Infinite-dimensional Jordan models and Smith McMillan forms. II

ARTHUR E. FRAZHO

1. Introduction

This paper is a continuation of [3]. Throughout we follow the notation and terminology established there and in [11]. The k-dimensional space of complex k-tuples is denoted by \mathscr{E}^{k} and $z=e^{i t}$ for $t \in[0,2 \pi]$. The orthogonal projection onto a subspace \mathscr{X} is denoted by $P_{\mathscr{X}}$. The greatest common inner divisor of the functions α, β in H^{∞} is $\alpha \wedge \beta$. A bounded analytic function $\left\{\mathscr{E}^{m}, \mathscr{E}^{n}, \Omega\right\}$ is a Lebesgue measurable operator valued function such that $\Omega(z)$ maps \mathscr{E}^{m} into \mathscr{E}^{n} for all $z, \Omega(z)$ has analytic continuation into the open unit disc and $\|\Omega(z)\| \leqq M<\infty$ a.e. The Hardy H^{2}-space of analytic functions with values in \mathscr{E} is denoted by $H^{2}(\mathscr{E})$. The forward shift U_{+}on $H^{2}(\mathscr{E})$ is defined by $U_{+} f:=z f$ where f is in $H^{2}(\mathscr{E})$. Let $\left\{\mathscr{E}^{k}, \mathscr{E}^{n}, \Phi\right\}$ be an inner function. Then $\mathscr{H}(\Phi):=H^{2}\left(\mathscr{E}^{n}\right) \ominus \Phi H^{2}\left(\mathscr{E}^{k}\right)$ and $S(\Phi)$ is the compression of U_{+}to $\mathscr{H}(\Phi)$. Recall [11] that $S(\Phi)$ is a C_{0} contraction if and only if Φ is inner from both sides, i.e., $k=n$. Finally, let $\left\{\mathscr{E}^{m}, \mathscr{E}^{n}, \Omega\right\}$ be a bounded analytic function then $\left\{\mathscr{E}^{k}, \mathscr{E}^{n}, C(\Omega)\right\}$ is the inner function uniquely defined by

$$
\begin{equation*}
\mathscr{H}(C(\Omega)):=\bigvee_{j \geq 0} U_{+}^{* j} \Omega \mathscr{E}^{m} \tag{1}
\end{equation*}
$$

Note $C(\Omega)$ is well defined by the Beurling-Lax theorem [11].
Throughout $N(z)$ is a Lebesgue measurable function in $[0,2 \pi]$ whose values are a.e. nonnegative self adjoint operators mapping \mathscr{E}^{m} into \mathscr{E}^{m} and $\|N(z)\| \leqq$ $\leqq M<\infty$ a.e. It is also assumed that N admits a factorization of the form $N(z)=$ $=\theta^{*}(z) \theta(z)$ a.e., where $\left\{\mathscr{E}^{m}, \mathscr{E}^{n}, \theta\right\}$ is a bounded analytic outer function; such a θ will be called an outer factor of N. In the previous paper [3] we gave a simple procedure to compute the Jordan model for $S(C(\theta))$ by means of θ. Here this is done without computing θ or the inner function $C(\theta)$ generated by θ. That is,
our present procedure calculates this Jordan model directly from N, by using a generalized Smith-McMillan procedure. Our procedure, given in Theorem 1, plays an important role in infinite-dimensional stochastic realization theory [4]. The following is needed.

Lemma 1. [2] Let $\left\{\mathscr{E}^{m}, \mathscr{E}^{n}, \theta\right\}$ be the outer factor for N. Then $S(C(\theta))$ is a C_{0} contraction if and only if there exists an inner function c in H^{∞} such that $c N$ is a bounded analytic function.

Remark 1. The above lemma allows us to determine if $S(C(\theta))$ is a C_{0} contraction directly from N without obtaining θ or $C(\theta)$. Finally, if $c N$ is a bounded analytic function for some c in H^{∞} then N always admits an outer spectral factor [2]. (In this situation our factorization assumption on N is redundant.)

