Contractions and unilateral shifts

MITSURU UCHIYAMA

A contraction T on a separable Hilbert space is said to be a weak contraction if $I-T^{*} T \in(\tau, C)$ which denotes the trace class, and $\sigma(T) \neq \bar{D}$, where D is the open unit disk. It is well known that there is a $C_{0}-C_{11}$ decomposition for a weak contraction ([3]). Therefore we can easily show that if T is of class C_{10} (about $C_{10}, C_{.0}$, etc., see p. 72 of [3]) and if $I-T^{*} T \in(\tau, C)$, then

$$
\sigma_{p}\left(T^{*}\right)=D \quad \text { and } \quad \sigma_{p}(T) \cap D=\emptyset
$$

In this note, we shall investigate a contraction T such that $I-T^{*} T \in(\tau, C)$ and $\sigma(T)=\bar{D}$.

The author wishes to express his gratitude to Prof. T. Ando.

1. Operator valued functions

For $T \in I+(\tau, C)$, Bercovici and Voiculescu defined the algebraic adjoint $T^{\text {a }}$, which satisfies

$$
T^{\mathrm{a}} T=T T^{\mathrm{a}}=(\operatorname{det} T) I
$$

They showed that if $\Theta(\lambda)$ is a contractive holomorphic function and if $\Theta(\lambda) \in I+$ $+(\tau, C)$ for every $\lambda \in D$, then $\Theta(\lambda)^{\text {a }}$ is a contractive holomorphic function. In this case, if $\operatorname{det} \Theta\left(e^{i t}\right) \neq 0$ a.e., then $\Theta\left(e^{i t}\right)$ is invertible and its inverse is $\Theta\left(e^{i t}\right)^{2} /$ $\operatorname{det} \Theta\left(e^{i t}\right)$ a.e.

Theorem 1. Let $\Theta(\lambda)$ be an inner function (that is, $\Theta(\lambda)$ is a contractive holomorphic function defined on D and $\Theta\left(e^{i t}\right)$ is isometric a.e.) with values in $\mathscr{L}\left(E, E^{\prime}\right)$, where E, E^{\prime} are separable Hilbert spaces. If there is an isometry $V \cdot$ in $\mathscr{L}\left(E, E^{\prime}\right)$ such that for every $\lambda \in D$

$$
\begin{array}{r}
I_{E}-V^{*} \Theta(\lambda) \in(\tau, C), \\
\operatorname{det} V^{*} \Theta(\lambda) \neq 0, \tag{1.2}
\end{array}
$$

Received September 30, 1981.
then there is a bounded holomorphic function $\Delta(\lambda)$ with values in $\mathscr{L}\left(E^{\prime}, F\right)$ for a suitable Hilbert space F such that

$$
\begin{equation*}
\Theta\left(e^{i t}\right) E \oplus \Delta\left(e^{i t}\right)^{*} F=E^{\prime} \text { a.e. } \tag{1.3}
\end{equation*}
$$

Proof. If V is unitary, then $\Theta\left(e^{i t}\right)$ is invertible a.e. Hence we may assume that V is not unitary. Set $F=E^{\prime} \ominus V E$. Let $E_{0}=E \oplus F$ be the direct sum of E and F. For $\lambda \in D$, define $\Theta^{\prime}(\lambda) \in \mathscr{L}\left(E_{0}, E^{\prime}\right)$ by

$$
\left.\Theta^{\prime}(\lambda)\right|_{E}=\Theta(\lambda) \quad \text { and }\left.\quad \Theta^{\prime}(\lambda)\right|_{F}=I_{F}
$$

For simplicity, set $d(\lambda)=\operatorname{det} V^{*} \Theta(\lambda)$ and $A(\lambda)=\left(V^{*} \Theta(\lambda)\right)^{\text {a }}$. Determine $\Delta(\lambda) \epsilon$ $\in \mathscr{L}\left(E^{\prime}, F\right)$ by

$$
\begin{equation*}
\Delta(\lambda)=-P_{F} \Theta(\lambda) A(\lambda) V^{*}+d(\lambda) P_{F} \tag{1.4}
\end{equation*}
$$

and $\Delta^{\prime}(\lambda) \in \mathscr{L}\left(E^{\prime}, E_{0}\right)$ by

$$
\Delta^{\prime}(\lambda)=A(\lambda) V^{*}+\Delta(\lambda)
$$

Then we have

$$
\begin{gathered}
\left.\Delta^{\prime}(\lambda) \Theta^{\prime}(\lambda)\right|_{E}=\Delta^{\prime}(\lambda) \Theta(\lambda)=A(\lambda) V^{*} \Theta(\lambda)+\Delta(\lambda) \Theta(\lambda)= \\
=d(\lambda) I_{E}-P_{F} \Theta(\lambda) d(\lambda) I_{E}+d(\lambda) P_{F} \Theta(\lambda)=d(\lambda) I_{E}, \\
\left.\Delta^{\prime}(\lambda) \Theta^{\prime}(\lambda)\right|_{F}=A(\lambda) V^{*} I_{F}+\Delta(\lambda) I_{F}=d(\lambda) I_{F},
\end{gathered}
$$

and

$$
\begin{gathered}
\Theta^{\prime}(\lambda) \Delta^{\prime}(\lambda)=\Theta(\lambda) A(\lambda) V^{*}+\Delta(\lambda)=\left(I-P_{F}\right) \Theta(\lambda) A(\lambda) V^{*}+d(\lambda) P_{F}= \\
=V V^{*} \Theta(\lambda) A(\lambda) V^{*}+d(\lambda) P_{F}=V d(\lambda) V^{*}+d(\lambda) P_{F}=d(\lambda) I_{E^{\prime}}
\end{gathered}
$$

