Infinite-dimensional Jordan models and Smith McMillan forms. II

ARTHUR E. FRAZHO

1. Introduction

This paper is a continuation of [3]. Throughout we follow the notation and terminology established there and in [11]. The k-dimensional space of complex k-tuples is denoted by \mathscr{E}^k and $z=e^{it}$ for $t\in[0,2\pi]$. The orthogonal projection onto a subspace \mathscr{X} is denoted by $P_{\mathscr{X}}$. The greatest common inner divisor of the functions α,β in H^{∞} is $\alpha\wedge\beta$. A bounded analytic function $\{\mathscr{E}^m,\mathscr{E}^n,\Omega\}$ is a Lebesgue measurable operator valued function such that $\Omega(z)$ maps \mathscr{E}^m into \mathscr{E}^n for all $z,\Omega(z)$ has analytic continuation into the open unit disc and $\|\Omega(z)\| \leq M < \infty$ a.e. The Hardy H^2 -space of analytic functions with values in \mathscr{E} is denoted by $H^2(\mathscr{E})$. The forward shift U_+ on $H^2(\mathscr{E})$ is defined by $U_+f:=zf$ where f is in $H^2(\mathscr{E})$. Let $\{\mathscr{E}^k,\mathscr{E}^n,\Phi\}$ be an inner function. Then $\mathscr{H}(\Phi):=H^2(\mathscr{E}^n)\ominus\Phi H^2(\mathscr{E}^k)$ and $S(\Phi)$ is the compression of U_+ to $\mathscr{H}(\Phi)$. Recall [11] that $S(\Phi)$ is a C_0 contraction if and only if Φ is inner from both sides, i.e., k=n. Finally, let $\{\mathscr{E}^m,\mathscr{E}^n,\Omega\}$ be a bounded analytic function then $\{\mathscr{E}^k,\mathscr{E}^n,C(\Omega)\}$ is the inner function uniquely defined by

(1)
$$\mathscr{H}(C(\Omega)) := \bigvee_{j \ge 0} U_+^{*j} \Omega \mathscr{E}^m$$

Note $C(\Omega)$ is well defined by the Beurling—Lax theorem [11].

Throughout N(z) is a Lebesgue measurable function in $[0, 2\pi]$ whose values are a.e. nonnegative self adjoint operators mapping \mathscr{E}^m into \mathscr{E}^m and $||N(z)|| \le M < \infty$ a.e. It is also assumed that N admits a factorization of the form $N(z) = \theta^*(z)\theta(z)$ a.e., where $\{\mathscr{E}^m, \mathscr{E}^n, \theta\}$ is a bounded analytic outer function; such a θ will be called an outer factor of N. In the previous paper [3] we gave a simple procedure to compute the Jordan model for $S(C(\theta))$ by means of θ . Here this is done without computing θ or the inner function $C(\theta)$ generated by θ . That is,

Received May 3, 1982.

our present procedure calculates this Jordan model directly from N, by using a generalized Smith—McMillan procedure. Our procedure, given in Theorem 1, plays an important role in infinite-dimensional stochastic realization theory [4]. The following is needed.

Lemma 1. [2] Let $\{\mathcal{E}^m, \mathcal{E}^n, \theta\}$ be the outer factor for N. Then $S(C(\theta))$ is a C_0 contraction if and only if there exists an inner function c in H^{∞} such that cN is a bounded analytic function.

Remark 1. The above lemma allows us to determine if $S(C(\theta))$ is a C_0 contraction directly from N without obtaining θ or $C(\theta)$. Finally, if cN is a bounded analytic function for some c in H^{∞} then N always admits an outer spectral factor [2]. (In this situation our factorization assumption on N is redundant.)

2. Main result

For convenience we recall some terminology in [9], [10]. Let $\{\mathscr{E}^n, \mathscr{E}^m, H\}$ and $\{\mathscr{E}^n, \mathscr{E}^m, H_1\}$ be two bounded analytic functions. H is quasi-equivalent to H_1 if for every scalar valued inner function c there exists two bounded analytic functions $\{\mathscr{E}^m, \mathscr{E}^m, A\}$, $\{\mathscr{E}^n, \mathscr{E}^n, B\}$ such that $\det(A)$ and $\det(B)$ are prime to c and $HB = AH_1$. Quasi-equivalence is an equivalence relation. It can be shown that $\{\mathscr{E}^n, \mathscr{E}^m, H\}$ is quasi-equivalent to $\{\mathscr{E}^n, \mathscr{E}^m, D\}$ where D is a diagonal analytic function of the form

