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Contractions and unilateral shifts

MITSURU UCHIYAMA

A contraction T on a separable Hilbert space is said to be a weak contraction
if I-T*T¢(zr,C) which denotes the trace class, and o¢(T)#D, where D is the
open unit disk. It is well known that there is a Cy—Cy; decomposition for a weak
contraction ([3]). Therefore we can easily show that if T is of class Cy, (about
C10,C.q, etc., see p. 72 of [3]) and if I—T*T€(z, C), then

6,(T*Y=D and o,(T)ND =9.
In this note, we shall investigate a contraction T such that I—T*T¢(r,C) and
o(T)=D. ‘ o
The author wishes to express his gratitude to Prof. T. Ando.

1. Operator valued functions

For T¢l+(z, C), Bercovici-and Voiculescu defined the algebraic adjoint T2,
which satisfies _ '
o T°T=TT*=(detT)1.
They showed that if @ (1) is a contractive holomorphic function and if @ (1)€f +
+(z,C) for every A€D, then @(A)* isa confractive holomorphic function. In
this case, if det @ (e")=0 a.e., then @(e¥) is invertible and its 1nverse is @(e")“/
det (") a.e.

Theorem 1. Let ©@(1) be an inner function (that is, @(1) is a contractive
holomorphic function defined on D -and ©(e") is isometric a.e.)- with values in
S(E,E’), where E,E’ are separable Hilbert spaces. ]f there is an isometry V -in
Z(E, E’) such that for every A€D _
(L.1) Ig-V*0()e(s, ©),

(1.2) : detV*O@ () 2 0,
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then there is a bounded holomorphic function A(R) with values in Z(E’, F) for a
suitable Hilbert space F such that

(1.3) OENE®A(e™)* F=E’ ae.

Proof. If ¥ is unitary, then ©(e") is invertible a.e. Hence we may assume
that 7 is not unitary. Set F=E'©VE. Let E,=E®F be the direct sum of E
and F. For A€D, define O@'(A)c¥(E,, E") by

O MDg=060) and O’ (D)= Ir.
For simplicity, set d(1)=det ¥*O(2) and A(L)=(V*@(4))*. Determine A4(1)€
€Y(E, F) by
a4y AQ) = =Pz @M AAW*+d () Pp
and A'(DEL(E’, E;) by
A () = ADV*+A(A).
Then we have : ‘ _
AN Dg=4ADOD) =AWV *ON)+A4(NO ) =
=d()Ig—PrO@ () d()Ipz+d() Py O () = d(W) g,

4O Dp =AMV [+ 4D Ip = d(D I,
and : ’

WA () = OWAWV*+4Q) = (I—Pp) O ADV*+d () Py =
= VV*ON)ANV*+d () Pp =V dDV*+d(A)Pr = d(D) 5.

Thus we have
AN D) = dN)]5, ODAD) =dD)]g.
Since the inverse of ©’(e") is 4’(e™)/d(e") a.e., the orthogonal complerflent of
O(E=0'("E is
A (elt)*
d( lt)

It is clear that A(4) isa bounded holomorphic function.

(Ey© E) A(e'")*F.

Cambern showed that the orthogonal complement of a finite dimensional
holomorphic range function is conjugate holomorphic (c.f. p. 94 of [2]). Now, we
can show this result as a corollary.

Corollary 1. Let @(4) be an inner function with values in £ (E, E’). Suppose
dim E=m< . Then there is a bounded holomorphic function A(1) satisfying (1.3).

Proof. We may assume that ECE’ and @(e") is a matrix. Since

1=det (0 (£*0(e")=3 |det @,(¢")[?,
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a.e., where > is taken over all mXm submatrices of @ (e"), there is at least one

o such that det ©,(e")=0 a.e. Thus there is an isometry ¥ such that
detV*O@(e") = det @,(™) # 0 a.e.

(see [4]). Hence V and ©(2) satisfy (1.1), (1.2).

2. Quasi unilateral shifts

We begin with a short review about the canonical model theory of B. Sz.-Nagy
and C. Foiag. Let T be a contraction of class C.y on a separable Hilbert space H.
Set Dy=(I—T*T)"?, and let E and E’ be the closures of D;H and Dp.H,
respectively. Then the characteristic function @(1) of T determined by

@.1) O = {~T+ADp(I—-AT*)" D} for €D
is an inner function with values in Z(E, E”). Therefore

dim F = dim E’.
Moreover T is unitary equivalent tov S(®) on H (@) defined by

2.2) H(é) = H*(EYO OH3(E), S(@)*h= %(h (A)—h(0) for h in H(O).

