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A general ordering and fixed-point principle in complete 
metric space 

S. DANCS, M. HEGEDŰS and P. MEDVEGYEV 

1. In the proof of the celebrated theorem of BISHOP and PHELPS [1] on the 
density of the set of support points of a bounded closed convex set in a Banach 
space, a lemma [1, Lemma 1], which can be considered as an ordering principle 
using essentially the completeness of the space [3], played a central role. The lemma 
has many generalizations, a maximal one being perhaps the one which is due to 
EKELAND [6]. The generalizations of the lemma have surprisingly many applications 
in various branches of mathematics as a .survey paper of EKELAND [7] and, without 
any completness, the papers of BRONDSTED [3], KIRK [8] a n d SULLIVAN [9] show. 

The purpose of this paper is to show that the different generalizations of the 
lemma can be considered fundamentally as different forms of a general ordering, 
fixed point or inductive principle based on the completeness of the metric space. 
The importance of the different forms are essential from a very pragmatic (and, 
of course, very significant) point of view: which form fits better the considered 
problem (see other principles of analysis like e.g. the Hahn—Banach theorem which 
has many equivalent forms, too). 

In the second section of this paper we deal with the equivalence of some well-
known forms of the principle, in the third one we give two other forms and a very 
simple new proof of the principle. In section 4 we show that our new forms seem 
to fit better the proof of Menger's Theorem than the form of Caristi's fixed point 
theorem. In section 5 we give an application in measure theory which illustrates the 
fact that the principle could be a central tool in the theory of measure spaces. 

2. Four equivalent forms of the principle. Throughout this section ( X , d) will 
denote a complete metric space, and (p:X—1?U{+<*>} a l.s.c. function, 
bounded from below. Firstly we recall four theorems. 
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T h e o r e m 2.1. If f : X-*X is a map satisfying the inequality^ 

(2.1) d(x,f(x))m<p(x)-<p(f(x)) for all xiX, 

then f has a fixed point in X. 

T h e o r e m 2.2. There is a point x in the space X, for which the inequality 

(2.2) d(x, x) > (p(x)-q>{x) 

holds for all xe^Xi*}-

T h e o r e m 2.3. If x is an arbitrary point of the space X, then there exists 
a point x in X, such that the inequalities 

(2.3) d{x,x)^(p{x)-q>(x), 

(2.4) d{x,x) xp(x)-(p(x) for all 

hold. 

T h e o r e m 2.4. Let e be an arbitrary positive number and u a point in X 
such that 
(2.5) <p{u) ^ inf <p(x) + e. 

Then for arbitrary there exists a point v in X such that the following in-
equalities hold: 
(2.6) q>(v)^ cp(u), 

(2.7) d(u, 

(2.8) <p(x) > q> (v) -(e/A) d(v, x) for all 

T h e o r e m s 2 .3 a n d 2 . 4 a r e d u e t o EKELAND [6, 7]. 

Theorem 2.1 appeared firstly in the paper of CARISTI and KIRK [8] as a theorem 
of Caristi. A slightly different form of Theorem 2.2 is a corollary of Theorem 2.4 
in the paper of EKELAND [7], and is called a weak statement contrary to the strong 
statement of his Theorem 2.4. The weakness of Theorem 2.2 is, of course, illusory 
according to the equivalence of the statements. The equivalence (or one or another 
part of the implications) of the above mentioned theorems are contained, explicitly 
o r impl ic i t ly , in EKELAND [7], SULLIVAN [9], BRONDSTED [3], a n d s o o u r v e r y s i m p l e 
proofs can be found partly in these papers. 

Next we turn to the proof of the equivalences of the above theorems. The 
logical scheme of our proof is as follows: 

Theorem 2 . 1 « Theorem 2.2 => Theorem 2.3 
ft H 
Theorem 2.4. 
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Theorem 2.1 => Theorem 2.2. If there would not exist an x satisfying (2.2), 
then for all x£X there would be a point f(x)^x in the space X such that 
d(x,f(x)) S q>(x) - cp (f(x)), contrary to Theorem 2.1. 

