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Contractions and unilateral shifts 

MITSURU UCHIYAMA 

A contraction T on a separable Hilbert space is said to be a weak contraction 
if I—T*T(Z(T, C) which denotes the trace class, and A(T)^D, where D is the 
open unit disk. It is well known that there is a C0—CN decomposition for a weak 
contraction ([3]). Therefore we can easily show that if T is of class C10 (about 
C10, C.0, etc., see p. 72 of [3]) and if I-T*TE(r, C), then 

AP(T*) = D a n d <RP(T)C\D = 9. 

In this note, we shall investigate a contraction T such that I—T*T£(T, C) and 
<R(T)=D. 

The author wishes to express his gratitude to Prof. T. Ando. 

1. Operator valued functions 

For T£1+(T,C), Bercovici and Voiculescu defined the algebraic adjoint T", 
which satisfies 

T"T = TT* = (det T)I. 

They showed that if 0(A) is a contractive holomorphic function and if 0 (A)6 /+ 
+(T ,C) for every then <9(A)a is a contractive holomorphic function. In 
this case, if det ©(e")a.e., then 0(e") is invertible and its inverse is @(e")*/ 
det 0 (e") a.e. 

T h e o r e m ! . Let 0(A) be an inner function (that is, 0(A) is a contractive 
holomorphic function defined on D and 0(e") is isometric a.e.) with values in 
¿¡?(E, E'), where E, E' are separable Hilbert spaces. If there is an isometry V in 
££(E, E') such that for every 

(1.1) 7£-F*0(A)€(T, C), 
(1.2) detF*0(A) £ 0, 
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then there is a bounded holomorphic function A (A) with values in £P(E', F) for a 
suitable Hilbert space F such that 

(1.3) 0(e")E®A(ei,)*F= E' a.e. 

P r o o f . If V is unitary, then 0(e") is invertible a.e. Hence we may assume 
that V is not unitary. Set F=E'QVE. Let E0=E®F be the direct sum of E 
and F. For A6A define 0'(A)d^C(Eo, E') by 

0'(A)|E = 0(A) and 0'(A)| f = IF. 

For simplicity, set d(A)=detF*0(A) and A(A)=(V*0(A)f. Determine A(X)d 
£ 2 ( E ' , F ) by 

(1.4) A (A) = -PF0 (A) A (A)V* + d(A)PF 

and A'(A)Z&(E',E0) by 
A'(A) = A(A)V*+A(A). 

Then we have 

A'(A)0'(A)\E = A' (A) 0(A) = A(A)V*0 (A)+A (A) © (A) = 

= d(A)IE-PF0(A)d(A)IE+d(A)PF&(A) = d(A)IE, 

A'(A)0'(A)\F = A(A)V*IF + A(A)IF = d(A)IF, 

and 

0'(A)J'(A) = 0(A)A(A)V*+A (A) = (I-PF) 0 (A) A(A)V*+d (A) PF = 

= VV* 0(A)A(A)V*+d (A)PF = Vd(A)V*+d(A)PF = d(A)lE,. 

Thus we have J'(A)0'(A) = d(l)IEo, &(A)A'(A) = d(A)IE,. 

Since the inverse of 0'(e") is A'(eu)ld(eu) a.e., the orthogonal complement of 
0(e")E = 0'(e")E is 

A'(e"Y 
-r==-(E0QE) = A(e")*F. 

d(e") 
It is clear that A (A) is a bounded holomorphic function. 

Cambern showed that the orthogonal complement of a finite dimensional 
holomorphic range function is conjugate holomorphic (c.f. p. 94 of [2]). Now, we 
can show this result as a corollary. 

C o r o l l a r y 1. Let 0(A) be an inner function with values in £P(E, E'). Suppose 
dim E=m< Then there is a bounded holomorphic function A (A) satisfying (1.3). 

