(0, A)-semigroups on $L_p(G)$ commuting with translations are (C_0)

A. OLUBUMMO

1. Introduction. Let X be a Banach space and let B(X) denote the Banach algebra of all bounded linear operators on X with the operator norm. Suppose that $\{T(\xi); \xi \ge 0\}$ is a family of operators in B(X) satisfying the following conditions:

- (i) $T(\xi_1 + \xi_2) = T(\xi_1)T(\xi_2)$ for $\xi_1, \xi_2 \ge 0, T(0) = I$;
- (ii) $T(\xi)$ is strongly measurable on $\xi > 0$.

It is well known that (i) and (ii) imply that $T(\xi)$ is strongly continuous for $\xi > 0$ [2, p. 305] and we shall call the family $\{T(\xi)\}$ a strongly continuous semigroup of operators on X. In studying semigroups of operators, it is usual to assume that $T(\xi)$ converges to an operator J in one sense or another as $\xi \to 0^+$. In particular, semigroups have been classified in terms of the sense in which $T(\xi)$ converges to the identity operator. Thus a strongly continuous semigroup of operators satisfying

(iii) $\lim_{\xi \to 0^+} T(\xi)x = x$ for all $x \in X$

is called a semigroup of class (C_0) [2, 10.6].

A semigroup $\{T(\xi)\}$ satisfying $\lim_{\xi \to 0^+} T(\xi)x = Jx$ for all $x \in X$, where J is a bounded linear operator on X is said to converge strongly in the sense of Cauchy with J as its Cauchy limit. If $\lim_{\xi \to 0^+} T(\xi) = J$ in the uniform operator topology then $\{T(\xi)\}$ is said to converge uniformly in the sense of Cauchy with J as its Cauchy limit.

To define the second class of semigroups that we shall be concerned with, we need the notion of the type of a semigroup. For any strongly continuous semigroup $\{T(\xi)\}$, the real number

$$\omega_0 = \inf_{\xi > 0} \frac{1}{\xi} \log \|T(\xi)\| = \lim_{\xi \to \infty} \frac{1}{\xi} \log \|T(\xi)\|$$

Received October 9, 1981.

21*

is called the *type* of $\{T(\xi)\}$. (See [2, 10.2].) A strongly measurable semigroup of operators $\{T(\xi)\}$ on X of type ω_0 is said to be of *class* (0, A) if it satisfies the following conditions:

(iv)
$$\int_{0}^{1} ||T(\xi)x|| d\xi < \infty$$
 for each $x \in X$;

(v) for all λ with re $(\lambda) > \omega_0$, the linear operator

$$R(\lambda)x \equiv \int_{0}^{\infty} e^{-\lambda\xi}T(\xi)x\,d\xi$$

is defined and bounded for all $x \in X$;

(vi) $\lim_{\lambda \to \infty} \lambda R(\lambda) x = x$ for each $x \in X$.

A semigroup of class (C_0) is of class (0, A) [2, Theorem 10.6.1]. There are a number of classes between (C_0) and (0, A) which we shall not define here. For a full discussion of the basic classes of semigroups, the reader is referred to [2, 10.6].

A semigroup $\{T(\xi)\}$ satisfying $\lim_{\lambda \to \infty} \lambda R(\lambda) x = Jx$ for all $x \in X$, where J is a bounded linear operator on X is said to be *strongly Abel-ergodic at zero* with the operator J as its Abel limit. The condition is then written

(A)-
$$\lim_{\xi \to 0^+} T(\xi) x \equiv \lim_{\lambda \to \infty} \lambda R(\lambda) x = Jx$$
 for all $x \in X$.
(A)- $\lim_{\xi \to 0^+} T(\xi) \equiv \lim_{\lambda \to \infty} \lambda R(\lambda) = J$

If

in the uniform operator topology, then
$$\{T(\xi)\}\$$
 is said to be uniformly Abel-ergodic at zero with J as its Abel limit [2, 18.4.3].

In this paper, we shall be concerned with semigroups $\{T(\xi)\}$ defined on $L_p(G)$ where G is an infinite compact group and $1 \le p < \infty$. Two of the results proved in [3] may be stated as follows:

1.1. Theorem. Let $\{T(\xi)\}$ be a semigroup of operators on $L_p(G)$ each of which commutes with right translations and let $\{E_{\xi}\}$ be the associated semigroup of $L_p(G)$ -multipliers. Then $\{E_{\xi}\}$ converges uniformly in the sense of Cauchy to the identity operator if and only if $\{T(\xi)\}$ converges strongly in the sense of Cauchy to the identity operator.

