Conditions for hermiticity and for existence of an equivalent \mathbf{C}^{*}-norm

ZOLTÁN MAGYAR

The author has found a sufficient condition for a self-adjoint element in a Banach *-algebra to have purely real spectrum. This is contained in Theorem 1 below. Using this result it becomes possible to prove that a fairly weak condition provides for the existence of an equivalent C^{*}-norm (see Theorem 2).

The problem discussed here is a version of the Araki-Elliott problem. Araki and Ellott [3] proved in 1973 that if the B^{*}-condition

$$
\left\|a^{*} a\right\|=\left\|a^{*}\right\| \cdot\|a\|
$$

holds for a linear norm and the * is continuous, then it is a C^{*}-norm. They conjectured that the continuity of the involution is also a consequence of the B^{*}-condition. Z. Sebestyén and the author [4] verified this conjecture, and gave a condition for a norm to be a C^{*}-norm which can hardly be weakened.

We shall use [1] without further reference.
Theorem 1. Let \mathscr{A} be a Banach ${ }^{*}$-algebra, and let r be the spectral radius in it. Consider a self-adjoint element $h(\epsilon \mathscr{A})$. Let $\langle h\rangle$ be the algebra generated by h. Assume there are a seminorm p on $\langle h\rangle$ and constants $0<M_{1} \leqq M_{2}$ such that
(i) $M_{1}^{2} \cdot r\left(a^{*} a\right) \leqq p\left(a^{*}\right) \cdot p(a) \leqq M_{2}^{2} \cdot r\left(a^{*} a\right)$ for all $a \in\langle h\rangle$.

Then $\operatorname{Sp}(h) \subset \mathbf{R}$ or $\operatorname{Sp}(h) \subset\{0, w, \bar{w}\}$ with a suitable $w \in \mathbf{C}$. Further, if p is a norm then $\mathrm{Sp}(h) \subset \mathbf{R}$. ("Sp" denotes the spectrum in \mathscr{A}.)

The proof will consist of two parts. Part I contains independent propositions with independent notations. Then we shall prove Theorem 1 in Part II utilizing the results of the previous part.

Part I. We start with an easy lemma.

[^0]Lemma 1.1. Let \mathscr{A} be a^{*}-algebra, p, r be seminorms on it such that $r\left(a^{2}\right)=$ $=r(a)^{2}, r\left(a^{*}\right)=r(a)$ and

$$
\begin{equation*}
M_{1}^{2} \cdot r\left(a^{*} a\right) \leqq p\left(a^{*}\right) \cdot p(a) \leqq M_{2}^{2} \cdot r\left(a^{*} a\right) \text { for all } a \in \mathscr{A} . \tag{1}
\end{equation*}
$$

Then the following also hold:

$$
\begin{gather*}
M_{1} \cdot r(h) \leqq p(h) \leqq M_{2} \cdot r(h) \text { if } h=h^{*} \in \mathscr{A}, \tag{2}\\
p(a) \leqq 2 M_{2} \cdot r(a) \text { for all } a \in \mathscr{A} . \tag{3}
\end{gather*}
$$

Proof. Writing $a=h, a^{*}=h,(2)$ is immediate from the properties of r. For an arbitrary element a consider the real and imaginary part of a, that is, $h=$ $=2^{-1}\left(a+a^{*}\right), k=(2 i)^{-1}\left(a-a^{*}\right)$. Then $r\left(a^{*}\right)=r(a)$ implies $r(k) \leqq r(a), r(h) \leqq r(a)$, and so (3) follows from (2).

We call a set $K \subset \mathbf{C}$ symmetric if it is stable under conjugation, i.e. $\bar{z} \in K$ if $z \in K$. In the remainder of this part let K be a fixed symmetric non-void compact subset of the complex plain. Denote by $C(K)$ the algebra of continuous functions on K, and by r the customary sup-norm in $C(K)$. Define an involution in $C(K)$ setting $f^{*}(z)=\overline{f(\bar{z})}$. This definition is correct and this involution is norm-preserving, since K is symmetric.