$$(2) D = \begin{bmatrix} D_1 & 0 \\ 0 & 0 \end{bmatrix}$$

and $D_1 = \operatorname{diag} [d_1, d_2, ..., d_k]$. The d_i 's are scalar valued inner functions such that d_i divides d_{i+1} for i=1, ..., k-1. Furthermore, this representation is unique and called the *normal form of H*. The normal form D can be obtained from the invariant factors of H [9], [10]. Define \mathcal{D}_r as the greatest common inner divisor of all minors in H of order r, with $\mathcal{D}_0=1$. The invariant factors for H are $\mathscr{E}_i(H):=\mathcal{D}_i/\mathcal{D}_{i-1}$ for $i=1, ..., \min(m, n)$. By convention $\mathscr{E}_j(H)=0$ for all $j \ge i-1$ if $\mathcal{D}_{i-1}=0$. If $\mathscr{E}_i(H)$ is nonzero then $\mathscr{E}_{i-1}(H)$ divides $\mathscr{E}_i(H)$. It can be shown that the normal form for H is given by (2) where $D_1=\operatorname{diag}\left[\mathscr{E}_1(H), ..., \mathscr{E}_k(H)\right]$ and k is the number of nonzero invariant factors for H.

A Jordan model is an operator of the form $S(m_1) \oplus S(m_2) \oplus ... \oplus S(m_k)$ where the m_i 's are inner functions in H^{∞} , see [1], [12], [13], [14] for further details. Finally we need

Lemma 2. [6, Ch. 3] Let $\{\mathscr{E}^m, \mathscr{E}^n, \theta\}$ be a bounded analytic function. Then $S(C(\theta))$ is a C_0 contraction if and only if θ admits a factorization of the form

 $\theta = \overline{z}G^*\psi$, where $\{\mathcal{E}^m, \mathcal{E}^m, \psi\}$ is inner from both sides, $\{\mathcal{E}^n, \mathcal{E}^m, G\}$ is a bounded analytic function, and the only common, inner from both sides, left factor to both ψ and G_i is a unitary constant. (The inner part of G is denoted by G_i .) Furthermore, when $S(C(\theta))$ is a C_0 contraction then $S(C(\theta))$ and $S(\psi)$ are quasi-similar. In particular, $S(C(\theta))$ and $S(\psi)$ admit the same Jordan model.

Theorem 1. Let $\{\mathcal{E}^m, \mathcal{E}^n, \theta\}$ be the outer factor for N. Assume there exists a scalar inner function c such that cN=zH is a bounded analytic function. Then

- (i) $S(C(\theta))$ is a C_0 contraction.
- (ii) The Jordan model for $S(C(\theta))$ is $S(m_1) \oplus S(m_2) \oplus ... \oplus S(m_k)$ where k is the number of nonzero invariant factors for $\{\mathscr{E}^m, \mathscr{E}^m, H\}$ and $m_i = c/(\mathscr{E}_i(H) \wedge c)$ for i = 1, ..., k.

Proof. Part (i) is an obvious consequence of Lemma 1. The proof of part (ii) is similar to Theorem 1 in [3]. Let

(3)
$$D' = \operatorname{diag} [\mathscr{E}_1(H), ..., \mathscr{E}_k(H), 0, 0, ..., 0]$$

be the normal form for H, where $\mathscr{E}_k(H) \neq 0$. Choose any two bounded analytic functions $\{\mathscr{E}^m, \mathscr{E}^m, A\}$ and $\{\mathscr{E}^m, \mathscr{E}^m, B\}$ with $\det(A) \cdot \det(B) = a$ such that a is prime to $c\mathscr{E}_k(H)$ and HB = AD'. Lemma 2 and $N = \theta^*\theta$ gives $\psi^*G\theta = H\bar{c}$ where ψ and G satisfy the conclusion of Lemma 2. Applying B yields

$$\psi^* G \theta B = A D' \bar{c}.$$

Let

(5)
$$M = \operatorname{diag}[m_1, m_2, ..., m_k \ 1, 1, ..., 1],$$

$$D = \operatorname{diag}[d_1, d_2, ..., d_k, 0, 0, ..., 0]$$

where the m_i 's are defined in statement (ii) above and $d_i := \mathcal{E}_i(H)/(\mathcal{E}_i(H) \wedge c)$ for i = 1, ..., k. By [12, Lemma 2b] we have d_i divides d_{i+1} . Using $D'\bar{c} = DM^*$ in (4):