Thus we have

$$
\Delta^{\prime}(\lambda) \Theta^{\prime}(\lambda)=d(\lambda) I_{E_{0}}, \Theta^{\prime}(\lambda) \Delta^{\prime}(\lambda)=d(\lambda) I_{E^{\prime}}
$$

Since the inverse of $\Theta^{\prime}\left(e^{i t}\right)$ is $\Delta^{\prime}\left(e^{i t}\right) / d\left(e^{i t}\right)$ a.e., the orthogonal complement of $\Theta\left(e^{i t}\right) E=\Theta^{\prime}\left(e^{i t}\right) E$ is

$$
\frac{\Delta^{\prime}\left(e^{i t}\right)^{*}}{\overline{d(}\left(e^{i t}\right)}\left(E_{0} \Theta E\right)=\Delta\left(e^{i t}\right)^{*} F
$$

It is clear that $\Delta(\lambda)$ is a bounded holomorphic function.
Cambern showed that the orthogonal complement of a finite dimensional holomorphic range function is conjugate holomorphic (c.f. p. 94 of [2]). Now, we can show this result as a corollary.

Corollary 1. Let $\Theta(\lambda)$ be an inner function with values in $\mathscr{L}\left(E, E^{\prime}\right)$. Suppose $\operatorname{dim} E=m<\infty$. Then there is a bounded holomorphic function $\Delta(\lambda)$ satisfying (1.3).

Proof. We may assume that $E \subset E^{\prime}$ and $\Theta\left(e^{i t}\right)$ is a matrix. Since

$$
1=\operatorname{det}\left(\Theta\left(e^{i t}\right)^{*} \Theta\left(e^{i t}\right)\right)=\sum_{\sigma}\left|\operatorname{det} \Theta_{\sigma}\left(e^{i t}\right)\right|^{2}
$$

a.e., where \sum_{σ} is taken over all $m \times m$ submatrices of $\Theta\left(e^{i t}\right)$, there is at least one σ such that $\operatorname{det} \Theta_{\sigma}\left(e^{i t}\right) \neq 0$ a.e. Thus there is an isometry V such that

$$
\operatorname{det} V^{*} \Theta\left(e^{i t}\right)=\operatorname{det} \Theta_{\sigma}\left(e^{i t}\right) \neq 0 \quad \text { a.e. }
$$

(see [4]). Hence V and $\Theta(\lambda)$ satisfy (1.1), (1.2).

2. Quasi unilateral shifts

We begin with a short review about the canonical model theory of B. Sz.-Nagy and C. Foiaş. Let T be a contraction of class $C_{.0}$ on a separable Hilbert space H. Set $D_{T}=\left(I-T^{*} T\right)^{1 / 2}$, and let E and E^{\prime} be the closures of $D_{T} H$ and $D_{T^{*}} H$, respectively. Then the characteristic function $\Theta(\lambda)$ of T determined by

$$
\begin{equation*}
\Theta(\lambda)=\left.\left\{-T+\lambda D_{T^{*}}\left(I-\lambda T^{*}\right)^{-1} D_{T}\right\}\right|_{E} \text { for } \lambda \in D \tag{2.1}
\end{equation*}
$$

is an inner function with values in $\mathscr{L}\left(E, E^{\prime}\right)$. Therefore

$$
\operatorname{dim} E \leqq \operatorname{dim} E^{\prime}
$$

Moreover T is unitary equivalent to $S(\Theta)$ on $H(\Theta)$ defined by
(2.2) $H(\Theta)=H^{2}\left(E^{\prime}\right) \ominus \Theta H^{2}(E), \quad S(\Theta)^{*} h=\frac{1}{\lambda}(h(\lambda)-h(0))$ for h in $H(\Theta)$.
T is of class C_{1}. if and only if $\Theta(\bar{\lambda})^{*} H^{2}\left(E^{\prime}\right)$ is dense in $H^{2}(E)$ (that is, Θ is $*$-outer).
In this note, for simplicity, we call T a quasi unilateral shift if T is a contraction of class $C ._{0}$ such that

$$
I-T^{*} T \in(\tau, C), \quad \mathscr{K}(T)=\{0\} \quad \text { and } \mathscr{K}\left(T^{*}\right) \neq\{0\}
$$

where $\mathscr{K}(T)$ denotes the kernel of T.
Theorem 2. If T is a quasi unilateral shift on H, then there is a bounded operator X with dense range satisfying

$$
\begin{equation*}
X T=S X \tag{2.3}
\end{equation*}
$$

where S is a unilateral shift satisfying

$$
0>\text { index } S=\text { index } T \geqq-\infty,
$$

where index $T=\operatorname{dim} \mathscr{K}(T)-\operatorname{dim} \mathscr{K}\left(T^{*}\right)$.
Proof. We may assume $I-T^{*} T \neq 0$. From $T\left(I-T^{*} T\right)=\left(I-T T^{*}\right) T$, it follows that $T E \subset E^{\prime}, T(H \ominus E)=H \ominus E^{\prime}$, where E and E^{\prime} are the spaces de-
fined above. Thus we have

$$
\begin{equation*}
H \ominus T H=E^{\prime} \ominus T E \neq\{0\} \tag{2.4}
\end{equation*}
$$