Our first result in the present paper is in the same spirit: Let $\{T(\xi)\}\$ be a semigroup of operators on $L_p(G)$ each of which commutes with right translations and let $\{E_{\xi}\}\$ be the associated semigroup of $L_p(G)$ -multipliers. Then $\{E_{\xi}\}\$ is uniformly measurable if and only if $\{T(\xi)\}\$ is strongly measurable.

In our next theorem we show that if $\{T(\xi)\}\$ is strongly Abel-ergodic at zero with the identity operator as its Abel limit, then $\{E_{\xi}\}\$ is uniformly Abel-ergodic

324

at zero with the identity operator as its Abel limit. These results and the result quoted from [3] suggest that the strong version of a property of $\{T(\xi)\}$ implies the uniform version of the corresponding property of $\{E_{\xi}\}$.

Our main result is Theorem 2.5 in which the above results are used to prove that if $\{T(\xi)\}$ is strongly Abel-ergodic at zero with the identity operator as its Abel limit, then $T(\xi)$ actually converges strongly to the identity operator in the sense of Cauchy.

The work in this paper shows again the usefulness of studying semigroups of multipliers for a function space in order to obtain results about operators on the function space itself. In this connection, see [3], [4] and [5].

2. Semigroups of operators on $L_p(G)$. For G an infinite compact group with dual object Σ , we denote by $\mathfrak{G}(\Sigma)$ the set $\underset{\sigma \in \Sigma}{PB}(H_{\sigma})$ where H_{σ} is the representation space of the representation U^{σ} [1, 28.24]. If \mathfrak{A} and \mathfrak{B} are subsets of $\mathfrak{G}(\Sigma)$, then an element $E \in \mathfrak{G}(\Sigma)$ is said to be an $(\mathfrak{A}, \mathfrak{B})$ -multiplier if $EA \in \mathfrak{B}$ for all $A \in \mathfrak{A}$ [1, 35.1]. An $(\mathfrak{A}, \mathfrak{A})$ -multiplier will be described simply as an \mathfrak{A} -multiplier and an $L_p(G)$ -multiplier will be called an $L_p(G)$ -multiplier. Here $L_p(G)$ denotes the set of Fourier transforms \hat{f} of $f \in L_p(G)$.

A family $\{E_{\xi}; \xi \ge 0\}$ of functions $E_{\xi} \in \mathfrak{G}(\Sigma)$ is called a semigroup of $L_p(G)$ multipliers [3] if

(i) for each $\xi \ge 0$, E_{ξ} is an $L_p(G)$ -multiplier;

(ii) $E_{\xi_1+\xi_2} = E_{\xi_1} \cdot E_{\xi_1}$ for all $\xi_1, \xi_2 \ge 0$.

Condition (ii) means that for each $\sigma \in \Sigma$, $\{E_{\xi}(\sigma); \xi \ge 0\}$ is a semigroup of operators on the space H_{σ} and $\{E_{\xi}\}$ is called a strongly (uniformly) continuous semigroup of $L_{p}(G)$ -multipliers if each semigroup $\{E_{\xi}(\sigma)\}$ is strongly (uniformly) continuous.

Throughout the rest of this paper, $\{T(\xi)\}$ will denote a semigroup of operators on $L_p(G)$ each of which commutes with right translations. Such a semigroup defines a semigroup $\{E_{\xi}\}$ of $L_p(G)$ -multipliers, the functions E_{ξ} being defined by

$$(T(\xi)f)^{\circ}(\sigma) = E_{\xi}(\sigma)\hat{f}(\sigma), \quad f \in L_p(G), \quad \sigma \in \Sigma$$

(see [3]). The following lemma is contained in Theorem 28.39 of [1].

2.1. Lemma. Let $\sigma \in \Sigma$ and for $U^{(\sigma)}$ in σ with representation space H_{σ} , let $\mathfrak{T}_{\sigma}(G)$ denote the set of all finite complex linear combinations of functions of the form $x \to \langle U_x^{(\sigma)}\xi, \eta \rangle$ as ξ, η vary over H_{σ} . Then $\{\hat{f}(\sigma): f \in \mathfrak{T}_{\sigma}(G)\} = B(H_{\sigma})$.