T is of class C;. ifand only if @(1)*H2(E’) is dense in H2(E) (that is, @ is *-outer).
In this note, for simplicity, we call T a quasi unilateral shift if T is a contrac-
tion of class C., such that

I-T*Te(r, C), A(T)={0} and H(T*) = {0},
where A'(T) denotes the kernel of T.

Theorem 2. If T is a quasi unilateral shift on H, then there is a bounded
operator X with dense range satisfying

2.3) XT = SX,
where S is a unilateral shift satisfying

0=index S = indéx T =— oo,
where index T=dim 2 (T")—dim X (T*).

Proof. We may assume I—T*T#0. From T{I-T*T)=(I-TTHT, it
follows that TECE’, TIHOE)=HQE’, where E and E’ are the spaces de-
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fined above. Thus we have

(2.4) HOTH = E'©TE = {0}.

Let {e,,es, ..., &,, ...} be the CO.N.B. of E such that (I—-T*T)e,=u,e,, tt,>0.
Then f,=(1—p,)"%Te, (n=1,2,...) isa CO.N.B. of TE and T*f,=(1—p,)"%e,

(see p. 324 of [3]). Setting Ve,=—f, (n=1,2,...), V is an isometry from E to
E’, and

2.5) V+T|g€(z, C) (see[1)).
Setting F=E’©VE, from (2.4) it follows that
(2.6) dim F=— index T.

I-T*T¢(z, C) implies Dy€(a, C) which denotes the Hilbert—Schmidt class. Since
(I—TT*) |;g is unitarily equivalent to I—T*T, we have Dr.|rz€(c,C). Thus

AV*Dp(I—AT*) Dy = W *(Drslr)({—~AT*) 21Dy (A€D)
belongs to (r, C). Thus, from (2.1), (2.5), we have

I-V*O@(A)¢e(r, C) for each A.
Since ’

|[det (V* @ Q)2 = det (O (0)*VV*@(0)) = det (T*VV*T|g) = det (T*T|) 0,

we have det V*@(1)Z0. Thus ¥V and ©(A) satisfy the conditions of Theorem 1.
Hence A(4) defined by (1.4) satisfies (1.3). Since 4(1)@(A)=0, setting

@7 Xoh = 4h for h in H(O),

we have X, €Z(H(O), H*(F)) and X,5(0)=S,X,, where S, is the unilateral
shift on H2(F). Since

H*(F) D X,H(®) = AH*(E") > AH*(F) = (det V*© (2)) HX(F), -
it follows that § éSolyg,ﬂ—e) is unitarily equivalent to S,. Thus, from (2.6), we have
index S = index Sy =—dim F = index T.
Consequently an operator X from H(O) to X,H(O) defined by
(2.8) Xh=X,h for hin H(6)
satisfies (2.3). |

Corollary 1. Let T be a contraction of class Co such that I—T*T and
I-TT* belong to (1,C). Then, for a€D, A (T—al)={0} if and only if
H(T*—al)={0).
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Proof. Set T,=(T—al)(I-aT)~! and A=(1—|a|)"/*(I—aT)~. Then we
have I-T}T,=A*(I—T*T)A, I-T,Ti=A(I-TT*)4*, and T, is of class Cg,
(see p. 240 and p. 257 of [3]). Suppose A (T—al)={0} and A (T*—al)={0}.
Then T, is a quasi unilateral shift. Therefore, there is an X ‘satisfying XT,=SX,
which implies that T isnotofclass Cgy. Thisis a contradiction. Thus A (T'—al)=
={0} implies H'(T*—al)={0}. Similarly we can prove the converse assertion.

For a contraction T on H, we have
2.9 | I=T*T|2+dim o (T*) = | I-TT*|2+dim o (T),
where || ||, denotes the p-Schatten norm. Indeed, from T(I—T*T)=([-TT*T,
(U-T*T)lw=g and (I—-TT*)|zm are unitarily equivalent. (/—T*T) |yy=Iem
and (I—TT*) |yaw=ILyr+ imply that
| I—T*T||5 = |(I-T*T)|mgl}+dim A°(T),
|I=TT*|3 = |(I= TT*)|zgl}+dim 2 (T™).
Thus we have (2.9). Similarly we have '
.9y rank (/—T*T)+dim o (T*) = rank (/—TT*) +dim 4 (T).