P r o o f . We may assume that EaE' and 0(e") is a matrix. Since 

1 =det ( 0 ( e " ) W ) ) = Z l ^ t 0a(ei()\\ 
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a.e., where 2 taken over all mXra submatrices of 0(e"), there is at least one 
a 

a such that det 0a(eit)7iO a.e. Thus there is an isometry V such that 

det V* 0 (e") = det 0a(eu) * 0 a.e. 

(see [4]). Hence V and 0(1) satisfy (1.1), (1.2). 

2. Quasi unilateral shifts 

We begin with a short review about the canonical model theory of B. Sz.-Nagy 
and C. Foia§. Let T be a contraction of class C . 0 on a separable Hilbert space H. 
Set DT=(I-T*T)112, and let E and E' be the closures of DTH and DT,H, 
respectively. Then the characteristic function 0 (A) of T determined by 

(2.1) 0(A) = { - T + W T ^ I - A T ^ D T } ^ for A€Z> 

is an inner function with values in S£(E, E'). Therefore 

dim E s dim E'. 

Moreover T is unitary equivalent to S(0) on H(&) defined by 

(2.2) H(0) = H2(E')e0H2(E), S(0)*fc = y ( h ( A ) - M 0 ) ) for h in 7/(0). 

T is of class Q . if and only if 0(I)*H2(E') is dense in H2(E) (that is, 0 is * -outer). 
In this note, for simplicity, we call T a quasi unilateral shift if T is a contrac-

tion of class C.„ such that 

7 - R * R € ( T , C ) , X ( T ) = { 0 } a n d X ( T * ) ^ { 0 } , 

where j f ( T ) denotes the kernel of T. 

T h e o r e m 2. If T is a quasi unilateral shift on H, then there is a bounded 
operator X with dense range satisfying 

(2.3) XT = SX, 

where S is a unilateral shift satisfying 

0=> index S = index T s — 

where index T=dim J f ( T ) - dim X(T*). 

Proof . We may assume / - r * 7 V 0 . From T(J-T*T)=(I-TT*)T, it 
follows that TECE', T(HQE)=HQE\ where E and E' are the spaces de-
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fined above. Thus we have 

(2 .4) HQ TH — E' Q TE ^ {0}. 

Let {<?!, e2, ...,e„, ...} be the C.O.N.B. of E such that (I-T*T)en=n„en, n„>0. 
Then / B =( l - f t l ) - 1 / »7V? . (»= l ,2 , . . . ) is a C.O.N.B. of TE and T*fn=(l-pn)1'2en 

(see p. 324 of [3]). Setting Ve„=—f„ (n=1,2 , ...), V is an isometry from E to 
E\ and 

(2.5) F4-T | £ 6(t ,C) (see [ID. 

Setting F=E'QVE, from (2.4) it follows that 

(2.6) dim F = - index T. 

I—T*T£(t, C) implies DTD(<R, C) which denotes the Hilbert—Schmidt class. Since 
(I-TT*)\TE is unitarily equivalent to I-T*T, we have D-p* |T£€(ff, C). Thus 

XV*DTT(I-XT*)~1DT = XV*(DT*\TE)(I—XT*)~1DT (A6Z>) 

belongs to (t, C). Thus, from (2.1), (2.5), we have 

/ -F*0(A)6(T , C) for each A. 
Since 

|det (V* 9 (0))|2 = det ( 0 ( 0 ) ^ 7 * 0 ( 0 ) ) = det (T*VV*T\E) = det {T*T\E) ^ 0, 

we have det F*0(A)^O. Thus V and 0(A) satisfy the conditions of Theorem 1. 
Hence A(X) defined by (1.4) satisfies (1.3). Since A (A)0(A)=O, setting 

(2.7) X0h = Ah for h in H(0), 

we have Xo£&(H(0), H2(F)) and XoS(0)=SoXo, where S0 is the unilateral 
shift on H2(F). Since 

H2(F) => XoH(0) = AH\E') z> AH2(F) = (det V*0 (A)) H2(F), 

it follows that S=S0\x~fI(e) is unitarily equivalent to S0. Thus, from (2.6), we have 

index S = index S0 = — dim F = index T. 