Let $A \subset C(K)$ be the polynomials without constant terms. This is a ${ }^{*}$-subalgehra. Consider the following condition: there are a seminorm p on A and constants $0<M_{1} \leqq M_{2}$ such that

$$
\begin{equation*}
M_{1}^{2} \cdot r\left(f^{*} f\right) \leqq p\left(f^{*}\right) \cdot p(f) \leqq M_{2}^{2} \cdot r\left(f^{*} f\right) \text { for all } f \in A \tag{P1}
\end{equation*}
$$

Our goal is to prove that this condition implies that the shape of K is very special (see Propositions 1.2 and 1.5 below).

First we list some immediate consequences of (P1). We see from Lemma 1.1 that

$$
\begin{align*}
& M_{1} \cdot r(h) \leqq p(h) \leqq M_{2} \cdot r(h) \text { if } h=h^{*} \in A, \tag{P2}\\
& p(f) \leqq 2 M_{2} \cdot r(f) \text { for all } f \in A . \tag{P3}
\end{align*}
$$

Let B be the norm-closure of A in $C(K)$. Because of (P3) p has a unique continuous extension to B, which will also be denoted by p. Then this extended p will also be a seminorm and (P 1), (P 2), (P 3) remain valid on B.

Notation. We say that a set $T \subset \mathbf{C}$ is a cross if there is a real number s such that $T \subset \mathbf{R} \cup\{s+i t ; t \in \mathbf{R}\}$.

Proposition 1.2. (P1) implies that K is a cross.
Proof. Suppose the contrary. Then we shall find f, g in B with $p(f)+p(g)<$ $<p(f+g)$, which is a contradiction. We need two lemmas for this.

Denote by C (resp. β) the maximum of $|z|$ (resp. $\operatorname{Im} z$) on K. Note that $C, \beta>0$ because K is symmetric and not a cross. Let $\alpha \in \mathbf{R}$ be such that $\alpha+i \beta \in K$. Write $w_{1}=\alpha+i \beta, w_{2}=\bar{w}_{1}, m=\left|w_{1}\right|$.

Lemma 1.3. For any $n \in \mathbf{R}$ there are a, b in B such that (4) $r\left(a^{*} a\right), r\left(b^{*} b\right) \leqq C^{2}$, (5) $r(a)=r(b)>n$, (6) $\left|b\left(w_{1}\right)\right|=\left|b\left(w_{2}\right)\right|=m$, (7) $\left|a\left(w_{1}\right)\right| \geqq m C^{-1} \cdot r(a)$, (8) $\left|a\left(w_{2}\right)\right|<2^{-1} m$.

Proof. Let $a_{t}(z)=z \cdot \exp (-i t(z-\alpha)), b_{t}(z)=z \cdot \exp \left(-i t(z-\alpha)^{2}\right)$ where t is real and $z \in K$. Then $a_{t}, b_{t} \in B$ for all t. Since K is not a cross, there is a $u=\gamma i \delta \in K$ such that $\gamma \neq \alpha$ and $\delta \neq 0(\gamma, \delta \in \mathbf{R})$. Thus $\left|b_{t}(u)\right|=|u| \cdot \exp (2 t(\gamma-\alpha) \delta)$ and hence there is a t for which $\left|b_{t}(u)\right|>n$. Let $b=b_{t}$ with such a t.

Since $\quad\left|a_{t}\left(w_{1}\right)\right|=m \cdot \exp (t \beta),\left|a_{t}\left(w_{2}\right)\right|=m \cdot \exp (-t \beta)$, there is a $t>0$ with $\left|a_{t}\left(w_{2}\right)\right|<2^{-1} m, r\left(a_{t}\right)>r(b)$. With such a t let $a=r(b) r\left(a_{t}\right)^{-1} a_{t}$. It is easy to check that (4)-(8) hold for this a, b (for (7) use that β is the maximum of $\operatorname{Im} z$ on K).