2. Main result

For convenience we recall some terminology in [9], [10]. Let $\left\{\mathscr{E}^{n}, \mathscr{E}^{m}, H\right\}$ and $\left\{\mathscr{E}^{n}, \mathscr{E}^{m}, H_{1}\right\}$ be two bounded analytic functions. H is quasi-equivalent to H_{1} if for every scalar valued inner function c there exists two bounded analytic functions $\left\{\mathscr{E}^{m}, \mathscr{E}^{m}, A\right\},\left\{\mathscr{E}^{n}, \mathscr{E}^{n}, B\right\}$ such that $\operatorname{det}(A)$ and $\operatorname{det}(B)$ are prime to c and $H B=A H_{1}$. Quasi-equivalence is an equivalence relation. It can be shown that $\left\{\mathscr{E}^{n}, \mathscr{E}^{m}, H\right\}$ is quasi-equivalent to $\left\{\mathscr{E}^{n}, \mathscr{E}^{m}, D\right\}$ where D is a diagonal analytic function of the form

$$
D=\left[\begin{array}{cc}
D_{1} & 0 \tag{2}\\
0 & 0
\end{array}\right]
$$

and $D_{1}=\operatorname{diag}\left[d_{1}, d_{2}, \ldots, d_{k}\right]$. The d_{i} 's are scalar valued inner functions such that d_{i} divides d_{i+1} for $i=1, \ldots, k-1$. Furthermore, this representation is unique and called the normal form of H. The normal form D can be obtained from the invariant factors of H [9], [10]. Define \mathscr{D}_{r} as the greatest common inner divisor of all minors in H of order r, with $\mathscr{D}_{0}=1$. The invariant factors for H are $\mathscr{E}_{i}(H):=\mathscr{D}_{i} / \mathscr{D}_{i-1}$ for $i=1, \ldots, \min (m, n)$. By convention $\mathscr{E}_{j}(H)=0$ for all $j \geqq i-1$ if $\mathscr{D}_{i-1}=0$. If $\mathscr{E}_{i}(H)$ is nonzero then $\mathscr{E}_{i-1}(H)$ divides $\mathscr{E}_{i}(H)$. It can be shown that the normal form for H is given by (2) where $D_{1}=\operatorname{diag}\left[\mathscr{E}_{1}(H), \ldots, \mathscr{E}_{k}(H)\right]$ and k is the number of nonzero invariant factors for H.

A Jordan model is an operator of the form $S\left(m_{1}\right) \oplus S\left(m_{2}\right) \oplus \ldots \oplus S\left(m_{k}\right)$ where the m_{i}^{\prime} 's are inner functions in H^{∞}, see [1], [12], [13], [14] for further details. Finally we need

Lemma 2. [6, Ch. 3] Let $\left\{\mathscr{E}^{m}, \mathscr{E}^{n}, \theta\right\}$ be a bounded analytic function. Then $S(C(\theta))$ is a C_{0} contraction if and only if θ admits a factorization of the form
$\theta=\bar{z} G^{*} \psi$, where $\left\{\mathscr{E}^{m}, \mathscr{E}^{m}, \psi\right\}$ is inner from both sides, $\left\{\mathscr{E}^{n}, \mathscr{E}^{m}, G\right\}$ is a bounded analytic function, and the only common, inner from both sides, left factor to both ψ and G_{i} is a unitary constant. (The inner part of G is denoted by G_{i}.) Furthermore, when $S\left(C(\theta)\right.$) is a C_{0} contraction then $S(C(\theta)$) and $S(\psi)$ are quasi-similar. In particular, $S(C(\theta)$) and $S(\psi)$ admit the same Jordan model.