Consequently an operator X from H(0) to XoH(0) defined by 

(2.8) Xh = X0h for h in 77(0) 

satisfies (2.3). 

C o r o l l a r y 1. Let T be a contraction of class C^ such that I—T*T and 
I-TT* belong to (T, C). Then, for a£D, Jfr(T-aI) = {0} if and only if 
X(T*-aI) = {0}. 
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Proo f . Set T ^ i T - a l W - a T ) - 1 and ¿ = ( l - | a | , ) 1 " ( / - a r ) - 1 . Then we 
have I-T*Ta^A*(I-T*T)A, I-TaT*=A(I-TT*)A*, and Ta is of class C00 

(see p. 240 and p. 257 of [3]). Suppose X(T-aI) = {0} and X(T*-aI)^{0}. 
Then Ta is a quasi unilateral shift. Therefore, there is an X satisfying XTa=SX, 
which implies that T is not of class C00. This is a contradiction. Thus X(T—aI) = 
= {0} implies X(T*—al)={0}. Similarly we can prove the converse assertion. 

For a contraction T on H, we have 

(2.9) |[ 7— T* Til £+dim J f (T*) = || I—7T*|| £+dim J f (T), 

where || ||p denotes the p-Schatten norm. Indeed, from T(/-T*T)=(I-TT*)T, 
(I-T*T)\JTH and ( 7 - 7 T * ) | r 5 are unitarily equivalent. (I—T*T) 
and ( I - T T * ) \XIT*)=IJR(.T*) imply that 

U-T*n> = \\(I-T*T)\Y^Rp+dimX(T), 

|| 7 - 7 T * | | 5 = | | ( 7 - TT*)\YEVP + d i m TF(T*). 

Thus we have (2.9). Similarly we have 

(2.9)' rank (I-T*T)+dim X(T*) = rank ( 7 - 7 T * ) + d i m J f ( T ) . 

P r o p o s i t i o n 1. Let T be a Fredholm quasi unilateral shift. Suppose X with 
dense range satisfies XT=SX, where S is a unilateral shift with index S = index T. 
Then T Ij,-(X) is of class C0. 

Proo f . Let T = j be a decomposition of T corresponding to 

H=X(X)®X(X)±. Then 7 \ is injective and, from (2 .3) , also T2 is injective. 
From the assumption and (2 .9) , it follows that I-T*T£(x,C) and 7 - 7 T * £ ( T , C ) , 
which implies 
(2.10) I-TFT&R, C), 

(2 .11) I - ^ T F + TNTTITII , C) , 

(2 .12) / - ( R F 2 R 1 2 + R * R 2 K ( T , C) , 

(2 .13) 7 -R 2 R 2 *Ç(T, C) . 

From X(J t ) czX(T*) , it follows that 

index T = - dim X(T*) s - dim JT(Tf) S - dim. j f (5 *)=index T, 

which implies index T=index T2. From (2.9) and (2.13), we have i-T*T2e(t,C), 
which, by (2.12), implies T12£(o,C). Therefore, from (2.10) and (2.11), 7i is 
a Fredholm operator. Since 

R TX 01 
index T = index ^ j \ = +index T2, 
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we have index 7^=0. Thus Tx is invertible. Hence 7\ is a weak contraction 
of class C. 0 . Consequently Tx is of class C0 . 

C o r o l l a r y 2. Let T be a Fredholm quasi unilateral shift of class C10. Then 
JT(A)={0} provided AT=TA and JT(A*) = {0} (cf. [6]). 

P roo f . For X defined in Theorem 2, we have (XA)T=S(XA). From Propo-
sition 1, we have JT(XA) = {0}. 

P r o p o s i t i o n 2. Let T be of class C.0. Then T is ofclass C10 if and only if 

(2.14) 0L2(E)OH2(E') = 0H2(E). 