Let $\left\{e_{1}, e_{2}, \ldots, e_{n}, \ldots\right\}$ be the C.O.N.B. of E such that $\left(I-T^{*} T\right) e_{n}=\mu_{n} e_{n}, \mu_{n}>0$. Then $f_{n}=\left(1-\mu_{n}\right)^{-1 / 2} T e_{n}(n=1,2, \ldots)$ is a C.O.N.B. of $T E$ and $T^{*} f_{n}=\left(1-\mu_{n}\right)^{1 / 2} e_{n}$ (see p. 324 of [3]). Setting $V e_{n}=-f_{n}(n=1,2, \ldots), V$ is an isometry from E to E^{\prime}, and

$$
\begin{equation*}
V+\left.T\right|_{E} \in(\tau, C) \quad \text { (see [1]). } \tag{2.5}
\end{equation*}
$$

Setting $F=E^{\prime} \ominus V E$, from (2.4) it follows that

$$
\begin{equation*}
\operatorname{dim} F=-\operatorname{index} T \tag{2.6}
\end{equation*}
$$

$I-T^{*} T \in(\tau, C)$ implies $D_{\boldsymbol{T}} \in(\sigma, C)$ which denotes the Hilbert-Schmidt class. Since $\left.\left(I-T T^{*}\right)\right|_{T E}$ is unitarily equivalent to $I-T^{*} T$, we have $\left.D_{T^{*}}\right|_{T E} \in(\sigma, C)$. Thus

$$
\lambda V^{*} D_{T^{*}}\left(I-\lambda T^{*}\right)^{-1} D_{T}=\lambda V^{*}\left(\left.D_{T^{*}}\right|_{T E}\right)\left(I-\lambda T^{*}\right)^{-1} D_{T} \quad(\lambda \in D)
$$

belongs to (τ, C). Thus, from (2.1), (2.5), we have

$$
I-V^{*} \Theta(\lambda) \in(\tau, C) \quad \text { for each } \lambda
$$

Since

$$
\left|\operatorname{det}\left(V^{*} \Theta(0)\right)\right|^{2}=\operatorname{det}\left(\Theta(0)^{*} V V^{*} \Theta(0)\right)=\operatorname{det}\left(\left.T^{*} V V^{*} T\right|_{E}\right)=\operatorname{det}\left(\left.T^{*} T\right|_{E}\right) \neq 0
$$

we have $\operatorname{det} V^{*} \Theta(\lambda) \not \equiv 0$. Thus V and $\Theta(\lambda)$ satisfy the conditions of Theorem 1. Hence $\Delta(\lambda)$ defined by (1.4) satisfies (1.3). Since $\Delta(\lambda) \Theta(\lambda)=0$, setting

$$
\begin{equation*}
X_{0} h=\Delta h \text { for } h \text { in } H(\Theta) \tag{2.7}
\end{equation*}
$$

we have $X_{0} \in \mathscr{L}\left(H(\Theta), H^{2}(F)\right)$ and $X_{0} S(\Theta)=S_{0} X_{0}$, where S_{0} is the unilateral shift on $H^{2}(F)$. Since

$$
H^{2}(F) \supset X_{0} H(\Theta)=\Delta H^{2}\left(E^{\prime}\right) \supset \Delta H^{2}(F)=\left(\operatorname{det} V^{*} \Theta(\lambda)\right) H^{2}(F)
$$

it follows that $S=\left.S_{0}\right|_{\bar{X}_{0} H(\theta)}$ is unitarily equivalent to S_{0}. Thus, from (2.6), we have

$$
\text { index } S=\operatorname{index} S_{0}=-\operatorname{dim} F=\operatorname{index} T
$$

Consequently an operator X from $H(\Theta)$ to $\overline{X_{0} H(\Theta)}$ defined by

$$
\begin{equation*}
X h=X_{0} h \text { for } h \text { in } H(\Theta) \tag{2.8}
\end{equation*}
$$

satisfies (2.3).
Corollary 1. Let T be a contraction of class C_{00} such that $i-T^{*} T$ and $1-T T^{*}$ belong to (τ, C). Then, for $a \in D, \mathscr{K}(T-a I)=\{0\}$ if and only if $\mathscr{K}\left(T^{*}-\bar{a} I\right)=\{0\}$.

Proof. Set $T_{a}=(T-a I)(I-\bar{a} T)^{-1}$ and $A=\left(1-|a|^{2}\right)^{1 / 2}(I-\bar{a} T)^{-1}$. Then we have $I-T_{a}^{*} T_{a}=A^{*}\left(I-T^{*} T\right) A, I-T_{a} T_{a}^{*}=A\left(I-T T^{*}\right) A^{*}$, and T_{a} is of class C_{00} (see p. 240 and p. 257 of [3]). Suppose $\mathscr{K}(T-a I)=\{0\}$ and $\mathscr{K}\left(T^{*}-\bar{a} I\right) \neq\{0\}$. Then T_{a} is a quasi unilateral shift. Therefore, there is an X satisfying $X T_{a}=S X$, which implies that T is not of class C_{00}. This is a contradiction. Thus $\mathscr{K}(T-a I)=$ $=\{0\}$ implies $\mathscr{K}\left(T^{*}-\bar{a} I\right)=\{0\}$. Similarly we can prove the converse assertion.