Proposition 1. Let T be a Fredholm quasi unilateral shift. Suppose X with
dense range satisfies XT=SX, where S is a unilateral shift with index S =index T.
Then T |4, is of class Cy.

Ty,

Proof. Let T= [T1 ] be a decomposition of T corresponding to

H=X(X)®X'(X)*. Then Tl is injective and, from (2.3), also T, is 1n_|ect1ve
From the assumption and (2.9), it follows that I—T*T¢€(z, C) and I-TT*¢(z, C),
which implies

(2.10) I-T}TiE(s, C),
@.11) I— (T, TY + T Ti2)E (3, C),
(2.12) I— (T2 Ty + T3 TH)E(T, C),
(2.13) - I-T,T¥(x, C).

From X (T)cH(T*), it follows that
index T = —dim X'(T*) = —dim A (T¥) = —dim o ($*)= mdex T,

which implies index T =index T,. From (2.9) and (2.13), we have I —T¥Ty(z, C),
which, by (2.12), implies Ty,€(o, C). Therefore, from (2.10) and (2:11), T, is
a Fredholm operator. Since

| T, 0 ‘
index T" = index [ 01 T] = index T} +index Ty,
. o _
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we have index T7,=0. Thus T, is invertible. Hence T, is a weak contraction
of class C.,. Consequently T, is of class C,.

Corollary 2. Let T be a Fredholm quasi unilateral shift of class Cy. Then
H (A)={0} provided AT=TA and A (4*)={0} (cf. [6]).

Proof. For X defined in Theorem 2, we have (X4)T =S(XA4). From Propo-
sition 1, we have 4(X4)={0}.

Proposition2. Let T be of class C.,. Then T is of class Cy, if and only if
(2.14) OL(E)NHE’) = OH(E).
Proof. Since, for h in H2%(E’) and f in H*(E), we have

(O K, [Wasey = 5= [ (O h(e™), fe)z dt =

—2n 1

= _%6[ (O(eM*h(e™™), fle~)gdt = Edf (@(D*h(e ™), fle=™))gdt =

2n
= o= [ (@@ e (e, e fle=)g dt = (O () Th (), AF (D)uxcery
0
O(A)*H*(E’) is dense in H2(E) if and only if @ (A)*(H?(E"))* is dense in (H2(E))*,
where 1 denotes the orthogonal complement. We have always

@L:(E)NH?*(E’) D OH3*(E).
At first, assume that T is of class Cyo. Suppose
Oge {OLA(E)NH2(E")}© OH2(E).

Then Ogc H¥E’) and g H¥E), because O is an isometry from L%E) to L%E’).
Thus g1 ©@(H*(E’))* and gc(H2(E))*. Since ©(4) is *-outer, we have g=0.
Consequently (2.14) follows.

Conversely assume (2.14). Suppose f1 @A) (H¥E")* and fe(H*(E))*.
Then Of¢H¥E’) and Of 1 OH%(E). Thus from (2.14), we have ©f=0 and hence
f=0. Consequently @(4) is *-outer.

Theorem 3. Let T be a quasi unilateral shift. Then T<S ( that is, there is
an X such that A (X)=H(X*)={0}, XT=SX), where S is a unilateral shift
with index S =index T, if and only if T is of class Cyy. :

Proof. Assume that T is of class C;,. From Theorem 2, there is an- X
with dense range satisfying (2.3). If Xh=0 for h in H(@), then, from (2.7) and
(2.8), A4(e"h(€®)=0 ae. Thus, from (1.3), h€OL(E), so that, from (2.14),
h€ ®H2(E). Consequently h=0. Thus we have T<S.
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Conversely, assume XT=SX and X (X)=A4(X*)={0}). From XT"=S"X
(n=1,2,...) it follows that T is of class Cy,.

Remark 1. If T is a Fredholm operator, then, from Theorem 2 and Proposi-
tion 1, it is clear that T<S if T is of class Cy,.

Remark 2. Theorem 3 implies that the Jordan model of a quasi unilateral
shift of class Cy, is a unilateral shift.