Lemma 1.4. Assume that for $a n a \in B$ the condition

$$
\begin{equation*}
r\left(a^{*} a\right)^{1 / 2} \leqq C \leqq 2^{-1} \cdot r(a) \tag{9}
\end{equation*}
$$

holds. Then there is a constant L (e.g. $L=4 M_{2}^{2} C^{2} M_{1}^{-1}$ is appropriate) such that

$$
\begin{equation*}
\min \left(p(a), p\left(a^{*}\right)\right) \leqq L \cdot r(a)^{-1} \tag{10}
\end{equation*}
$$

Proof. Choosing z in K with $r(a)=a(z)$ we have by (9)

$$
\left|a^{*}(z)\right| \leqq C^{2} \cdot r(a)^{-1} \leqq 2^{-1} C \leqq 4^{-1} \cdot r(a)
$$

and thus

$$
r\left(a+a^{*}\right) \geqq\left|\left(a+a^{*}\right)(z)\right| \geqq|a(z)|-\left|a^{*}(z)\right| \geqq r(a)-4^{-1} \cdot r(a) \geqq 2^{-1} \cdot r(a)
$$

Then we get from (P1), (P2), (9) and the subadditivity of p that

$$
p(a)+p\left(a^{*}\right) \geqq 2^{-1} M_{1} \cdot r(a) \text { and } \cdot p(a) \cdot p\left(a^{*}\right) \leqq M_{2}^{2} C^{2}
$$

Writing $c=\min \left(p(a), p\left(a^{*}\right)\right), \quad d=\max \left(p(a), p\left(a^{*}\right)\right)$, we then have $2 d \geqq c+d \geqq$ $\geqq 2^{-1} M_{1} \cdot r(a), c \cdot d \leqq M_{2}^{2} C^{2}$, and hence $c \leqq 4 M_{2}^{2} C^{2} M_{1}^{-1} r(a)^{-1}$.

We turn to the proof of Proposition 1.2. Let $a, b \in B$ be such that (4)-(8) hold with "large enough" n. Let further f (resp. g) be the one from a and a^{*} (resp. b and b^{*}) for which p is less. Since $r(g)=r(f)=r(a)>n$ and n is large $(>2 C)$, we can apply Lemma 1.4 and have

$$
\begin{equation*}
p(f)+p(h)<2 L n^{-1} \tag{11}
\end{equation*}
$$

On the other hand, (P1) and (5)-(8) give us

$$
\begin{gathered}
M_{1}^{-2} \cdot p\left(f^{*}+g^{*}\right) \cdot p(f+g) \geqq r\left(\left(f^{*}+\mathrm{g}^{*}\right)(f+g)\right) \geqq\left|\left[\left(f^{*}+g^{*}\right)(f+g)\right]\left(w_{1}\right)\right| \geqq \\
\geqq\left(m C^{-1} \cdot r(a)-m\right) \cdot\left(m-2^{-1} m\right) \geqq(4 C)^{-1} m^{2} \cdot r(a)
\end{gathered}
$$

if n is large (since $n>2 C$ implies $m \leqq(2 C)^{-1} m \cdot r(a)$). Further, by (P3)

$$
p\left(f^{*}+g^{*}\right) \leqq 2 M_{2} \cdot r\left(f^{*}+g^{*}\right) \leqq 4 M_{2} \cdot r(a)
$$

and thus

$$
p(f+g) \geqq M_{1}^{2} m^{2}\left(16 M_{2} C\right)^{-1} \geqq 2 L n^{-1}
$$

if n is large. This and (11) show the desired contradiction. Proposition 1.2 is proved.

Proposition 1.5. If $\operatorname{card}(K-\mathbf{R})=2$ and (P 1$)$ holds then $K \cap \mathbf{R} \subset\{0\}$.
Proof. Suppose $K-\mathbf{R}=\{w, \bar{w}\}$. Since $\mathbf{C}-K$ is connected now, by Runge's theorem there are polynomials P_{k} converging to $w^{-1} \cdot 1_{\{w\}}$ in. $C(K)$, where $1_{\{w\}}$ denotes the characteristic function of the one point set $\{w\}$. Hence $z \cdot P_{k}(z)$ converges to $1_{\{w\}}$ in $C(K)$, consequently $1_{\{w\}} \in B$.