For a contraction T on H, we have

$$
\begin{equation*}
\left\|I-T^{*} T\right\|_{p}^{p}+\operatorname{dim} \mathscr{K}\left(T^{*}\right)=\left\|I-T T^{*}\right\|_{p}^{p}+\operatorname{dim} \mathscr{K}(T) \tag{2.9}
\end{equation*}
$$

where $\left\|\|_{p}\right.$ denotes the p-Schatten norm. Indeed, from $T\left(I-T^{*} T\right)=\left(I-T T^{*}\right) T$, $\left.\left(I-T^{*} T\right)\right|_{T * H}$ and $\left.\left(I-T T^{*}\right)\right|_{\overrightarrow{T H}}$ are unitarily equivalent. $\left.\left(I-T^{*} T\right)\right|_{\boldsymbol{X}(T)}=I_{\boldsymbol{x}(T)}$ and $\left.\left(I-T T^{*}\right)\right|_{\boldsymbol{x}\left(T^{*}\right)}=I_{\boldsymbol{x}\left(T^{*}\right)}$ imply that

$$
\begin{aligned}
\left\|I-T^{*} T\right\|_{p}^{p} & =\left\|\left.\left(I-T^{*} T\right)\right|_{\overline{T^{*}}}\right\|_{p}^{p}+\operatorname{dim} \mathscr{K}(T), \\
\left\|I-T T^{*}\right\|_{p}^{p} & =\left\|\left.\left(I-T T^{*}\right)\right|_{\overline{T H}}\right\|_{p}^{p}+\operatorname{dim} \mathscr{K}\left(T^{*}\right)
\end{aligned}
$$

Thus we have (2.9). Similarly we have

$$
\begin{equation*}
\operatorname{rank}\left(I-T^{*} T\right)+\operatorname{dim} \mathscr{K}\left(T^{*}\right)=\operatorname{rank}\left(I-T T^{*}\right)+\operatorname{dim} \mathscr{K}(T) . \tag{2.9}
\end{equation*}
$$

Proposition 1. Let T be a Fredholm quasi unilateral shift. Suppose X with dense range satisfies $X T=S X$, where S is a unilateral shift with index $S=\operatorname{index} T$. Then $\left.T\right|_{x(X)}$ is of class C_{0}.

Proof. Let $T=\left[\begin{array}{ll}T_{1} & T_{12} \\ 0 & T_{2}\end{array}\right]$ be a decomposition of T corresponding to $H=\mathscr{K}(X) \oplus \mathscr{K}(X)^{\perp}$. Then T_{1} is injective and, from (2.3), also T_{2} is injective. From the assumption and (2.9), it follows that $I-T^{*} T \in(\tau, C)$ and $I-T T^{*} \in(\tau, C)$, which implies

$$
\begin{gather*}
I-T_{1}^{*} T_{1} \in(\tau, C), \tag{2.10}\\
I-\left(T_{1} T_{1}^{*}+T_{12} T_{12}^{*}\right) \in(\tau, C), \tag{2.11}\\
I-\left(T_{12}^{*} T_{12}+T_{2}^{*} T_{2}\right) \in(\tau, C), \tag{2.12}\\
I-T_{2} T_{2}^{*} \in(\tau, C) \tag{2.13}
\end{gather*}
$$

From $\mathscr{K}\left(T_{2}^{*}\right) \subset \mathscr{K}\left(T^{*}\right)$, it follows that

$$
\text { index } T=-\operatorname{dim} \mathscr{K}\left(T^{*}\right) \leqq-\operatorname{dim} \mathscr{K}\left(T_{2}^{*}\right) \leqq-\operatorname{dim} \mathscr{K}\left(S^{*}\right)=\text { index } T,
$$

which implies index $T=$ index T_{2}. From (2.9) and (2.13), we have $I-T_{2}^{*} T_{2} \in(\tau, C)$, which, by (2.12), implies $T_{12} \in(\sigma, C)$. Therefore, from (2.10) and (2.11), T_{1} is a Fredholm operator. Since

$$
\text { index } T=\operatorname{index}\left[\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right]=\operatorname{index} T_{1}+\operatorname{index} T_{2}
$$

we have index $T_{1}=0$. Thus T_{1} is invertible. Hence T_{1} is a weak contraction of class $C_{\cdot 0}$. Consequently T_{1} is of class C_{0}.

Corollary 2. Let T be a Fredholm quasi unilateral shift of class C_{10}. Then $\mathscr{K}(A)=\{0\}$ provided $A T=T A$ and $\mathscr{K}\left(A^{*}\right)=\{0\}$ (cf. [6]).

Proof. For X defined in Theorem 2, we have $(X A) T=S(X A)$. From Proposition 1, we have $\mathscr{K}(X A)=\{0\}$.

Proposition 2. Let T be of class $C_{.0}$. Then T is of class C_{10} if and only if

$$
\begin{equation*}
\Theta L^{2}(E) \cap H^{2}\left(E^{\prime}\right)=\Theta H^{2}(E) \tag{2.14}
\end{equation*}
$$

Proof. Since, for h in $H^{2}\left(E^{\prime}\right)$ and f in $H^{2}(E)$, we have

$$
\begin{gathered}
\left(\Theta(\bar{\lambda})^{*} h(\lambda), f(\lambda)\right)_{H^{2}(E)}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\Theta\left(e^{-i t}\right)^{*} h\left(e^{i t}\right), f\left(e^{i t}\right)\right)_{E} d t= \\
=-\frac{1}{2 \pi} \int_{0}^{-2 \pi}\left(\Theta\left(e^{i t}\right)^{*} h\left(e^{-i t}\right), f\left(e^{-i t}\right)\right)_{E} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\Theta\left(e^{i t}\right)^{*} h\left(e^{-i t}\right), f\left(e^{-i t}\right)\right)_{E} d t= \\
=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\Theta\left(e^{i t}\right)^{*} e^{-i t} h\left(e^{-i t}\right), e^{-i t} f\left(e^{-i t}\right)\right)_{E} d t=\left(\Theta(\lambda)^{*} \bar{\lambda} h(\bar{\lambda}), \bar{\lambda} f(\bar{\lambda})\right)_{L^{2}(E)},
\end{gathered}
$$

