is bounded if C is.
Proof. By assumption, C has a closed graph. Hence we have to show that the linear operator given by $\{x, C x) \mapsto B x(x \in \mathscr{D}(C))$ also has a closed graph. In other words, assuming that $x_{n} \rightarrow x, C x_{n} \rightarrow C x$ and $B x_{n} \rightarrow u$, we must conclude $u=B x$. Since $C x_{n} \rightarrow C x$ means that $A^{*} B x_{n} \rightarrow C x$, by the closedness of A^{*} we get $A^{*} u=C x=A^{*} B x$. But since $B x_{n}$ is in $\overline{\mathscr{R}(A)}, u$ is in $\overline{\mathscr{R}(A)}$, too. As $(A y, u)=$ $=\left(y, A^{*} u\right)=\left(y, A^{*} B x\right)=(A y, B x)$ for every $y \in \mathscr{D}(A)$, it follows that

$$
\begin{gathered}
\|u\|=\sup \{|(A y, u)|: y \in \mathscr{D}(A),\|A y\| \leqq 1\}= \\
=\sup \{|(A y, B x)|: y \in \mathscr{D}(A),\|A y\| \leqq 1\} \leqq\|B x\|,
\end{gathered}
$$

whence by the uniqueness of $B x$ we have $u=B x$ indeed.
Remark 1. If in Theorem 2 the operator A is bounded and C is closed, further if we take $\mathscr{D}(B)=\mathscr{D}(\dot{C})$, then B is closed. Indeed, if $x_{n} \rightarrow x$ and $B x_{n} \rightarrow u$, where $x_{n} \in \mathscr{D}(C)(n=1,2, \ldots)$, then $C x_{n}=A^{*} B x_{n} \rightarrow A^{*} u$ so that $A^{*} u=C x=A^{*} B x$, and an argument similar to that appearing in the proof of Corollary 1 shows $u=B x$.

Theorem 3. The following four assertions are equivalent:
(i) The operator B in Theorem 2 (i) is bounded.
(ii) $\mathscr{R}\left(A^{*}\right) \supset \mathscr{R}(C)$ and

$$
\sup \left\{\inf \left[\|z\|: z \in \mathscr{D}\left(A^{*}\right), C y=A^{*} z\right]: y \in \mathscr{D}(C),\|y\| \leqq 1\right\}<\infty .
$$

(iii) $\sup \{|(x, C y)|: x \in \mathscr{D}(A),\|A x\| \leqq 1, y \in \mathscr{D}(C),\|y\| \leqq 1\}<\infty$.
(iv) $\mathscr{D}\left(C^{*}\right) \supset \mathscr{D}(A)$ and

$$
\sup \left\{\left\|C^{*} x\right\|: x \in \mathscr{D}(A),\|A x\| \leqq 1\right\}<\infty .
$$

Proof. Assume first (i). We know from Theorem 2 that for any \boldsymbol{y} in $\mathscr{D}(C)$,

$$
\inf \left[\|z\|: z \in \mathscr{D}\left(A^{*}\right), C y=A^{*} z\right]=\|B y\| \leqq\|B\|\|y\|
$$

holds. This proves (ii). But (ii) implies (iii) since we know also from Theorem 2 that

$$
\sup \{|(x, C y)|: x \in \mathscr{D}(A),\|A x\| \leqq 1\}=\inf \left[\|z\|: z \in \mathscr{D}(A)^{*}, C y=A^{*} z\right]
$$

for any y in $\mathscr{D}(C)$. For the same reason (iii) implies (i). But (iv) also follows from (iii) since by (iii) $\mathscr{D}(A) \subset \mathscr{D}\left(C^{*}\right)$ and since for any x in $\mathscr{D}(A)$,

$$
\begin{aligned}
\left\|C^{*} x\right\| & =\sup \left\{\left|\left(C^{*} x, y\right)\right|: y \in \mathscr{D}(C),\|y\| \leqq 1\right\}= \\
& =\sup \{|(x, C y)|: y \in \mathscr{D}(C),\|y\| \leqq 1\} .
\end{aligned}
$$

Finally (iv) implies (iii) since for any x in $\mathscr{D}(A), x$ is in $\mathscr{D}\left(C^{*}\right)$ and

$$
|(x, C y)|=\left|\left(C^{*} x, y\right)\right| \leqq\left\|C^{*} x\right\| \cdot\|y\|
$$

holds for any y in $\mathscr{D}(C)$.
Remark 2. Assuming that A^{*} is densely defined or, what is the same, that $A^{* *}$ exists, assertions (i)-(iv) in Theorem 3 are equivalent to
(iv)' $\sup \left\{\left\|C^{*} x\right\|: x \in \mathscr{D}\left(A^{* *}\right),\left\|A^{* *} x\right\| \leqq 1\right\}<\infty$.

Indeed, since $A^{* *} \supset A$ in this case, (iv)' implies (iv). On the other hand, (i) implies now that $C^{*} \supset\left(A^{*} B\right)^{*} \supset B^{*} A^{* *}$ and that

$$
\left\|C^{*} x\right\|=\left\|B^{*} A^{* *} x\right\| \leqq\left\|B^{*}\right\| \cdot\left\|A^{* *} x\right\|
$$

holds for any x in $\mathscr{D}\left(A^{* *}\right)$, which proves (iv)'.

References

[1] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert spaces, Proc. Amer. Math. Soc., 17 (1966), 413-415.
[2] F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar (New York; 1960).

[^0]: Received March 5, 1982, and in revised form December 14, 1982.