Following [2, 3.5.1], we shall say that $T(\xi)$ is strongly measurable in $(0, \infty)$ if for each $f \in L_p(G)$, there exists a sequence $\{u_n(\xi)\}$ of countably-valued functions (depending on f) from $(0, \infty)$ into $L_p(G)$ converging almost everywhere to $T(\xi)f$ in the topology of $L_p(G)$. For $\sigma \in \Sigma$, the semigroup $E_{\xi}(\sigma)$ is said to be uniformly measurable in $(0, \infty)$ if there exists a sequence of countably-valued func-

tions $\{U_n(\xi)\}$ from $(0, \infty)$ into $B(H_{\sigma})$ converging almost everywhere to $E_{\xi}(\sigma)$ in the uniform operator topology of $B(H_{\sigma})$.

We can now state our first result.

2.2. Theorem. Let $\{T(\xi)\}$ be a semigroup of operators on $L_p(G)$ each of which commutes with right translations and let $\{E_{\xi}\}$ be the associated semigroup of multipliers. Then $\{E_{\xi}\}$ is uniformly measurable if and only if $\{T(\xi)\}$ is strongly measurable.

Proof. Suppose that $\{T(\xi)\}$ is strongly measurable and let σ be an arbitrary but fixed element of Σ . By Lemma 2.1, there exists $t \in \mathfrak{T}_{\sigma}(G)$ such that $\hat{t}(\sigma) = I_{\sigma}$, the identity operator on H_{σ} . The strong measurability of $\{T(\xi)\}$ implies that there exist a sequence $\{u_n\}$ of countably-valued functions on $(0, \infty)$ into $L_p(G)$ and a null set $E_0 \subset (0, \infty)$ such that $\lim_{n \to \infty} ||T(\xi)t - u_n(\xi)||_p = 0$ for all $\xi \in (0, \infty) \sim E_0$. Then clearly $\{\hat{u}_n(\xi)(\sigma)\}$ is a sequence of countably-valued functions on $(0, \infty)$ into $B(H_{\sigma})$. Moreover we have

$$\begin{aligned} \|E_{\xi}(\sigma) - \hat{u}_n(\xi)(\sigma)\|_{B(H_{\sigma})} &= \|E_{\xi}(\sigma)\,\hat{t}(\sigma) - \hat{u}_n(\xi)(\sigma)\|_{B(H_{\sigma})} = \\ &= \|[T(\xi)t - u_n(\xi)]^{\wedge}(\sigma)\|_{B(H_{\sigma})} \leq \|T(\xi)t - u_n(\xi)\|_p \to 0 \end{aligned}$$

as $n \to \infty$, for all $\xi \in (0, \infty) \sim E_0$. Hence $\{\hat{u}_n(\xi)(\sigma)\}$ converges almost everywhere on $(0, \infty)$ to $E_{\xi}(\sigma)$ in the uniform norm and so $E_{\xi}(\sigma)$ is uniformly measurable on $(0, \infty)$. Since σ was arbitrary, $\{E_{\xi}\}$ is uniformly measurable.

Conversely, let $\{E_{\xi}\}$ be uniformly measurable for $\sigma \in \Sigma$; there exist a sequence $\{U_n^{\sigma}\}$ of countably-valued functions on $(0, \infty)$ into $B(H_{\sigma})$ and a null set $E_0^{\sigma} \subset (0, \infty)$ such that

$$\lim_{n\to\infty} \|E_{\xi}(\sigma) - U_n^{\sigma}(\xi)\|_{B(H_{\sigma})} = 0 \quad \text{for all} \quad \xi \in (0, \infty) \sim E_0^{\sigma}.$$

By Lemma 2.1, this means there exists a sequence $\{t_n\}$ of countably valued functions on $(0, \infty)$ to $\mathfrak{T}_{\sigma}(G)$ such that $\hat{t}_n(\xi)(\sigma) = U_n^{\sigma}(\xi)$ and

$$\lim_{n\to\infty} \|E_{\xi}(\sigma) - \hat{t}_n(\xi)(\sigma)\|_{B(H_{\sigma})} = 0 \quad \text{for all} \quad \xi \in (0, \infty) \sim E_0^{\sigma}.$$