Since $1_{\{w\}}^{*} \cdot 1_{\{w\}}=0$, thus by (P1) we infer that one of the functions $1_{\{w\}}$ and $1_{\{w\}}^{*}$, say f, is such that $p(f)=0$. This implies

$$
\begin{equation*}
p(f+g)=p(g) \text { for all } g \in B \tag{12}
\end{equation*}
$$

Applying this to $g=f^{*}$ we get from (P 2) that

$$
\begin{equation*}
p\left(f^{*}\right) \geqq M_{1} . \tag{13}
\end{equation*}
$$

Let $h(z)=z$ on K and let $h_{0}=h-w \cdot 1_{\{w\}}-\bar{w} \cdot 1_{\{w\}}^{*}$; thus $h_{0} \in B$. We will show that $h_{0}=0$, i.e. $K \cap \mathbf{R} \subset\{0\}$. Write $g=\alpha \cdot h_{0}$, where α is a real number, and let $k=f+g$. Since g is self-adjoint, further $g \cdot f=0=g \cdot f^{*}$, therefore $k^{*} k=g^{2}$ and so (P1) implies

$$
\begin{equation*}
p\left(k^{*}\right) \cdot p(k) \leqq M_{2}^{2} \cdot r(g)^{2} . \tag{14}
\end{equation*}
$$

On the other hand, we can see from (12), (13) and (P2) that $p(k) \geqq M_{1} \cdot r(g), p\left(k^{*}\right) \geqq$ $\geqq M_{1}-M_{2} \cdot r(g)$. This contradicts (14), if $r(g)$ is a small positive number. But if $h_{0} \neq 0$, then $r(g)$ runs over all of \mathbf{R}_{+}when α does. Thus $h_{0}=0$ and the proof of Proposition 1.5 is complete.

Part II. If $P=\sum_{k=1}^{n} a_{k} X^{k}$ is a complex polynomial without constant term then we write $P^{*}=\sum_{k=1}^{n} \bar{a}_{k} X^{k}$. It is clear that $P^{*}(h)=P(h)^{*}$, where h is the self-adjoint element considered in Theorem 1.

Let $K=\operatorname{Sp}(h)$. Then K is symmetric, because in each ${ }^{*}$-algebra $\operatorname{Sp}\left(a^{*}\right)=$ $=\overline{\operatorname{Sp}(a)}$ for any a. We will show that this K satisfies (P1). Consider the following relation between A and $\langle h\rangle: f \sim a$ if there is a polynomial P such that $P(h)=a$ and $P(z)=f(z)$ for all $z \in K$. Denote by r^{\prime} the sup-norm in $C(K)$. Then $r^{\prime}(f)=r(a)$ if $f \sim a$, because $P(\operatorname{Sp}(h))=\operatorname{Sp}(P(h))$. Further, $f \sim a, g \sim b$ ensure $f+\lambda g \sim a+\lambda b$, $f^{*} \sim a^{*}$, since $P^{*}(z)=\overline{P(\bar{z})}$. Finally we see from (i) and Lemma 1.1 that $p \leqq 2 M_{2} \cdot r$.

Hence the following definition is correct: let $p^{\prime}(f)=p(a)$ if $f \sim a$. Moreover, this p^{\prime} shows that K satisfies (P1). Thus we know that
(15) $\mathrm{Sp}(h)$ is a cross,
(16) if $\operatorname{card}(\mathrm{Sp}(h)-\mathbf{R})=2$ then $\mathrm{Sp}(h) \cap \mathbf{R} \subset\{0\}$.

Suppose that $K=\operatorname{Sp}(h) \nsubseteq \mathbf{R}$ and $K \nsubseteq\{0, w, \bar{w}\}$ for any $w \in \mathbf{C}$. Then by (15) and (16) we can find w_{1}, w_{2} in $K-\mathbf{R}$ such that $\operatorname{Re} w_{1}=\operatorname{Re} w_{2}, \operatorname{Im} w_{1} \neq \pm \operatorname{Im} w_{2}$. Thus $\operatorname{Re}\left(w_{1}+s w_{1}^{2}\right) \neq \operatorname{Re}\left(w_{2}+s w_{2}^{2}\right)$ for any $s \in \mathbf{R}-\{0\}$, and if $|s|$ is small then $w_{1}+s w_{1}^{2}, w_{2}+s w_{2}^{2}$ are not real. Therefore $\mathrm{Sp}\left(h+s h^{2}\right)$ is not a cross. But this is impossible, since $g=h+s h^{2}$ is self-adjoint and $\langle g\rangle \subset\langle h\rangle$.