Theorem 2.2 => Theorem 2.1. If a point x satisfies (2.2), then x is a fixed 
point of each self-map / satisfying (2.1) since otherwise the inequality d(x,fQc))> 
xp{x)—(p{f(x)) would hold, contradicting (2.1). 

Theorem 2.2 =• Theorem 2.3. The lower semicontinuity of cp implies that the 
set S = {x£X | d(x, x)S<p(x)—(p(x)} is closed, hence the metric space (S, d) is 
complete. Applying Theorem 2.2 for the space S we get a point x with d(x, 
^(p(x)-(p(x) and d(x, x)=~<p(x)—<p(x), for all x€5\{3c}. For Theorem 2.3 
we have to show that the last inequality holds in X\S, as well. If for x£X\S 
the inequality d(x, x)^(p(x)—<p(x) would be true, then adding it to the inequality 
d(x, x)^(p(x)—(p(x) we would get d(x,x)^cp(x) — (p(x), contrary to x$S. 

Theorem 2.3 => Theorem 2.4. Applying Theorem 2.3 with the metric (e/X)d 
and Jc=u, we have a point v=x such that (s/X)d(v, x)xp{v)—(p{x) for all 

and (s/X)d(u, v)^q>(u)—(p(v). Hence we immediately get (2.6) and 
(2.8). The inequality q>(u)sinf<p(x)+£ implies (p(u)-<p(v)^e; thus (e/X)d(u, 
which gives (2.7), too. 

Theorem 2.4 =• Theorem 2.2. Taking e=X the implication is evident from (2.8). 

R e m a r k s . From the proof of the first equivalence one may observe, that the 
set of the fixed points of the selfmaps satisfying the assumption of Theorem 2.1 
coincides with the set of points x satisfying (2.2) in Theorem 2.2. This obvious 
observation shows that all / in Theorem 2.1 have common fixed points. 

It is interesting, that the fixed points in Theorem 2.1 can be localized similarly 
like in Theorem 2.3 or 2.4. 

3. Two new forms of the principle. Firstly we will state two equivalent theorems 
which can be considered as new versions of the principle. We shall prove the first 
proposition directly, and this proof of the principle seems to be the simplest we 
have learned till now. 

T h e o r e m 3.1. Let (X, d) be a complete metric space and $ be a map X^-2x, 
which satisfies the following conditions: 

(3.1) <P(x) is a closed set for all x£X. 
(3.2) x€<P(x) for all x€X. 
(3.3) ) for all x^x^X. 
(3.4) For all sequences x1,x2, ..., xn, ... in X, that are generalized Picard-

iterations, i.e. fulfil 
*2€i>(xi), x3e<P(xJ <2>(*„_!), ••• 

the distances d(xn, x„ + 1) tend to zero as n-*- + <=°. 
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Then the map <P has a fixed point x in X in the sense <P(x)= {x}. (In localized 
version: For arbitrary x£X there is a fixed point in <P(x).J 

Theorem3 .2 . Let (X,d) be a complete metric space with a continuous partial 
ordering If for each increasing sequence in X the distances 
d(xn,xn+1) tend to zero, then there is a maximal element in X. (In localized version: 
For all x^X there is a maximal element in the set {x£X\x^x}.) 

D i r e c t p r o o f of T h e o r e m 3.1. If the distance d satisfies condition (3.4) 
then the equivalent distance d'=d/(l +d) also does, so we can suppose d is bounded 
on X. Let us denote the diameter of a subset AaX by 5(A). Because of (3.2) 
<P(x)?±0 for all x€X, and we can construct a generalized Picard-iteration such 
that x t = x , x„£ <P(x„-1) and 

d(xn, xn.x) ^ S(0(xn.1))/2-l/2'-K 

Hence from conditions (3.3) and (3.4) we have 

&(Xn-i)=?4>(Xn) and S(<P(x„)) - 0 as 

Using the completeness of the space, the non-empty, closed sets <P(x„) («=1 ,2 , ...) 
oo 