Then for any coordinate function $u_{jk}^{(\sigma)}$, using the notation in the proof Theorem 3.3 of [3], we have

$$\|T(\xi) u_{jk}^{(\sigma)} - t_n(\xi) * u_{jk}^{(\sigma)}\|_p \le d_\sigma \| (T(\xi) u_{jk}^{(\sigma)})^{\circ}(\sigma) - (t_n(\xi) * u_{jk}^{(\sigma)})^{\circ}(\sigma) \|_{\Phi_1} = d_\sigma \|E_{\xi}(\sigma) \hat{u}_{jk}^{(\sigma)}(\sigma) - \hat{t}_n(\xi)(\sigma) u_{jk}^{(\sigma)}(\sigma)\|_{\Phi_1} \le d_\sigma \|E_{\xi}(\sigma) - \hat{t}_n(\xi)(\sigma)\|_{\Phi_\infty} \|\hat{u}_{jk}^{(\sigma)}(\sigma)\|_{\Phi_1} =$$

 $= d_{\sigma} \|E_{\xi}(\sigma) - \hat{t}_{n}(\xi)(\sigma)\|_{B(H_{\sigma})} \|\hat{u}_{jk}^{(\sigma)}(\sigma)\|_{\Phi_{1}} \to 0 \text{ as } n \to \infty \text{ and for all } \xi \in (0, \infty) \sim E_{0}.$ Hence for every coordinate function u, the sequence $\{t_{n}(\xi) * u\}$ of countably-valued functions on $(0, \infty)$ converges almost everywhere to $T(\xi)u$ in the $L_{p}(G)$ -norm. That $\{t_{n}(\xi) * f\}$ converges almost everywhere to $T(\xi)f$ for each $f \in L_{p}(G)$ in the $L_p(G)$ -norm now follows from the fact that the operators $T(\xi)$ are linear and continuous and the trigonometric polynomials are dense in $L_p(G)$. This concludes the proof.

2.3. Theorem. Let $\{T(\xi)\}$ be a strongly measurable semigroup of operators on $L_p(G)$ each of which commutes with right translations and let $\{E_{\xi}\}$ be the associated semigroup of $L_p(G)$ -multipliers. Suppose that $\{T(\xi)\}$ is of type ω_0 and that for each $f \in L_p(G)$ the integral $R(\lambda)f = \int_0^{\infty} e^{-\lambda\xi}T(\xi)fd\xi$ exists for all λ with re $(\lambda) > \omega_0$. Then for each $\sigma \in \Sigma$, the integral $P(\lambda)(\sigma) = \int_0^{\infty} e^{-\lambda\xi}E_{\xi}(\sigma)d\xi$ exists as an element of $B(H_{\sigma})$ for all λ with re $(\lambda) > \omega_0$. Moreover, if $\{T(\xi)\}$ is strongly Abel-ergodic at zero with the identity operator as its Abel limit, then for each $\sigma \in \Sigma$, $\{E_{\xi}(\sigma)\}$ is uniformly Abel-ergodic at zero with the identity operator as its Abel limit.

Note. Here and throughout this paper, the integrals are in the sense of Bochner [2, 3.7].

Proof. Since $\{T(\xi)\}$ is strongly measurable, $\{E_{\xi}(\sigma)\}$ is uniformly measurable for each $\sigma \in \Sigma$, by Theorem 2.2. If t is chosen as in the proof of Theorem 2.2, we have for all λ with re $(\lambda) > \omega_0$,

$$\int_{0}^{\infty} \|e^{-\lambda\xi} E_{\xi}(\sigma)\|_{B(H_{\sigma})} d\xi = \int_{0}^{\infty} \|e^{-\lambda\xi} (T(\xi)t)^{\wedge}(\sigma)\|_{B(H_{\sigma})} d\xi \leq \int_{0}^{\infty} \|e^{-\lambda\xi} T(\xi)t\|_{p} d\xi < \infty.$$