P r o o f . Since, for h in H2(E') and / in H2(E), we have 
1 2JI 

(eWHX),f(X))EHE> = (©(«-")**(«"), f(e'%dt = 

* —2N 1 2 IT 

= - 2- / (0(?THe-*), f(e~l'))Edt = ± f (0(e»)*/i (*-"), f(e~lt))E dt = 

I 2« 

= {Gie're^'hie-"), e-"f(e-tt))Bdt = (0(X)*Xh(X), M ) W ) > 
N O 

0(l)*H2(E') is dense in H2(E) if and only if 0(X)*(H2(E'))-L is dense in (H2(E)Y, 
where J. denotes the orthogonal complement. We have always 

0L2(E)f)H2(E/) =) 0H2(E). 

At first, assume that T is of class C10. Suppose 

0g<= {0L2(E) 0 H ' 2 ( £ ' ) } 9 0H2(E). 

Then 0gCM\E') and g±_H2(E), because 0 is an isometry from L\E) to L2(E'). 
Thus g±0*(H2(E'))L and gd(H2(E))1. Since 0(A) is *-outer, we have g=0. 
Consequently (2.14) follows. 

Conversely assume (2.14). Suppose f ± 0{X)*(H2(E'))x and f£(H2(E))±. 
Then 0f£H2(E') and 0f±0H2(E). Thus from (2.14), we have 0 / = O and hence 
/ = 0 . Consequently 0(A) is *-outer. 

T h e o r e m 3. Let T be a quasi unilateral shift. Then T-<S (that is, there is 
an X such that Jir(X)=Jf(X*)={0}, XT=SX), where S is a unilateral shift 
with index S=index T, if and only if T is of class C10. 

P roo f . Assume that T is of class C10. From Theorem 2, there is an X 
with dense range satisfying (2.3). If Xh-0 for h in H(0), then, from (2.7) and 
(2.8), A(i*)h{fP) = 0 a.e. Thus, from (1.3), h£0L2(E), so that, from (2.14), 
h£0H\E). Consequently h=0. Thus we have T<.S. 
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Conversely, assume XT=SX and X(X)=X(X*) = {0}. From XTn=SnX 
(«=1, 2, ...) it follows that T is of class C10. 

R e m a r k l . If T is a Fredholm operator, then, from Theorem 2 and Proposi-
tion 1, it is clear that T<S if T is of class C10. 

R e m a r k 2. Theorem 3 implies that the Jordan model of a quasi unilateral 
shift of class C10 is a unilateral shift. 

C o r o l l a r y 3. Let T be a quasi unilateral shift of class C10. Then T* has 
a cyclic vector. 

Proof . T-<S implies that S*<T*. Since S* has a cyclic vector, also T* 
does. 

P r o p o s i t i o n 3. Let T be a quasi unilateral shift. Then there is an injection 
Y such that 
(2.15) YS = TY, 

where S is a unilateral shift with index S=index T. 

Proof . Consider S(0) defined by (2.2) instead of T. Let V be an isometry 
defined in the proof of Theorem 2. Then 

E' = VE@F and detV*0(eir) * 0 a.e.. 

Define an operator Y from H2(F) to H(0) by 

Yh = PH(e)h for h in H2(F). 
Then we have 

YSh = PH(e)Sh = PH(e)SPH(g)h = S (0) Yh, 

which implies (2.15). Suppose Yh=0. Then h = 0f for some f£H2(E). Thus 
Q=V*h(e")—V*0(e")f(e'') a.e. Since V*0(e") is invertible a.e., f(e")=0 a.e. 
Consequently Y is injective. 

P r o p o s i t i o n 4. Let T be a quasi unilateral shift of class C10. Then, if T-<.S', 
where S' is a unilateral shift, then index S'=index T. 