Corollary 3. Let T be a quasi unilateral shift of class Cyo. Then T* has
a cyclic vector.

‘Proof. T<S implies that S*<T*. Since S$* has a cyclic vector, also T*
does.

Proposition 3. Let T be a quasi unilateral shift. Then there is an injection
Y such that :

(2.15) YS = TV,
where S is a unilateral shift with index S =index T.

Proof. Consider S(@) defined by (2.2) instead of T. Let ¥ be an 1sometry
defined in the proof of Theorem 2. Then

E'=VE®F and detV*@(e") =0 ae..
Define an operator ¥ from H2(F) to H(®) by '

Yh = PH(O)h for h in H2(F)
Then we have :
YSh = PH(Q)Sh = PH(G)SPH(Q)h = S(G) Yh,

which implies (2.15). Suppose Yh=0. Then h=0f for some fcH?(E). Thus
0=V*h(e")=V*O(e") f(e") a.e. Since V*O(e") is invertible a.e., f(e")=0 a.e.
Consequently Y is injective.

Proposition 4. Let T be a quasi unilateral shift of class Cyy. Then, zf TS,
where S’ is a unilateral shift, then index S’=index T.

Proof. From S™*<T* dim #(S"*)=dim o' (T*). The prop‘osition above
implies that there is an injection ¥’ such that

Y’'S =8'Y’, index S = index T,
which implies that 0=index S =index S* (cf. [4]). Thus we have
index T = index S = index S’ = index T,

from which index T:=index S’ follows."
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Remark 3. P. Y. Wu [6] showed that if I—T*T is a finite rank operator,
and if T<S’, then '
rank (/—TT*)—rank (/—T*T) = —index §’.

From (2.9), our proposition is an extension of this result.

3. Cyclic vector

In this section, we consider a quasi unilateral shift of class C,, which has
a cyclic vector. The next proposition is a partial extension of Proposition 2 of [4]
and Theorem 3.1 of [5].

Proposition 5. Let T be a quasi unilateral shift of class C,,. Then next
conditions are equivalent:

(@) T has a cyclic vector;

(b) there is a bounded operator Y satisfying

G.) YS, =TY, #¥* = {0},

where S, is a unilateral shift with index S; = —1;

(©) $i<T;

(d) S$;<T and T<S;;

@©) I-TT*|,—I-T*Tl,=1, and there is a bounded holomorphic function
I' with values in ¥(C, E’) satisfying :

3.2) IFEM) =1 ae,
3.3 TH?*(C)VOH?(E) = H*(E’),
where @ s the characteristic function of T defined by 2.1).

Proof. (a)-(e). From Theorem 3, for a unilateral shift S with index S =
=index T, we have T<S. That T has a cyclic vector implies that also S does.
Thus index S =—1. Consequently, from (2.9), we have

M=TT*|,—|I-T*T|, = 1.

We can construct a function I’ in the same way as in [4].
(&)—~(b). The contraction Y defined by Yh=Pgelh for h in H¥C)
satisfies (3.1). _ _
(b)~(c). Suppose H'(Y)s~{0}. Since S;H(Y)cHA(Y), there is a scalar
inner function ¥ such that 2 (Y)=yH?2(C). Thus:

H (X =HY) (=H(OBYHO), YinwSW) =TY |ny),:
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where S(¥)=Pyy)S luy,. Since S@) is of class Cy, T must be of class C,.
This is a contradiction. Consequently (Y )={0}.

(©)~(d). $1<T implies T*<S,", from which it follows that dim 2 (T*)=
=dim (S, )=1. That T is a quasi unilateral shift, implies index T<0. Thus
index T=—1. By Theorem 3, we have T'<S;.

(d)—~(a). This is obvious.

(3.3) implies that {I', @] is an outer function from H*(C)@® H(E) to H2(E’).
Generally [I', @] is not contractive. Therefore d(2)=det[I'(), @(A)]€H* and
d(2)=1 are not obvious. We shall show these results.

Let AC¥(F, E’) beacontractionand VeL(E, E’) anisometry with index ¥V =
=—1. Let {e,€;,...,6,, ..} be a CONB. in E. Then, setting d, = Ve,
(n=12,..), {dy, dy, ....d,, ...} is a CON.B. in E’, where d, is a unit vector
in A (V*. For i=1,2,..., define an isometry V€ %(E, E’) by

Viee=dy, ... Vies=di_y, Viey1 =dis1, Vieyoo =diys, ...