Theorem 1. Let $\left\{\mathscr{E}^{m}, \mathscr{E}^{n}, \theta\right\}$ be the outer factor for N. Assume there exists a scalar inner function c such that $c N=z H$ is a bounded analytic function. Then
(i) $S(C(\theta))$ is a C_{0} contraction.
(ii) The Jordan model for $S(C(\theta))$ is $S\left(m_{1}\right) \oplus S\left(m_{2}\right) \oplus \ldots \oplus S\left(m_{k}\right)$ where k is the number of nonzero invariant factors for $\left\{\mathscr{E}^{m}, \mathscr{E}^{m}, H\right\}$ and $m_{i}=c /\left(\mathscr{E}_{i}(H) \wedge c\right)$ for $i=1, \ldots, k$.

Proof. Part (i) is an obvious consequence of Lemma 1. The proof of part (ii) is similar to Theorem 1 in [3]. Let

$$
\begin{equation*}
D^{\prime}=\operatorname{diag}\left[\mathscr{E}_{1}(H), \ldots, \mathscr{E}_{k}(H), 0,0, \ldots, 0\right] \tag{3}
\end{equation*}
$$

be the normal form for H, where $\mathscr{E}_{k}(H) \neq 0$. Choose any two bounded analytic functions $\left\{\mathscr{E}^{m}, \mathscr{E}^{m}, A\right\}$ and $\left\{\mathscr{E}^{m}, \mathscr{E}^{m}, B\right\}$ with $\operatorname{det}(A) \cdot \operatorname{det}(B)=a$ such that a is prime to $c \mathscr{E}_{k}(H)$ and $H B=A D^{\prime}$. Lemma 2 and $N=\theta^{*} \theta$ gives $\psi^{*} G \theta=H \bar{c}$ where ψ and G satisfy the conclusion of Lemma 2. Applying B yields

$$
\begin{equation*}
\psi^{*} G \theta B=A D^{\prime} \bar{c} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
M & =\operatorname{diag}\left[m_{1}, m_{2}, \ldots, m_{k} 1,1, \ldots, 1\right] \tag{5}\\
D & =\operatorname{diag}\left[d_{1}, d_{2}, \ldots, d_{k}, 0,0, \ldots, 0\right]
\end{align*}
$$

where the m_{i} 's are defined in statement (ii) above and $d_{i}:=\mathscr{E}_{i}(H) /\left(\mathscr{E}_{i}(H) \wedge c\right)$ for $i=1, \ldots, k$. By [12, Lemma 2b] we have d_{i} divides d_{i+1}. Using $D^{\prime} \bar{c}=D M^{*}$ in (4):

$$
\begin{equation*}
G \theta B M=\psi A D \tag{6}
\end{equation*}
$$

Equation (6) and [11, Theorem 3.6, p. 258] or [8], [14] implies $S(\psi) X=X S(M)$ where

$$
\begin{equation*}
X=P_{\mathscr{P}(\psi)} G 0 B \mid \mathscr{H}(M) \tag{7}
\end{equation*}
$$

To complete the proof it is sufficient to show that X is a quasiaffinity. By the results in [1], [12], [13], [14] this implies $S(M)$ is the Jordan model for $S(\psi)$. Then by Lemma 2, $S(M)$ is also the Jordan model for $S(C(\theta))$.

First it is shown that X is densely onto. By equation (6):

$$
P_{\mathscr{H}(\psi)} G \theta B M H^{2}\left(\mathscr{E}^{m}\right)=\{0\} .
$$

Using this in the following calculation with the fact that θ is outer gives:

$$
\begin{equation*}
\overline{X \mathscr{H}(M)}=\overline{P_{\mathscr{H}(\psi)} G \theta B\left(\mathscr{H}(M) \vee M H^{2}\left(\mathscr{E}^{m}\right)\right)}=\overline{P_{\mathscr{H}(\psi)} G \theta B H^{2}\left(\mathscr{E}^{m}\right)} \supseteqq \tag{8}
\end{equation*}
$$

$$
\supseteq \overline{P_{\mathscr{P}(\psi)} G \theta a H^{2}\left(\mathscr{E}^{m}\right)}=\overline{P_{\mathscr{P}(\psi)} G a H^{2}\left(\mathscr{E}^{n}\right)}=\overline{P_{\mathscr{H}(\psi)} G a H^{2}\left(\mathscr{E}^{n}\right) \vee \psi H^{2}\left(\mathscr{E}^{m}\right)}=\mathscr{H}(\psi) .
$$