(6)
$$G\theta BM = \psi AD.$$

Equation (6) and [11, Theorem 3.6, p. 258] or [8], [14] implies $S(\psi)X = XS(M)$ where

(7)
$$X = P_{\mathscr{X}(\psi)} G\theta B | \mathscr{H}(M).$$

To complete the proof it is sufficient to show that X is a quasiaffinity. By the results in [1], [12], [13], [14] this implies S(M) is the Jordan model for $S(\psi)$. Then by Lemma 2, S(M) is also the Jordan model for $S(C(\theta))$.

First it is shown that X is densely onto. By equation (6):

$$P_{\mathscr{H}(\psi)}G\theta BMH^{2}(\mathscr{E}^{m})=\{0\}.$$

Using this in the following calculation with the fact that θ is outer gives:

$$\overline{X\mathcal{H}(M)} = \overline{P_{\mathcal{H}(\psi)}G\theta B(\mathcal{H}(M) \vee MH^{2}(\mathcal{E}^{m}))} = \overline{P_{\mathcal{H}(\psi)}G\theta BH^{2}(\mathcal{E}^{m})} \supseteq (8)$$

$$\supseteq \overline{P_{\mathcal{H}(\psi)}G\theta aH^{2}(\mathcal{E}^{m})} = \overline{P_{\mathcal{H}(\psi)}GaH^{2}(\mathcal{E}^{n})} = \overline{P_{\mathcal{H}(\psi)}GaH^{2}(\mathcal{E}^{n}) \vee \psi H^{2}(\mathcal{E}^{m})} = \mathcal{H}(\psi).$$

The last equality follows from Lemma 3 in [3] which shows that

(9)
$$GaH^{2}(\mathscr{E}^{n}) \vee \psi H^{2}(\mathscr{E}^{m}) = H^{2}(\mathscr{E}^{m}).$$

Hence X is densely onto.

Finally we verify that X is one-to-one. Our technique is similar to some of the arguments in [14]. Assume $h \in \mathcal{H}(M)$ and Xh = 0. Let $g \in L^2(\mathscr{E}^m)$ be such that h = Mg. To show that X is one-to-one we simply show that $g \in H^2(\mathscr{E}^m)$. Then $h \in MH^2(\mathscr{E}^m) \cap \mathcal{H}(M) = \{0\}$.

By using (6):

$$(10) 0 = P_{\mathcal{H}(\psi)}G\theta BMg = P_{\mathcal{H}(\psi)}\psi ADg.$$

Since Mg is analytic, ψADg is analytic. Equation (10) implies ψADg is in $\psi H^2(\mathscr{E}^m)$. Thus ADg is in $H^2(\mathscr{E}^m)$. Using A'A=aI for the appropriate bounded analytic $\{\mathscr{E}^m,\mathscr{E}^m,A'\}$ yields $aDg\in H^2(\mathscr{E}^m)$. This with the definition of D places ad_kg in $H^2(\mathscr{E}^m)$. (This follows because $m_j=1$ if j>k where k is defined in (3) or (5). Notice that h=Mg is in $\mathscr{H}(M)$. Thus $g_j=0$ for all j>k. Here g_j is the jth component of the m-vector g.) Clearly h=Mg is in $H^2(\mathscr{E}^m)$. Therefore cg is in $H^2(\mathscr{E}^m)$. By [11, Proposition 1.5, p. 108] we have $(c \wedge (ad_k)) g \in H^2(\mathscr{E}^m)$. By construction c and ad_k are prime. Hence g is in $H^2(\mathscr{E}^m)$, X is one-to-one and the proof is complete.

Lemma 3. ([5], [6]) Let $\{\mathcal{E}^p, \mathcal{E}^m, \Omega\}$ be a bounded analytic function.

- (i) $S(C(\Omega))$ is a C_0 contraction if and only if $S(C(\tilde{\Omega}))$ is a C_0 contraction.
- (ii) If $S(C(\Omega))$ is a C_0 contraction then $S(C(\Omega))$ and $S^*(C(\tilde{\Omega}))$ are quasi-similar. In particular, they have the same Jordan model.