$\Theta(\bar{\lambda})^{*} H^{2}\left(E^{\prime}\right)$ is dense in $H^{2}(E)$ if and only if $\Theta(\lambda)^{*}\left(H^{2}\left(E^{\prime}\right)\right)^{\perp}$ is dense in $\left(H^{2}(E)\right)^{\perp}$, where \perp denotes the orthogonal complement. We have always

$$
\Theta L^{2}(E) \cap H^{2}\left(E^{\prime}\right) \supset \Theta H^{2}(E)
$$

At first, assume that T is of class C_{10}. Suppose

$$
\Theta g \in\left\{\Theta L^{2}(E) \cap H^{2}\left(E^{\prime}\right)\right\} \ominus \Theta H^{2}(E)
$$

Then $\Theta g \in H^{2}\left(E^{\prime}\right)$ and $g \perp H^{2}(E)$, because Θ is an isometry from $L^{2}(E)$ to $L^{2}\left(E^{\prime}\right)$. Thus $g \perp \Theta^{*}\left(H^{2}\left(E^{\prime}\right)\right)^{\perp}$ and $g \in\left(H^{2}(E)\right)^{\perp}$. Since $\Theta(\lambda)$ is $*$-outer, we have $g=0$. Consequently (2.14) follows.

Conversely assume (2.14). Suppose $f \perp \Theta(\lambda)^{*}\left(H^{2}\left(E^{\prime}\right)\right)^{\perp}$ and $f \in\left(H^{2}(E)\right)^{\perp}$. Then $\Theta f \in H^{2}\left(E^{\prime}\right)$ and $\Theta f \perp \Theta H^{2}(E)$. Thus from (2.14), we have $\Theta f=0$ and hence $f=0$. Consequently $\Theta(\lambda)$ is $*$-outer.

Theorem 3. Let T be a quasi unilateral shift. Then $T \prec S$ (that is, there is an X such that $\left.\mathscr{K}(X)=\mathscr{K}\left(X^{*}\right)=\{0\}, X T=S X\right)$, where S is a unilateral shift with index $S=$ index T, if and only if T is of class C_{10}.

Proof. Assume that T is of class C_{10}. From Theorem 2, there is an X with dense range satisfying (2.3). If $X h=0$ for h in $H(\Theta)$, then, from (2.7) and (2.8), $\Delta\left(e^{i t}\right) h\left(e^{i t}\right)=0$ a.e. Thus, from (1.3), $h \in \Theta L^{2}(E)$, so that, from (2.14), $h \in \Theta H^{2}(E)$. Consequently $h=0$. Thus we have $T \prec S$.

Conversely, assume $X T=S X$ and $\mathscr{K}(X)=\mathscr{K}\left(X^{*}\right)=\{0\}$. From $X T^{n}=S^{n} X$ ($n=1,2, \ldots$) it follows that T is of class C_{10}.

Remark 1. If T is a Fredholm operator, then, from Theorem 2 and Proposition 1, it is clear that $T<S$ if T is of class C_{10}.

Remark 2. Theorem 3 implies that the Jordan model of a quasi unilateral shift of class C_{10} is a unilateral shift.

Corollary 3. Let T be a quasi unilateral shift of class C_{10}. Then T^{*} has a cyclic vector.

Proof. $T \prec S$ implies that $S^{*}<T^{*}$. Since S^{*} has a cyclic vector, also T^{*} does.

Proposition 3. Let T be a quasi unilateral shift. Then there is an injection Y such that

$$
\begin{equation*}
Y S=T Y, \tag{2.15}
\end{equation*}
$$

where S is a unilateral shift with index $S=$ index T.
Proof. Consider $S(\Theta)$ defined by (2.2) instead of T. Let V be an isometry defined in the proof of Theorem 2. Then

$$
E^{\prime}=V E \oplus F \text { and } \operatorname{det} V^{*} \Theta\left(e^{i t}\right) \neq 0 \text { a.e. . }
$$

Define an operator Y from $H^{2}(F)$ to $H(\Theta)$ by

$$
Y h=P_{H(\theta)} h \text { for } h \text { in } H^{2}(F) .
$$

Then we have

$$
Y S h=P_{H(\theta)} S h=P_{H(\theta)} S P_{H(\theta)} h=S(\theta) Y h,
$$

which implies (2.15). Suppose $Y h=0$. Then $h=\Theta f$ for some $f \in H^{2}(E)$. Thus $0=V^{*} h\left(e^{i t}\right)=V^{*} \Theta\left(e^{i t}\right) f\left(e^{i t}\right)$ a.e. Since $V^{*} \Theta\left(e^{i t}\right)$ is invertible a.e., $f\left(e^{i t}\right)=0$ a.e. Consequently Y is injective.

Proposition 4. Let T be a quasi unilateral shift of class C_{10}. Then, if $T<S^{\prime}$, where S^{\prime} is a unilateral shift, then index $S^{\prime}=$ index T.

Proof. From $S^{\prime *}<T^{*}, \operatorname{dim} \mathscr{K}\left(S^{\prime *}\right) \leqq \operatorname{dim} \mathscr{K}\left(T^{*}\right)$. The proposition above implies that there is an injection Y^{\prime} such that

$$
Y^{\prime} S=S^{\prime} Y^{\prime}, \text { index } S=\text { index } T
$$

which implies that $0>$ index $S \geqq$ index S^{\prime} (cf. [4]). Thus we have

$$
\text { index } T=\text { index } S \geqq \text { index } S^{\prime} \geqq \text { index } T \text {, }
$$

from which index $T=$ index S^{\prime} follows.