Proof . From S'*<T*, dim J f (5 '* )Sd im X(T*). The proposition above 
implies that there is an injection Y' such that 

Y'S = S' Y', index S = index T, 

which implies that 0 > index S S index S" (cf. [4]). Thus we have 

index T = index S S index 5" ^ index T, 

from which index T—index S' follows. 
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R e m a r k 3. P. Y. Wu [6] showed that if I-T*T is a finite rank operator, 
and if T<S', then 

rank (/—7T*) —rank ( I - T * T ) = - index S'. 

From (2.9)', our proposition is an extension of this result. 

3. Cyclic vector 

In this section, we consider a quasi unilateral shift of class C10 which has 
a cyclic vector. The next proposition is a partial extension of Proposition 2 of [4] 
and Theorem 3.1 of [5]. 

P r o p o s i t i o n 5. Let T be a quasi unilateral shift of class C10. Then next 
conditions are equivalent: 

(a) T has a cyclic vector; 
(b) there is a bounded operator Y satisfying 

(3.1) Y ^ = TY, X(Y*) = {0}, 

where is a unilateral shift with index S^ = — 1 ; 
(c) S,<T; 
(d) Si-CT and 7 X ; 
(e) | | / - 7 T * | | 1 - | | / - r * 7 , | | 1 = l , and there is a bounded holomorphic function 

T with values in ££(C, £') satisfying 

(3.2) l № ' ) | | ë l a.e., 

(3.3) TH2( C)V 0H2(E) = H 2(£"), 

where 0 is the characteristic function of T defined by (2.1). 

P r o o f , (a)—(e). From Theorem 3, for a unilateral shift S with index 5 = 
=index T,. we have T-<S. That T has a cyclic vector implies that also S does. 
Thus index S = — 1. Consequently, from (2.9), we have 

| | / - R R L 1 - | | / - R * R | | 1 = L. 

We can construct a function T in the same way as in [4]. 
(e)-(b). The contraction Y defined by Yh=PHmTh for h in H\C) 

satisfies (3.1). 
(b)-(c) . Suppose 0}. Since S1Jir(Y)<zX(Y), there is a scalar 

inner function \j/ such that JiT(Y)=\l/H2(C). Thus 

(= H2(C)Qij/H2(C)), Y\HmSW) = TY\BW, 
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where S(\I/)=PHWS Since S(\p) is of class C0, T must be of class C0. 
This is a contradiction. Consequently JF(Y)= {0}. 

(c)-(d) . S i < T implies T * < S i , from which it follows that dim J f ( r * ) S 
S d i m J f ( S i ) = l . That T is a quasi unilateral shift, implies index7<0 . Thus 
index T=-l. By Theorem 3, we have T X S j . 

(d)—(a). This is obvious. 

(3.3) implies that [J\ 0] is an outer function from H2(Cj®H2(E) to H2(E'). 
Generally [r,0] is not contractive. Therefore c?(A)=det [F(A), 0(Z)]£H~ and 
d(X)^ 1 are not obvious. We shall show these results. 

Let A€£C(E,E') be a contraction and V££?(E, E') an isometry with index V = 
= - 1 . Let {e1,e2, ...,en, ...} be a C.O.N.B. in E. Then, setting d„ = Ven 

(«=1,2 , . . . ) , {d0 ,d! , ...,d„, ...} is a C.O.N.B. in E', where d0 is a unit vector 
in JT(V*). For i = l , 2 , ..., define an isometry V£&(E, E') by 

Vi^i = d0,..., Vte, = </(_!, Vtei+1 = dl+1, Viel+2 = dl+2,.... 

Let atj = (Aej,dd ( iSO.y'Sl) . Then, in the base {el5 e2,...}, we have 

«01 <*0j 

A I - 1 15 » A I ~ L ' 
ai + l 1, ••• , ai+l j> • 

(¿ = 1 , 2 , . . . ) . 

