Acta Sci. Math. 46 (1983), 317—321

Infinite-dimensional Jordan models and Smith McMillan
forms. 11

ARTHUR E. FRAZHO

1. Introduction

This paper is a continuation of [3]. Throughout we follow the notation and
terminology established there and in [11]. The k-dimensional space of complex
k-tuples is denoted by &* and z=e" for 1€[0, 2r]. The orthogonal projection onto
a subspace & is denoted by P,. The greatest common inner divisor of the functions
o, in H* is aAB. A bounded analytic function {&",&", Q} is a Lebesgue
measurable operator valued function such that Q(z) maps &™ into &" for all
z, Q(z) has analytic continuation into the open unit disc and [|Q@Z)|=M<<=
a.e. The Hardy HZ2space of analytic functions with values in & is denoted by
H*&). The forward shift U, on HX&) is defined by U,f:=zf where [ is in
H2(&). Let {6 &", &} be an inner function. Then H#(®):=H?2(&")o PH*(Y)
and S(P) is the compression of U, to s#(P). Recall [11] that S(P) isa C,
contraction if and only if & is inner from both sides, ie., k=n. Finally, let
{6™, &", Q} be a bounded analytic function then {é”‘ &", C(8)} is the inner func-
tion uniquely defined by

1) #(C@):= V Ures"

Note C(R) is well defined by the Beurling—Lax theorem [11].

‘Throughout N(z) is a Lebesgue measurable function in [0, 2r] whose values
are a.e. nonnegative self adjoint operators mapping & into &” and [N(z)|=
=M< ae. Itis also assumed that N admits a factorization of the form N(z)=
=0*(2)0(z) a.e., where {£™ &",6} is a bounded analytic outer function; such
a 6 will be called an outer factor of N. In the previous paper [3] we gave a simple
procedure to compute the Jordan model for S(C(6)) by means of @. Here this
is done without computing 6 or the inner function C(f) generated by 6. That is,
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our present procedure calculates this Jordan model directly from N, by using
a generalized Smith—McMillan procedure. Our procedure, given in Theorem 1,
plays an important role in infinite-dimensional stochastic realization theory [4].
The following is needed.

Lemma l. [2] Let {&",&",0} be the outer factor for N. Then S(C(6))
is a C, contraction if and only if there exists an inner function ¢ in H= such that
¢N is a bounded analytic function.

Remark 1. The above lemma allows us to determine if S(C(6)) is a C,
contraction directly from N without obtaining 6 or C(). Finally, if ¢N is
a bounded analytic function for some ¢ in H*= then N always admits an outer
spectral factor [2]. (In this situation our factorization assumption on N isredundant.)

2. Main result

For convenience we recall some terminology in [9], [10]. Let {&", &™ H}
and {&", &™ H,} be two bounded analytic functions. H is quasi-equivalent to
H, if for every scalar valued inner function ¢ there exists two bounded analytic
functions {&™, &™, A}, {&", 6", B} such that det (4) and det(B) are prime to
¢ and HB=AH,. Quasi-equivalence is an equivalence relation. It can be shown
that {6", &™, H} is quasi-equivalent to {&", &™, D} where D is a diagonal analytic
function of the form

D, 0
@ b= [ 00
and D,=diag[d,, d,, ..., d;]. The d;s are scalar valued inner functions such that
d; divides d;4; for i=1, ..., k—1. Furthermore, this representation is unique
and called the normal form of H. The normal form D can be obtained from the
invariant factors of H [9], [10]. Define 2, as the greatest common inner divisor
of all minors in H of order r, with 9,=1. The invariant factors for H are
&(H):=9,/P;_, for i=1, ..., min (m, n). By convention &;(H)=0 forall j=i—1
if 9,_,=0. If &,(H) is nonzero then &,_,(H) divides &;(H). It can be shown that
the normal form for H 1is given by (2) where D,=diag[&(H), ..., &(H)] and
k is the number of nonzero invariant factors for H.

A Jordan model is an operator of the form S(m,)® S(my)@ ... ® S(m;) where
the m;’s are inner functions in H*, see [1], [12], [13], [14] for further details. Finally
we need

Lemma?2. [6, Ch. 3] Let {&™ &",0} be a bounded analytic function. Then
S(C(8)) is a Cy contraction if and only if 0 admits a factorization of the form
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0=zG*Yy, where {&™ &™ Y} is inner from both sides, {&", 6™ G} is a bounded
analytic function, and the only common, inner from both sides, left factor to both
¥ and G, is a unitary constant. (The inner part of G is denoted by G,.) Further-
more, when S(C(8)) isa C, contraction then S(C(8)) and S() are quasi-similar.
In particular, S(C(0)) and S(Y) admit the same Jordan model.

Theorem 1. Let {6™, 8", 6} be the outer factor for N. Assume there exists
a scalar inner function ¢ such that ¢cN=zH is a bounded analytic function. Then

(i) S(C(®) is a C, contraction.