Remark 3. P. Y. Wu [6] showed that if $I-T^{*} T$ is a finite rank operator, and if $T<S^{\prime}$, then

$$
\operatorname{rank}\left(I-T T^{*}\right)-\operatorname{rank}\left(I-T^{*} T\right)=-\operatorname{index} S^{\prime}
$$

From (2.9), our proposition is an extension of this result.

3. Cyclic vector

In this section, we consider a quasi unilateral shift of class C_{10} which has a cyclic vector. The next proposition is a partial extension of Proposition 2 of [4] and Theorem 3.1 of [5].

Proposition 5. Let T be a quasi unilateral shift of class C_{10}. Then next conditions are equivalent:
(a) T has a cyclic vector;
(b) there is a bounded operator Y satisfying

$$
\begin{equation*}
Y S_{\mathrm{ı}}=T Y, \mathscr{K}\left(Y^{*}\right)=\{0\} \tag{3.1}
\end{equation*}
$$

where S_{1} is a unilateral shift with index $S_{1}=-1$;
(c) $S_{1}<T$;
(d) $S_{1}<T$ and $T<S_{1}$;
(e) $\left\|I-T T^{*}\right\|_{1}-\left\|I-T^{*} T\right\|_{1}=1$, and there is a bounded holomorphic function Γ with values in $\mathscr{L}\left(\mathbf{C}, E^{\prime}\right)$ satisfying

$$
\begin{gather*}
\left\|\Gamma\left(e^{i t}\right)\right\| \leqq 1 \text { a.e. } \tag{3.2}\\
\Gamma H^{2}(\mathrm{C}) \vee \Theta H^{2}(E)=H^{2}\left(E^{\prime}\right) \tag{3.3}
\end{gather*}
$$

where Θ is the characteristic function of T defined by (2.1).
Proof. (a) \rightarrow (e). From Theorem 3, for a unilateral shift S with index $S=$ =index T, we have $T \prec S$. That T has a cyclic vector implies that also S does. Thus index $S=-1$. Consequently, from (2.9), we have

$$
\left\|I-T T^{*}\right\|_{1}-\left\|I-T^{*} T\right\|_{1}=1
$$

We can construct a function Γ in the same way as in [4].
(e) \rightarrow (b). The contraction Y defined by $Y h=P_{H(\theta)} \Gamma h$ for h in $H^{2}(\mathrm{C})$ satisfies (3.1).
(b) \rightarrow (c). Suppose $\mathscr{K}(Y) \neq\{0\}$. Since $S_{1} \mathscr{K}(Y) \subset \mathscr{K}(Y)$, there is a scalar inner function ψ such that $\mathscr{K}(Y)=\psi H^{2}(\mathbf{C})$. Thus

$$
\mathscr{K}(Y)^{\perp}=H(\psi) \quad\left(=H^{2}(\mathbf{C}) \ominus \psi H^{2}(\mathbf{C})\right),\left.\quad \dot{Y}\right|_{H(\psi)} S(\psi)=\left.T Y\right|_{\boldsymbol{H}(\psi)}
$$

where $S(\psi)=\left.P_{H(\psi)} S\right|_{H(\psi)}$. Since $S(\psi)$ is of class C_{0}, T must be of class C_{0}. This is a contradiction. Consequently $\mathscr{K}(Y)=\{0\}$.
(c) \rightarrow (d). $S_{1}<T$ implies $T^{*}<S_{1}{ }^{*}$, from which it follows that $\operatorname{dim} \mathscr{K}\left(T^{*}\right) \leqq$ $\leqq \operatorname{dim} \mathscr{K}\left(S_{1}{ }^{*}\right)=1$. That T is a quasi unilateral shift, implies index $T<0$. Thus index $T=-1$. By Theorem 3, we have $T<S_{1}$.
(d) \rightarrow (a). This is obvious.
(3.3) implies that $[\Gamma, \Theta]$ is an outer function from $H^{2}(\mathbf{C}) \oplus H^{2}(E)$ to $H^{2}\left(E^{\prime}\right)$. Generally $[\Gamma, \Theta]$ is not contractive. Therefore $d(\lambda)=\operatorname{det}[\Gamma(\lambda), \Theta(\lambda)] \in H^{\infty}$ and $d(\lambda) \leqq 1$ are not obvious. We shall show these results.

Let $A \in \mathscr{L}\left(E, E^{\prime}\right)$ be a contraction and $V \in \mathscr{L}\left(E, E^{\prime}\right)$ an isometry with index $V=$ $=-1$. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}, \ldots\right\}$ be a C.O.N.B. in E. Then, setting $d_{n}=V e_{n}$ $(n=1,2, \ldots),\left\{d_{0}, d_{1}, \ldots, d_{n}, \ldots\right\}$ is a C.O.N.B. in E^{\prime}, where d_{0} is a unit vector in $\mathscr{K}\left(V^{*}\right)$. For $i=1,2, \ldots$, define an isometry $V_{i} \in \mathscr{L}\left(E, E^{\prime}\right)$ by

$$
V_{i} e_{1}=d_{0}, \ldots, V_{i} e_{i}=d_{i-1}, V_{i} e_{i+1}=d_{i+1}, V_{i} e_{i+2}=d_{i+2}, \ldots
$$