It remains to prove the last statement of the theorem. Assume the contrary, that is, $K \subset \mathbf{R}$ and p is a norm. We know already that $K \cup\{0\}=\{0, w, \bar{w}\}$ where $w \in \mathbf{C}-\mathbf{R}$. Let $y=h^{2}-w h$. Then $y^{*} y=h^{4}-w h^{3}-\bar{w} h^{3}+w \bar{w} h^{2}$ and hence $\operatorname{Sp}(y) \neq\{0\}$, $\operatorname{Sp}\left(y^{*} y\right)=\{0\}$. Thus, on the one hand, $r\left(y^{*} y\right)=0$; on the other hand, $p\left(y^{*}\right)$. $\cdot p(y) \neq 0$, since $y \in\langle h\rangle-\{0\}$ and p is a norm on $\langle h\rangle$. This contradicts (i). Theorem 1 is proved.

Theorem 2. Let \mathscr{A} be a^{*}-algebra. Let p be a norm on it, and assume that the following hold with suitable positive constants C, D :
(i) $p\left(a^{*} a\right) \leqq C \cdot p\left(a^{*}\right) \cdot p(a)$ for all $a \in \mathscr{A}$,
(ii) $p\left(b^{*} b\right) \geqq D \cdot p\left(b^{*}\right) \cdot p(b)$ if $b \in\langle h\rangle, h=h^{*} \in \mathscr{A}$.

Then $\left(\mathscr{A}, p\right.$) is an equivalent pre-C C^{*}-algebra (that is, there is a norm on the completion of (\mathscr{A}, p), equivalent to p and such that the completion with this norm is a C^{*} algebra).

Proof. This identity holds in each *-algebra:

$$
\begin{gather*}
4 x y=\left(x^{*}+y\right)^{*}\left(x^{*}+y\right)-\left(-x^{*}+y\right)^{*}\left(-x^{*}+y\right)+ \tag{1}\\
+i\left(i x^{*}+y\right)^{*}\left(i x^{*}+y\right)-i\left(-i x^{*}+y\right)^{*}\left(-i x^{*}+y\right)
\end{gather*}
$$

From this and (i) we get

$$
\begin{equation*}
4 p(x y) \leqq 4 C \cdot\left(p(x)+p\left(y^{*}\right)\right) \cdot\left(p\left(x^{*}\right)+p(y)\right) \tag{2}
\end{equation*}
$$

Writing $x=\left(p\left(v^{*}\right)^{1 / 2}+\varepsilon\right)\left(p(v)^{1 / 2}+\varepsilon\right) u, \quad y=\left(p\left(u^{*}\right)^{1 / 2}+\varepsilon\right)\left(p(u)^{1 / 2}+\varepsilon\right) v$ in (2) (where $\varepsilon>0$) and letting ε tend to 0 , we infer

$$
\begin{equation*}
p(u v) \leqq C \cdot\left(p\left(u^{*}\right)^{1 / 2} p\left(v^{*}\right)^{1 / 2}+p(u)^{1 / 2} p(v)^{1 / 2}\right)^{2} \tag{3}
\end{equation*}
$$

Define a new norm on \mathscr{A} by setting

$$
\begin{equation*}
\|a\|=4 C \cdot \max \left(p\left(a^{*}\right), p(a)\right) \text { for all } a \in \mathscr{A} \tag{4}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\|a b\| \leqq\|a\| \cdot\|b\|,\left\|a^{*}\right\|=\|a\|, p(a) \leqq(4 C)^{-1}\|a\| \text { for all } a, b \in \mathscr{A} \tag{5}
\end{equation*}
$$

Let \mathscr{B} be the completion of $(\mathscr{A},\|\cdot\|)$. Because of (5) the operations and p have unique continuous extensions to \mathscr{B} and (i), (ii), (4), (5) remain valid in \mathscr{B}.

