A note on a paper of S. Watanabe

HR. N. BOYADZIEV

In his paper WATANABE [1] asked (p. 38) if every closed positive linear map $\Phi: A_0 \rightarrow B(A_0 \text{ is a star subalgebra of a unital } C^*$ -algebra containing the unit, B is a C^* -algebra and $\Phi(x^*x) \ge 0$ for $x \in A_0$ is automatically continuous. He proved that when Φ is 2-positive. In the general case, too, the answer is "yes". The proof (similar to that of Theorem 1 in [1]) is based on the lemma of [1] on p. 37 and on a corollary from the following theorem of Palmer.

Theorem (T. PALMER [2]). Let A be a complex unital Banach *-algebra with continuous involution and $H = \{x : x \in A, x = x^*\}, E = \{e^{ih} : h \in H\}$. If the set E is bounded, the algebra A is C*-equivalent.

Corollary. In the above notations, if the set $K = \{u^2 : u \in H, u^2 + v^2 = 1 \text{ for some } v \in H\}$ is bounded, A is C*-equivalent.

Proof. We have $e^{ih} = \cos(h) + i\sin(h)$ $(h \in H)$ where $\cos(h) = (e^{ih} + e^{-ih})/2$, $\sin(h) = (e^{ih} - e^{-ih})/(2i) \in H$ and $\cos(h)^2 + \sin(h)^2 = 1$. If $\|\sin(h)^2\| \le N$ (a constant) for every $h \in H$, we obtain that $\|\cos(h)\| = \|1 - 2\sin(h/2)^2\| \le 2N + 1$, $\|\sin(h)\| = \|\cos(\pi 1/2 - h)\| \le 2N + 1$. Hence $\|e^{ih}\| \le 2(2N + 1)$ and A is C^* -equivalent.

Now following the lines of the proof of Theorem 1 in [1] we obtain the modification

Theorem 1'. Let Φ be a closed linear map of A_0 into a Banach space B. If Φ is norm bounded on the set K (defined for A_0 , see the corollary above and the lemma in [1]), then A_0 is a C*-algebra (the original C*-norm in A_0 turns out to be equivalent to the graph norm in it) and Φ is bounded.

When B is a C^{*}-algebra and Φ is positive (we need only $\Phi(x^2) \ge 0$ when $x=x^* \in A_0$), this is fulfilled: if $u^2+v^2=1$ (u, v are hermitian in A_0), it follows that $\Phi(u^2)+\Phi(v^2)=\Phi(1)$, hence $\|\Phi(u^2)\| \le \|\Phi(1)\|$, i.e., Φ is bounded on K.

Received August 31, 1982.

References

- [1] S. WATANABE, The boundedness of closed linear maps in C*-algebras, Acta Sci. Math., 43 (1981), 37-39.
- [2] T. W. PALMER, The Gelfand-Naimark pseudonorm on Banach *-algebras, J. London Math. Soc., 3 (1971), 59--66.

...

FACULTY OF MATHEMATICS UNIVERSITY OF SOFIA A. IVANOV 5 SOFIA 26, BULGARIA

k ja