Let $a_{i j}=\left(A e_{j}, d_{i}\right)(i \geqq 0, j \geqq 1)$. Then, in the base $\left\{e_{1}, e_{2}, \ldots\right\}$, we have

$$
V_{i}^{*} A=\left[\begin{array}{ccc}
a_{01} & , \ldots, & a_{0 j}, \ldots \\
\vdots & & \vdots \\
a_{i-1}, \ldots, & a_{i-1 j}, \ldots \\
a_{i+1}, & , \ldots, & a_{i+1 j}, \ldots \\
\vdots & & \vdots
\end{array}\right] \quad(i=1,2, \ldots)
$$

Let $E_{0}=\mathrm{C} \oplus E$ be a direct sum of \mathbf{C} and E, and e_{0} a unit vector in \mathbf{C}. Let $x_{n}(n=0,1,2, \ldots)$ be a scalar number such that $\sum_{n=0}^{\infty}\left|x_{n}\right|^{2} \leqq 1$. Let $B \in \mathscr{L}\left(E_{0}, E^{\prime}\right)$ be an operator defined by

$$
\left(B e_{0}, d_{i}\right)=x_{i}, \quad\left(B e_{j}, d_{i}\right)=a_{i j} \quad(i \geqq 0, j \geqq 1) .
$$

Determine a unitary $U \in \mathscr{L}\left(E_{0}, E^{\prime}\right)$ by $U e_{i}=d_{i}(i \geqq 0)$. Then in the base $\left\{e_{0}, e_{1}, \ldots\right.$, $\left.\ldots, e_{i}, \ldots\right\}$ of E_{0} we have

$$
U^{*} B=\left[\begin{array}{cc}
x_{0}, a_{01}, \ldots, a_{0 j}, \ldots \\
x_{1}, & a_{11}, \ldots, a_{1 j}, \ldots \\
\vdots & \vdots \\
x_{i}, & a_{i 1}, \ldots, \\
\vdots & \vdots
\end{array}\right] .
$$

Let $I_{E}-V^{*} A \in(\tau, C)$. Then, since $\left(V_{i}^{*} A e_{j}, e_{k}\right)=\left(V^{*} A e_{j}, e_{k}\right)$ for $j \geqq 1$ and $k \geqq i+1, I_{E}-V_{i}^{*} A \in(\tau, C)$ for every i.

$$
\left.P_{E}\left(I_{E_{0}}-U^{*} B\right)\right|_{E}=I_{E}-V^{*} A
$$

implies $I_{E_{0}}-U^{*} B \in(\tau, C)$.

Lemma. Let $I_{E}-V^{*} A \in(\tau, C)$. Set $V_{0}=V$. Then

$$
\operatorname{det} U^{*} B=\sum_{i=0}^{\infty} x_{i}(-1)^{i} \operatorname{det}\left(V_{i}^{*} A\right)
$$

and

$$
\sum_{i=1}^{\infty}\left|x_{i}(-1)^{i} \operatorname{det}\left(V_{i}^{*} A\right)\right| \leqq 1
$$

Proof. For simplicity, let $[A]_{n}$ denote the first $n \times n$ submatrix of A, and write A_{n} for $\left.A\right|_{E_{n}}$, where $E_{n}=\left\langle e_{1}, \ldots, e_{n}\right\rangle$. For any k and n as $n \geqq k$, we have

$$
\begin{equation*}
\sum_{i=0}^{k}\left|\operatorname{det}\left[V_{i}^{*} A\right]_{n}\right|^{2} \leqq \operatorname{det}\left(A_{n}^{*} A_{n}\right)=\operatorname{det}\left[A^{*} A\right]_{n} \leqq 1 \tag{3.4}
\end{equation*}
$$

because A is a contraction. Since for each i

$$
\operatorname{det}\left[V_{l}^{*} A\right]_{n} \rightarrow \operatorname{det}\left(V_{l}^{*} A\right) \quad(n \rightarrow \infty),
$$

we have $\sum_{i=0}^{k}\left|\operatorname{det}\left(V_{i}^{*} A\right)\right|^{2} \leqq 1$, which implies

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left|\operatorname{det}\left(V_{i}^{*} A\right)\right|^{2} \leqq 1 \tag{3.5}
\end{equation*}
$$

Consequently $\sum_{i=0}^{\infty}\left|x_{i}(-1)^{i} \operatorname{det}\left(V_{i}^{*} A\right)\right| \leqq 1$. For any $\varepsilon>0$, take an m such that

$$
\begin{equation*}
\sum_{i=m+1}^{\infty}\left|x_{i}\right|^{2}<\varepsilon^{2} \tag{3.6}
\end{equation*}
$$

Since $\operatorname{det}\left[U^{*} B\right]_{n} \rightarrow \operatorname{det}\left(U^{*} B\right)$, and $\operatorname{det}\left[V_{i}^{*} A\right]_{n} \rightarrow \operatorname{det}\left(V_{i}^{*} A\right)$ as $n \rightarrow \infty$, we can take an N such that

$$
\begin{equation*}
n \geqq N \rightarrow\left|\operatorname{det}\left[U^{*} B\right]_{n}-\operatorname{det}\left(U^{*} B\right)\right|<\varepsilon, \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
n \geqq N \rightarrow \sum_{i=0}^{m}\left|\operatorname{det}\left[V_{i}^{*} A\right]_{n}-\operatorname{det}\left(V_{i}^{*} A\right)\right|^{2}<\varepsilon^{2} \tag{3.8}
\end{equation*}
$$