Let r be the spectral radius in \mathscr{B}. Since \mathscr{B} is a Banach-algebra, thus

$$
\begin{equation*}
r(a)=\lim \left\|a^{n}\right\|^{1 / n} \quad \text { for all } a \in \mathscr{B} . \tag{6}
\end{equation*}
$$

If h is a self-adjoint element in \mathscr{B}, then $D \cdot p(h)^{2} \leqq p\left(h^{2}\right)$, and hence $p(h) \leqq$ $\leqq D^{-1 / 2} p\left(h^{2}\right)^{1 / 2} \leqq D^{-1 / 2} D^{-1 / 4} p\left(h^{4}\right)^{1 / 4} \leqq \ldots$. Therefore $p(h) \leqq D^{-1} \cdot \lim \sup p\left(h^{n}\right)^{1 / n}$. Thus we see from (5) and (6) that $p(h) \leqq D^{-1} \cdot r(h)$. On the other hand, $r(h) \leqq$ $\leqq\|h\|=4 C \cdot p(h)$ and we have

$$
\begin{equation*}
(4 C)^{-1} \cdot r(h) \leqq p(h) \leqq D^{-1} \cdot r(h) \quad \text { if } \quad h^{*}=h \in \mathscr{B} . \tag{7}
\end{equation*}
$$

From this and (i), (ii) we can see that

$$
\begin{equation*}
\left(4 C^{2}\right)^{-1} \cdot r\left(a^{*} a\right) \leqq p\left(a^{*}\right) \cdot p(a) \leqq D^{-2} \cdot r\left(a^{*} a\right) \quad \text { if } \quad a \in\langle h\rangle, h^{*}=h \in \mathscr{A} ; \tag{8}
\end{equation*}
$$

furthermore, p is a norm on $\langle h\rangle$. Thus Theorem 1 shows that $\operatorname{Sp}(h) \subset \mathbf{R}$ if $h^{*}=h \in \mathscr{A}$. Then $r(\sin h) \leqq 1, r(\cos h-1) \leqq 2$ via functional calculus. Since ${ }^{*}$ is continuous in \mathscr{B}, hence $\sin h, \cos h-1$ are self-adjoint. Therefore (7) and (4) imply $\|\sin h\| \leqq 4 C D^{-1},\|\cos h-1\| \leqq 8 C D^{-1}$, and so

$$
\begin{equation*}
\|\exp (i h)-1\| \leqq 12 C D^{-1} \quad \text { if } \quad h^{*}=h \in \mathscr{A} . \tag{9}
\end{equation*}
$$

The self-adjoint part of \mathscr{A} is dense in that of \mathscr{B}, and hence (9) remains valid for $h=h^{*} \in \mathscr{B}$, too. But this ensures that $\|a\|_{c}=r\left(a^{*} a\right)^{1 / 2}$ is a C^{*}-norm on \mathscr{B}, which is equivalent to $\|\cdot\|$ (see [2]). Thus p is continuous with respect to $\|\cdot\|_{c}$; let $E>0$ be such that

$$
p(a) \leqq E \cdot\|a\|_{c} \quad \text { for all } a \in \mathscr{B} .
$$

Comparing this with (i) and (7) we see that for any $a \in \mathscr{B}$

$$
E \cdot\|a\|_{c} \cdot p(a)=E \cdot\left\|a^{*}\right\|_{c} \cdot p(a) \geqq p\left(a^{*}\right) \cdot p(a) \geqq\left(4 C^{2}\right)^{-1} r\left(a^{*} a\right)=\left(4 C^{2}\right)^{-1}\|a\|_{c}^{2}
$$

that is, $p(a) \geqq\left(4 E C^{2}\right)^{-1}\|a\|_{c}$. Therefore p is equivalent to $\|\cdot\|_{c}$. Theorem 2 is proved.

References

[1] F. F. Bonsall-J. Duncan, Complete Normed Algebras, Ergebnisse der Mathematik, Band 80, Springer (Berlin, 1973).
[2] V. Pták, Banach algebras with involution, Manuscripta Math., 6 (1972), 245-290.
[3] H. Araki-G. A. Elliott, On the definition of C^{*}-algebras, Publ. Res. Inst. Math. Sci., 9 (1973), 93-112.
[4] Z. Magyar-Z. Sebestyén, On the definition of C^{*}-algebras. II, to appear.

[^0]: Received November 27, 1981.