The last equality follows from Lemma 3 in [3] which shows that

$$
\begin{equation*}
G a H^{2}\left(\mathscr{E}^{n}\right) \vee \psi H^{2}\left(\mathscr{E}^{m}\right)=H^{2}\left(\mathscr{E}^{m}\right) \tag{9}
\end{equation*}
$$

Hence X is densely onto.
Finally we verify that X is one-to-one. Our technique is similar to some of the arguments in [14]. Assume $h \in \mathscr{H}(M)$ and $X h=0$. Let $g \in L^{2}\left(\mathscr{E}^{m}\right)$ be such that $h=M g$. To show that X is one-to-one we simply show that $g \in H^{2}\left(\mathscr{E}^{m}\right)$. Then $h \in M H^{2}\left(\mathscr{E}^{m}\right) \cap \mathscr{H}(M)=\{0\}$.

By using (6):

$$
\begin{equation*}
0=P_{\mathscr{H}(\psi)} G \theta B M g=P_{\mathscr{H}(\psi)} \psi A D g . \tag{10}
\end{equation*}
$$

Since $M g$ is analytic, $\psi A D g$ is analytic. Equation (10) implies $\psi A D g$ is in $\psi H^{2}\left(\mathscr{E}^{m}\right)$. Thus $A D g$ is in $H^{2}\left(\mathscr{E}^{m}\right)$. Using $A^{\prime} A=a I$ for the appropriate bounded analytic $\left\{\mathscr{E}^{m}, \mathscr{E}^{m}, A^{\prime}\right\}$ yields $a D g \in H^{2}\left(\mathscr{E}^{m}\right)$. This with the definition of D places $a d_{k} g$ in $H^{2}\left(\mathscr{E}^{m}\right)$. (This follows because $m_{j}=1$ if $j>k$ where k is defined in (3) or (5). Notice that $h=M g$ is in $\mathscr{H}(M)$. Thus $g_{j}=0$ for all $j>k$. Here g_{j} is the j th component of the m-vector g.) Clearly $h=M g$ is in $H^{2}\left(\mathscr{E}^{m}\right)$. Therefore $c g$ is in $H^{2}\left(\mathscr{E}^{m}\right)$. By [11, Proposition 1.5, p. 108] we have $\left(c \wedge\left(a d_{k}\right)\right) g \in H^{2}\left(\mathscr{E}^{m}\right)$. By construction c and $a d_{k}$ are prime. Hence g is in $H^{2}\left(\mathscr{E}^{m}\right), X$ is one-to-one and the proof is complete.

Lemma 3. ([5], [6]) Let $\left\{\mathscr{E}^{p}, \mathscr{E}^{m}, \Omega\right\}$ be a bounded analytic function.
(i) $S(C(\Omega))$ is a C_{0} contraction if and only if $S(C(\widetilde{\Omega}))$ is a C_{0} contraction.
(ii) If $S(C(\Omega))$ is a C_{0} contraction then $S(C(\Omega))$ and $S^{*}(C(\tilde{\Omega}))$ are quasisimilar. In particular, they have the same Jordan model.

Proof. This lemma follows from Theorem 2.1 in [5]. One can also obtain this result by using either Theorem 14.11, p. 206 and Theorem 3.5, p. 254 in [6] or Theorem 1 in [3].

Finally we are ready for
Corollary 1. Assume there exists a scalar valued inner function c such that $c N=z H$ is a bounded analytic function. Then
i) N admits a^{*}-outer factorization $N(z)=\Omega(z) \Omega^{*}(z)$ a.e. where $\left\{\mathscr{E}^{p}, \mathscr{E}^{m}, \Omega\right\}$ is ${ }^{*}$-outer.
(ii) $S(C(\Omega))$ is a C_{0} contraction. Furthermore, $S(C(\Omega))$ and $S(C(\theta))$ have the same Jordan model. (θ is the outer factor for N.) In particular; the Jordan model for $S(C(\Omega))$ can be obtained directly from Theorem 1.