Fix a k as $k \geqq N+1$ and $k \geqq m+1$. Then it follows that

$$
\begin{gathered}
\left|\operatorname{det}\left(U^{*} B\right)-\sum_{i=0}^{\infty} x_{i}(-1)^{i} \operatorname{det}\left(V_{i}^{*} A\right)\right| \leqq \\
\leqq\left|\operatorname{det}\left(U^{*} B\right)-\operatorname{det}\left[U^{*} B\right]_{k}\right|+\left|\operatorname{det}\left[U^{*} B\right]_{k}-\sum_{i=0}^{m} x_{i}(-1)^{i} \operatorname{det}\left[\dot{V}_{i}^{*} A\right]_{k-1}\right|+ \\
+\left|\sum_{i=0}^{m} x_{i}(-1)^{i}\left\{\operatorname{det}\left[V_{i}^{*} A\right]_{k-1}-\operatorname{det}\left(V_{i}^{*} A\right)\right\}\right|+\left|\sum_{i=m+1}^{\infty} x_{i}(-1)^{i} \operatorname{det}\left(V_{i}^{*} A\right)\right| .
\end{gathered}
$$

From (3.7) $\left|\operatorname{det}\left(U^{*} B\right)-\operatorname{det}\left[U^{*} B\right]_{k}\right|<\varepsilon$, and from (3.8)

$$
\begin{gathered}
\left|\sum_{i=0}^{m} x_{i}(-1)^{i}\left\{\operatorname{det}\left[V_{i}^{*} A\right]_{k-1}-\operatorname{det}\left(V_{i}^{*} A\right)\right\}\right| \leqq \\
\leqq\left(\sum_{i=0}^{m}\left|x_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=0}^{m}\left|\operatorname{det}\left[V_{i}^{*} A\right]_{k-1}-\operatorname{det}\left(V_{i}^{*} A\right)\right|^{2}\right)^{1 / 2}<\varepsilon .
\end{gathered}
$$

(3.5) and (3.6) implies that

$$
\left|\sum_{i=m+1}^{\infty} x_{i}(-1)^{i} \operatorname{det}\left(V_{i}^{*} A\right)\right|<\varepsilon
$$

By finite matrix theory

$$
\left|\operatorname{det}\left[U^{*} B\right]_{k}-\sum_{i=0}^{m} x_{i}(-1)^{i} \operatorname{det}\left[V_{i}^{*} A\right]_{k-1}\right|=\left|\sum_{i=m+1}^{k-1} x_{i}(-1)^{i} \operatorname{det}\left[V_{i}^{*} A\right]_{k-1}\right|<\varepsilon ;
$$

because the last inequality follows from (3.4), (3.6). Consequently, for any $\varepsilon>0$ we have

$$
\left|\operatorname{det}\left(U^{*} B\right)-\sum_{i=0}^{\infty} x_{i}(-1)^{i} \operatorname{det}\left(V_{i}^{*} A\right)\right|<4 \varepsilon .
$$

In (e) of Proposition 5, set $\left(\Gamma(\lambda) e_{0}, d_{i}\right)=h_{i}(\lambda)$ for $i \geqq 0$. Then we have:
Proposition 6. $\left|\operatorname{det}\left(U^{*}[\Gamma(\lambda), \Theta(\lambda)]\right)\right| \leqq 1$, and

$$
\begin{equation*}
\operatorname{det}\left(U^{*}[\Gamma(\lambda), \Theta(\lambda)]\right)=\sum_{i=0}^{\infty} h_{i}(\lambda)(-1)^{i} \operatorname{det}\left(V_{i}^{*} \Theta(\lambda)\right) \tag{3.9}
\end{equation*}
$$

is holomorphic on D.
Proof. From (3.2), we have $\sum_{i=0}^{\infty}\left|h_{i}(\lambda)\right|^{2} \leqq 1$. Since $V_{i}^{*} \Theta(\lambda)$ is a contractive holomorphic function, $\operatorname{det}\left(V_{i}^{*} \Theta(\lambda)\right) \in H^{\infty}$. Since $\Theta(\lambda)$ is a contraction for every $\lambda \in D$, it follows that

$$
\sum_{i=1}^{\infty}\left|h_{i}(\lambda)(-1)^{i} \operatorname{det}\left(V_{i}^{*} \Theta(\lambda)\right)\right| \leqq 1
$$

which implies that $\sum_{i=0}^{\infty} h_{i}(\lambda)(-1)^{i} \operatorname{det}\left(V_{i}^{*} \Theta(\lambda)\right)$ is holomorphic. Equality (3.9) follows from Lemma.

Problem. Is $\operatorname{det}\left(U^{*}[\Gamma(\lambda), \Theta(\lambda)]\right)$ outer?
Acknowledgements. This paper is a part of author's doctor thesis at Osaka University. The author wishes to express his gratitude to Prof. Osamu Takenouchi of Osaka University, and thanks to the referee.

References

[1] H. Bercovici and D. Voiculescu, Tensor operations on characteristic functions of C_{0} contractions, Acta Sci. Math., 39 (1977), 205-231.
[2] H. Helson, Lectures on invariant subspaces, Academic Press (New York-London, 1964).
[3] B. Sz.-Nagy and C. FoiAs, Harmonic Analysis of Operators on Hilbert Space, North-Holland/ Akadémiai Kiadó (Amsterdam/Budapest, 1970).
[4] B. Sz.-Nagy, and C. Foias, Jordan model for contractions of class C.o, Acta Sci. Math., 36 (1974), 305-322.
[5] P. Y. Wu, On contractions of class C_{1}., ibidem, 42 (1980), 205-210.
[6] P. Y. WU, On the quasi-similarity of hyponormal contractions, Illinois J. Math., 25 (1981), 498-503.

DEPARTMENT OF MATHEMATICS
FUKUOKA UNIVERSITY OF EDUCATION
MUNAKATA, FUKUOKA, $811-41$, JAPAN