Proof. This lemma follows from Theorem 2.1 in [5]. One can also obtain this result by using either Theorem 14.11, p. 206 and Theorem 3.5, p. 254 in [6] or Theorem 1 in [3].

Finally we are ready for

Corollary 1. Assume there exists a scalar valued inner function c such that cN=zH is a bounded analytic function. Then

- i) N admits a *-outer factorization $N(z) = \Omega(z) \Omega^*(z)$ a.e. where $\{\mathscr{E}^p, \mathscr{E}^m, \Omega\}$ is *-outer.
- (ii) $S(C(\Omega))$ is a C_0 contraction. Furthermore, $S(C(\Omega))$ and $S(C(\theta))$ have the same Jordan model. (θ is the outer factor for N.) In particular, the Jordan model for $S(C(\Omega))$ can be obtained directly from Theorem 1.

Proof. (i) $\tilde{c}\tilde{N}=z\tilde{H}$ is a bounded analytic function. By Remark 1 or [2] N admits a *-outer factorization.

Now for part (ii). Clearly $\tilde{N} = \tilde{\Omega}^* \tilde{\Omega}$ is an outer factorization of \tilde{N} and $\tilde{c}\tilde{N} = z\tilde{H}$. Lemmas 1 and 3 imply that $S(C(\Omega))$ and $S(C(\tilde{\Omega}))$ are C_0 contractions. By Theorem 1 the Jordan model for $S(C(\tilde{\Omega}))$ is $S(\tilde{m}_1) \oplus ... \oplus S(\tilde{m}_k)$ where k is the number of nonzero invariant factors for H and

(11)
$$\tilde{m}_i = \lceil c/(c \wedge \mathscr{E}_i(H)) \rceil^{\sim} = \lceil \tilde{c}/(\tilde{c} \wedge \mathscr{E}_i(\tilde{H})) \rceil.$$

Recall [11] that $S(\tilde{m})$ is unitarily equivalent to $S^*(m)$ for an inner function m. Equation (11), Theorem 1 and Lemma 3 imply that $S(C(\Omega))$ and $S(C(\theta))$ have the same Jordan model.

References

- H. Bercovici, C. Foiaş and B. Sz.-Nagy, Compléments a l'étude des operateurs de classe C₀. III, Acta Sci. Math., 37 (1975), 313—322.
- [2] R. G. DOUGLAS, and J. W. HELTON, Inner dilations of analytic matrix functions and Darlington synthesis, Acta. Sci. Math., 34 (1973), 61—67.
- [3] A. E. Frazho, Infinite dimensional Jordan models and Smith—McMillan forms, *Integral Equations Operator Theory*, 5 (1982), 184—192.
- [4] A. E. Frazho, Infinite dimensional stochastic realizations and nonrational Smith—McMillan forms, in: Proceedings of the 1982 Conference on Information Sciences and Systems (Princeton, New Jersey, 1982), 176—180.
- [5] P. A. FURHMANN, On series and parallel coupling of a class of discrete time infinite-dimensional system, SIAM J. Control, 14 (1976), 339—358.
- [6] P. A. FUHRMANN, Linear Systems and Operators in Hilbert Space, McGraw-Hill (New York, 1981).
- [7] T. KAILATH, Linear Systems, Prentice-Hall, Inc. (Englewood Cliffs, 1980).
- [8] B. Moore, III, and E. A. Nordgen, On quasi-similarity, Acta Sci. Math., 34 (1973), 311-316.
- [9] E. A. Nordgren, On quasi-equivalence of matrices over H[∞], Acta Sci. Math., 34 (1973), 301—310.
- [10] B. Sz.-NAGY, Diagonalization of matrices over H[∞], Acta Sci. Math., 38 (1976), 223-238.
- [11] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North Holland/Akadémiai Kiadó (Amsterdam/Budapest, 1970).
- [12] B. Sz.-Nagy, and C. Foias, Modèle de Jordan pur une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 31 (1970), 91—115.
- [13] B. Sz.-Nagy and C. Foias, Compléments à l'étude des opérateurs de classe C₀, Acta Sci. Math., 31 (1970), 287—296.
- [14] B. Sz.-Nagy and C. Foias, Jordan model for contractions of class C₀, Acta Sci. Math., 36 (1974), 305—322.

SCHOOL OF AERONAUTICS AND ASTRONAUTICS PURDUE UNIVERSITY WEST LAFAYETTE, INDIANA 47907, U.S.A.