Let E0=C®E be a direct sum of C and E, and e0 a unit vector in C. Let 

x„ (n=0,1,2, ...) be a scalar number such that 2 Let B£&(E0,E') 
n=0 

be an operator defined by 

Determine a unitary U£££{E0,E') by Ue,=di (i SO). Then in the base {e0, e1; ..., 
..., et, ...} of E0 we have 

*o, floi, •••> a0 J , 
xi> fln, •••» aij> 

U*B = 
xii ail> •••, a i j i 

Let IE-V*A£(T,C). Then, since (VfAej, eK)=(V*Aej, ek) for y s l and 
JTS/+L, IE-V?A£(T,C) f o r every i. 

PE{IE-U*B)\E = IE-V*A 
implies IE - £ / * 5 6 ( T , C ) . 

23 
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and 

Lemma. Let IE-V*A£(T,C). Set V0=V. Then 

d e t U*B = 2 * i ( - O ' d e t (VT*A), 
i = 0 

( = I 

Proof . For simplicity, let [A]N denote the first nXn submatrix of A, and 
write A„ for A\E , where E„=(elf ..., e„). For any k and n as nsfc , we have 

(3.4) 2 |det [Vi*A]„[2 s det (A*An) = det [A*A]n S 1, 
i=0 

because A is a contraction. Since for each i 

det [V*A]„ — det (V*A) (n 
k 

we have 2 |det(K*y4)|2Sl, which implies 
1 = 0 

(3.5) ¿ | d e t ( F ^ ) | 2 s l . 

Consequently 2 l*j(—l) 'det For any e>0, take an m such that 
i=0 

(3.6). 2 i=m+l 

Since det [C/*5]n—det (U*B), and det[V*A]n-det(V*A) as ?i-c°, w e can take 
an N such that 

(3.7) 

and 

(3.8) 

n N-\det[U*B]„-det(U*B)\ < e, 

n ^ N - 2 |det [V?A]n—det (V*A)\2 < e2. 
I = 0 

Fix a k as k^N+l and I S M + l . Then it follows that 

det (U*B)~ 2 xt(-1)' det(V*A) 

^ |det(E/*.B)—det[(/*B]t| + 
+ 

det [£/*£]*- 2*i(-l)'det [V*A]^ 
I = 0 

+ 

2 x < ( - 1 )•' {det [ViA]k _!—det (F*,4)} 2 *i(— l) 'det (V*A) 
i=m+l 
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From (3.7) |det (t/*.B)—det [U*B]k\*=.e, and from (3.8) 

2 * , ( -1 ) ' {det [V*A]k _ !—det (V*A)} S 
I I=O 

— ( 2 M 2 ) ( ¿ J D E T ^ ^ - D E T ^ ) ] « ) 

(3.5) and (3.6) implies that 

\l/2 

2 x,(— l) Jdet (V*A) i=m+1 

By finite matrix theory 

det[C/*^] t- 2 Xi(- l)'det[K*/l]fc_1 k2 x,(— 1)' de t [VfAh-! 
i = m + 1 

because the last inequality follows from (3.4), (3.6). Consequently, for any e > 0 
we have 

det ( U*B)- 2 xt ( - 1 ) ' det (V*A) 
¡=O 

4e. 

(3.9) 

In (e) of Proposition 5, set (r(X)e0,d,)=hi(X) for /feO. Then we have: 

P r o p o s i t i o n 6. |det(£/*[r(A), 0(A)])|^1, and 

det (U*[r(X), 0(A)]) = 2 hi (A) (— 1)' det (V*0 (A)) 
¡=O 

is holomorphic on D. 
oo 

P r o o f . From (3.2), we have Since F,*0(A) is a contractive 
1=0 

holomorphic function, det (K*0(A))Ç//~. Since 0(A) is a contraction for every 
Ai A it follows that 

2 |fc|(A)(-l)'det(F,*©(A))| s 1, i=l 
oe 

which implies that 2 ¿¡(A)(-1)'det (K*0(A)) is holomorphic. Equality (3.9) follows 
i = 0 

from Lemma. 

P rob l em. Is det (C/*[r(A), 0(A)]) outer? 
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