Hence by [2, Theorem 3.7.4], the Bochner integral $\int_{0}^{\infty} e^{-\lambda\xi} E_{\xi}(\sigma) d\xi$ exists as an element of $B(H_{\sigma})$ for each λ with re $(\lambda) > \omega_0$. Moreover, for all such λ , we have

$$\begin{aligned} \left\|\lambda\int_{0}^{\infty} e^{-\lambda\xi}E_{\xi}(\sigma)\,d\xi - E_{0}(\sigma)\right\|_{B(H_{\sigma})} &= \left\|\lambda\int_{0}^{\infty} e^{-\lambda\xi}\left(T(\xi)t\right)^{*}(\sigma)\,d\xi - \left(T(0)t\right)^{*}(\sigma)\right\|_{B(H_{\sigma})} &= \\ &= \left\|\left[\lambda\int_{0}^{\infty} e^{-\lambda\xi}T(\xi)t\,d\xi - T(0)t\right]^{*}(\sigma)\right\|_{B(H_{\sigma})} \leq \left\|\lambda\int_{0}^{\infty} e^{-\lambda\xi}T(\xi)t\,d\xi - t\right\|_{p} \to 0 \end{aligned}$$

as $\lambda \rightarrow \infty$, which completes the proof of the theorem.

The proof of our main result depends on the following very striking ergodic theorem which holds for a much wider class of semigroups than needed here [2, 18.8.3].

2.4. Theorem. Let $\{S(\xi)\}$ be a semigroup of class (0, A) on a Banach space X and suppose that $\{S(\xi)\}$ is uniformly Abel-ergodic at zero with J as its Abel limit. Then $S(\xi)=J \exp(\xi A)$ where $J^2 = J$, $A \in B(X)$; AJ = JA = A and uniform $\lim_{\xi \to 0^+} S(\xi) = J$, i.e., $S(\xi)$ converges uniformly to J in the sense of Cauchy. 2.5. Theorem. Let $\{T(\xi)\}$ be a semigroup of class (0, A) on $L_p(G)$ each of which commutes with right translations. Then $\{T(\xi)\}$ is a semigroup of class (C_0) .

Proof. Let $\{E_{\xi}\}$, as before, denote the associated semigroup of $L_p(G)$ multipliers. Then for each $\sigma \in \Sigma$, $\{E_{\xi}(\sigma)\}$ is, by Theorem 2.3, uniformly Abelergodic with the identity operator as its Abel limit.

Since $\{E_{\xi}(\sigma)\}$ is clearly of class (0, A), it follows from Theorem 2.4 that $\lim_{\xi \to 0^+} ||E_{\xi}(\sigma) - E_0(\sigma)||_{B(H_{\sigma})} = 0$, $E_0(\sigma) = I_{\sigma}$, the identity operator on H_{σ} . Thus $E_{\xi}(\sigma)$ is uniformly continuous for all $\xi \ge 0$ and the same is true for each $\sigma \in \Sigma$. Now $\{T(\xi); \xi \ge 0\}$ is, in the terminology of [3], the semigroup of operators on $L_p(G)$ defined by the semigroup of $L_p(G)$ -multipliers $\{E_{\xi}(\sigma); \xi \ge 0, \sigma \in \Sigma\}$. Hence by Theorem 1.1, $\{T(\xi); \xi \ge 0\}$ is strongly continuous for all $\xi \ge 0$ and is therefore of class (C_0) . This concludes the proof.

As stated in the Introduction, there are a number of classes between (C_0) and (0, A). Theorem 2.5 shows that if $T(\xi)$ commutes with right translations, then all these classes collapse into (C_0) .

References

- [1] E. HEWITT and K. A. Ross, *Abstract harmonic analysis*, Vol. II, Springer-Verlag (Berlin-New York, 1970).
- [2] E. HILLE and R. S. PHILLIPS, Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., Vol. 31, Amer. Math. Soc. (Providence, R. I., 1957).
- [3] A. OLUBUMMO, Semigroups of multipliers associated with semigroups of operators, Proc. Amer. Math. Soc., 49 (1975), 161-168.
- [4] A. OLUBUMMO, Linear operators which commute with translations, Proceedings. International Symposium on Functional Analysis and its Applications (Ibadan 1977), 431-445.
- [5] A. OLUBUMMO, Unbounded multiplier operators, J. Math. Anal. Appl., 71, (1979), 359-365.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF IBADAN IBADAN, NIGERIA