Proof. (i) $\tilde{c} \tilde{N}=z \tilde{H}$ is a bounded analytic function. By Remark 1 or [2] N admits a*-outer factorization.

Now for part (ii). Clearly $\tilde{N}=\tilde{\Omega}^{*} \tilde{\Omega}$ is an outer factorization of \tilde{N} and $\tilde{c} \tilde{N}=z \tilde{H}$. Lemmas 1 and 3 imply that $S\left(C(\Omega)\right.$) and $S\left(C(\tilde{\Omega})\right.$) are C_{0} contractions. By Theorem 1 the Jordan model for $S(C(\widetilde{\Omega}))$ is $S\left(\tilde{m}_{1}\right) \oplus \ldots \oplus S\left(\tilde{m}_{k}\right)$ where k is the number of nonzero invariant factors for H and

$$
\begin{equation*}
\tilde{m}_{j}=\left[c /\left(c \wedge \mathscr{E}_{j}(H)\right)\right]^{\sim}=\left[\tilde{c} /\left(\tilde{c} \wedge \mathscr{E}_{j}(\tilde{H})\right)\right] . \tag{11}
\end{equation*}
$$

Recall [11] that $S(\tilde{m})$ is unitarily equivalent to $S^{*}(m)$ for an inner function m. Equation (11), Theorem 1 and Lemma 3 imply that $S(C(\Omega)$) and $S(C(\theta))$ have the same Jordan model.

References

[1] H. Bercovici, C. Foias and B. Sz.-Nagy, Compléments a l'étude des operateurs de classe C_{0}. III, Acta Sci. Math., 37 (1975), 313-322.
[2] R. G. Douglas, and J. W. Helton, Inner dilations of analytic matrix functions and Darlington synthesis, Acta. Sci. Math., 34 (1973), 61-67.
[3] A. E. Frazho, Infinite dimensional Jordan models and Smith-McMillan forms, Integral Equations Operator Theory, 5 (1982), 184-192.
[4] A. E. Frazho, Infinite dimensional stochastic realizations and nonrational Smith-McMillan forms, in: Proceedings of the 1982 Conference on Information Sciences and Systems (Princeton, New Jersey, 1982), 176-180.
[5] P. A. Furhmann, On series and parallel coupling of a class of discrete time infinite-dimensional system, SIAM J. Control, 14 (1976), 339-358.
[6] P. A. Fuhrmann, Linear Systems and Operators in Hilbert Space, McGraw-Hill (New York, 1981).
[7] T. Kailath, Linear Systems, Prentice-Hall, Inc. (Englewood Cliff, 1980).
[8] B. Moore, III, and E. A. Nordgen, On quasi-similarity, Acta Sci. Math., 34 (1973), 311-316.
[9] E. A. Nordgren, On quasi-equivalence of matrices over H^{∞}, Acta Sci. Math., 34 (1973), 301-310.
[10] B. Sz.-Nagy, Diagonalization of matrices over H^{∞}, Acta Sci. Math., 38 (1976), 223-238.
[11] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North Holland/ Akadémiai Kiadó (Amsterdam/Budapest, 1970).
[12] B. Sz.-Nagy, and C. Foias, Modèle de Jordan pur une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 31 (1970), 91-115.
[13] B. Sz.-Nagy and C. Foiaş, Compléments à l'étude des opérateurs de classe C_{0}, Acta Sci. Math., 31 (1970), 287-296.
[14] B. Sz.-Nagy and C. Foiaş, Jordan model for contractions of class C_{0}, Acta Sci. Math., 36 (1974), 305-322.

[^0]
[^0]: School of aeronautics and astronautics
 PURDUE UNIVERSITY
 WEST LAFAYETTE, INDIANA 47907, U.S.A.