(ii) The Jordan model for S(C ©®) is Sm)SS(M)®...®»S(m,) where
k is the number of nonzero invariant factors for {8, &™, H} and my=c/(8,(H)\c)
for i=1, ..., k. . :

Proof. Part (i) is an obvious consequence of Lemma 1. The proof of part (ii)
is similar to Theorem 1 in [3]. Let

3) D’ = diag[&,(H), ..., &,(H), 0,0, ..., 0]

be the normal form for H, where &,(H)#0. Choose any two bounded analytic
functions {&™, ™, A} and {&™, &, B} with det(A)-det(B)=a such that a is
prime to c¢&,(H) and HB=AD’. Lemma 2 and N=0*9 gives y*GO=H¢ where
Y and G satisfy the conclusion of Lemma 2. Applying B yields

@ V*GOB = AD’¢.
Let
(5) M= diag [ml, Mo,y vooy My 1, 1, veey 1],

D = diag [dl, dg, vooy dk’ 0, O, ey 0]

where the m/s are defined in statement (ii) above and d;:=&(H)/(6;(H)Ac) for
i=1, ..., k. By[l2, Lemma 2b] we have d; divides d;,,. Using D’¢=DM™* in (4):
©) GOBM = Yy AD.

Equation (6) and [11, Theorem 3.6, p. 258] or [8], [14] implies SW)X =XS(M)
where
To complete the proof it is sufficient to show that X is a quasiaffinity. By the results
in [1}, [12], [13], {14] this implies S(M) is the Jordan model for S(i). Then by

Lemma 2, S(M) is also the Jordan model for S(C(6)).
First it is shown that X is densely onto. By equation (6):
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Using this in the following calculation with the fact that 6 is outer gives:

XAM) = P gy GOB(A Q) MHNE™) = Py GIBHI(E™) 2
(3)
2 Py (y)G0aH* (™) = Pyp(y)GaH*(8") = Py GaH* (EWVYH?(E™) = ().

The last equality follows from Lemma 3 in [3] which shows that
© GaH*(&")YVYH2(E™) = H2(8™).
Hence X is densely onto.

Finally we verify that X is one-to-one. Our technique is similar to some of the
arguments in [14]. Assume h€s#(M) and Xh=0. Let g€L3*™) be such that
h=Mg. To show that X is one-to-one we simply show that g€ H%&™). Then
he MH¥E™NH# (M)={0}.

By using (6):

(10) 0 = PpyyGOBMg = Py (Y ADg.

Since Mg is analytic, Y ADg is analytic. Equation (10) implies Y ADg is in
YH?*(&™). Thus ADg isin H%*(&™). Using A’A=al for the appropriate bounded
analytic {6™, &™, A’} yields aDgc H*(6™). This with the definition of D places
adyg in H*&™). (This follows because m;=1 if j>k where k is defined in
(3) or (5). Notice that h=Mg isin #'(M). Thus g;=0 for all j>k. Here g; is
the jth component of the m-vector g.) Clearly h=Mg is in H2(8™). Therefore
cg isin H*(&™). By [11, Proposition 1.5, p. 108] we have (cA(ad)) g€ H3(6™). By
construction ¢ and ad, are prime. Hence g is in H*&™), X is one-to-one and
the proof is complete.

Lemma 3. ([5), [6]) Let {67, &™, Q} be a bounded analytic function.

(i) S(C(R) isa Cqy contraction if and only if S(C($)) is a C, contraction.

(i) If S(C(R)) is a C, contraction then S(C(Q2)) and S*C(Q)) are quasi-
similar. In particular, they have the same Jordan model.

Proof. This lemma follows from Theorem 2.1 in [5). One can also obtain
this result by using either Theorem 14.11, p. 206 and Theorem 3.5, p. 254 in [6]
or Theorem 1 in [3]. :

Finally we are ready for

Corollary 1. Assume there exists a scalar valued inner function ¢ such that
¢N=zH is a bounded analytic function. Then

i) N admits a *-outer factorization N(z)=Q(z)Q*(z) a.e. where {€7, &™, Q}
is *-outer.

(i) S(C(RQ)) is a C, contraction. Furthermore, S(C(Q)) and S(C(6)) . have
the same Jordan model. (8 is the outer factor for N.) In particular, the Jordan model
for S(C(Q)) can be obtained directly from Theorem 1.
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Proof. (i) éN=zH is a bounded analytic function. By Remark 1 or [2] N
admits a *-outer factorization.

Now for part (ii). Clearly N=3*@ is an outer factorization of N and ¢N=zH.
Lemmas 1 and 3 imply that S(C(®Q)) and S(C(£)) are C, contractions. By
Theorem 1 the Jordan model for S(C(£)) is S(#,)®...®S(#) where k is the
number of nonzero invariant factors for A and

(11) ;= [e/(cN&;(H))]~ = [&(en&;(H))].

Recall [11] that S(#) is unitarily equivalent to S*(m) for an inner function m.
Equation (11), Theorem 1 and Lemma 3 imply that S(C(£2)) and S(C(8)) have
the same Jordan model.
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