Let a;;=(de;,d)) (i=0,j=1). Then, in the base {e,, e,, ...}, we have
Ao 3 suey aoj g oee

Vi*A = [Qi—119 +0es Qi1 FIREE (i = 1, 2, ...).

Ai3119 2009 Qiga Jooore

Let E,;=C@E be a direct sum of C and E, and e, a unit vector in C. Let
x, n=0,1,2,...) be a scalar number such that 2 |x,|?=1. Let B Z(E,, E’)
n=0
be an operator defined by
(Beo, di)=x,-, (Bej, di)=aij (i%o,j%l).

Determine a unitary U€ZL(E,, E’) by Ue,=d, (i=0). Then in the base {e,, e, ...,
ceer €, ...} Of E, we have
' Xos Aogs oes Aojs oo

X19 Q119 «oes au, “ee
U*B=|: :
Xis Qizy »oes a,j, ces

Let Ig—V*A€(r,C). Then, since (Vi*de;, e)=(V*Ade;,e) for j=1 and
kzi+l, Ig—-V¥A4€(r,C) for every i.

PE(IEO_ U*B)|£ =Ig-V*4
implies Iy —U*Be(z, C).

23
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Lemma. Let Iz—V*A€(t,C). Set Vo=V. Then

det U*B = 3 x(—1)idet(V}4), -
i=0

S x(=D'det (VF4)] = 1.
i=1

Proof. For simplicity, let [4], denote the first nXn submatrix of 4, and
write 4, for A|E", where E,={e,, ..., €,). Forany k and n as n=k, we have

k
G4 > |det VAL |2 = det (45 4,) = det[4%4], = 1,
i=0

because A is a contraction. Since for each i
det [V,'*A],, — det (V;*A) (n —’00),

. 4
we have ‘2 |det (P FA)]2=1, which implies

=0
(3.5 S ldet (VAR = 1.

i=0
Consequently S‘ ix,(Q 1)idet (V}4)|=1. For any &>0, take an m such that
i=0

G6). S mfr<e

i=m+1

Since det [U*B],~det (U*B), and det[V*A4],—~det (V¥ *4) as n—oo, we can take
an N such that

G.7 n = N — |det [U*B],~det (U*B)| <,

and

(.8) n=N- 3 |det[VFd],—det (VFA < 2.
i=0

Fixa k as k=N+1 and k=m+-1. Then it follows that

=

det(U* B)— 3 x,(—1)' det (V¥ 4)
i=0

= |det (U* B)—det [U*B),| +

det [U*Bl,— 3 x,(=1)'det [V A, +
i=0

+ +

(= 1) {det V7l — det (77 )}

5 x(=1)det(vFA)
f=m+1
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From (3.7) |det (U*B)—det [U*B];|<e, and from (3.8)

‘g"; xi(= 1) {det [V ], -, — det (V,*A)}l =
1/2

= (3 )" (B vidhs-duwrar)” <.

(3.5) and (3.6) irnplies that

< &.

5 x(=1)det (7} A)
i=m+1
By finite matrix theory

<eg,

m k-1
det [U*B],— ‘g(; x(—1) det [V ALy i_Z; ) x;(— 1) det [V A -,

because the last inequality follows from (3.4), (3.6). Consequently, for any &=0
we have '

< 4e.

det(U*B)— > x(—1) det (V)
=0 .

In (e) of Proposition 5, set (I'(A)e,, d;)=h,(1) for i=0. Then we have:
Proposition 6. |det (U*[I'(1), @(D)])|=1, and

(3.9) det (U*[F (D), OR)]) = =2: h(3) (~ 1) det (V0 (4))

is holomorphic on D.
Proof. From (3.2), we have 2 |h(2)[*=1. Since ¥*@(1) is a contractive
i=0

holomorphic function, det (V@ (4))¢H>. Since ®(1) is a contraction for every
AED, it follows that

é ()= 1) det (VO @) = 1,

which implies that i’ hy(A)(— 1) det (V;*@(4)) is holomorphic. Equality (3.9) follows
)
from Lemma.
Problem. Is det(U*[I'(%), ©(4)]) outer?
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