have a unique common point x, i.e. Q <£(*„)= {3c}. The point x is fixed, since 
n = l 

oo 

on the one hand x£4>(x„) and (3.3) imply <P(x)Q $(x„)={x}, and on the other 
n = l 

hand from (3.2) we have {x}g$(x) . The localization is trivial from xx=x. 
Theorem 3.1 => Theorem 3.2. Let <P(x) = {y | x^y}. The relation y£<t>(x) 

is equivalent to x ^ y , hence the reflexivity and the transitivity of the ordering 
imply (3.2) and (3.3), respectively. From the continuity of the ordering we can 
conclude that the set $(x) is closed. If ... . . . , then x l s x2 , ..., x„, ... 
is a generalized Picard-iteration, hence all the conditions of Theorem 3.1 are ful-
filled, therefore there is a fixed point x of which is obviously maximal in X. 

Theorem 3.2 => Theorem 3.1. Define now an ordering =£ by, x ^ y , iff 
j€<P(x). From this step on the proof is entirely analogous to the previous one. 

Theorem 3.1 => Theorem 2.3. Let <P(x) = {y \ d(x, y)^q>(x)-<p(y)}. Since 
q> is l.s.c., <P(x) is closed. Condition (3.2) is satisfied evidently. The summing up 
of the inequalities d{x1,x^^q>(x^)—(p{x^ and d(x2, x3) ̂  <p(x2)—(p(xx) gives 
(3.3) at once. Similarly, taking the inequalities i/(x„_l5 xn)^cp(xn_1)—<p(x„) 

oo 

(n=2,3, ...) and summing them up we have -0"= + °°> using the 
n = 2 

boundedness of <p from below. Applying Theorem 3.1 we have a fixed point x, 
and by the definition of $ the point x satisfies (2.2). 

The localized version of Theorem 3.1 implies that of Theorem 2.3 in a similar way. 
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KIRK [8] and SZILAGYI [10] observed, that forms 2.1 and 2.4 of the principle 
(Theorems 2.1, 2.4) characterize the completeness of the metric space in some sense. 
Similarly, we shall prove an analogous result for our forms of the principle. 

T h e o r e m 3.3. If the metric space (X,d) is noncompete, then there is a <& 
which satisfies conditions ( 3 .1 )—(3 .4 ) but has no fixed point. 

Proof . From the assumption there is a sequence 
oo 

of non-empty closed sets in X so that 5(Nn)-+ 0, but f ) N„=9. Define the map 
iP in the following way: 

&(x) = JV,+1U{x}, if x£N{ and x$Nl+1. 

The map 4> satisfies the assumptions of Theorem 3.1, but has no fixed point, since 
if x were a fixed point of <P, we would have $ (x) = {x}=N^ U {x}, implying 
]V,o=0, contrary to the assumption. 

4. Application in metric convexity. KIRK [8] observed that using the fixed point 
theorem of Caristi (Theorem 2.1.) it is possible to give a simple proof for Menger's 
Theorem, a famous theorem on metric convexity. Here we show, that other versions, 
namely Theorems 3.1 and 3.2 seem to fit even better to prove Menger's Theorem. 

Firstly we introduce some notions and notations from distance geometry [2]. 
Let (Y, d) be a metric space. If for some point a,b,c£Y we have d(a,b) = 
=d(a,c)+d(c,b), then we say the point c is between the points a and b and 
use the notation acb. Similarly the symbol a1a2...as means that d(a1,as)= 
=d(a1, a2)+...+d(as-1, as). It is evident, that the set {x: ax b} is closed and 
it easy to see that the betweenness relation is transitive: acb and adc imply 
adb (or adcb), more generally at b ai+1 and a1a2...as imply 

... a; b ai+1... as and obviously a1a2... as implies at at ... at (1 S ^ 

The metric space (Y , d) is called convex if for any two points a, b£Y there is 
a point c different from a and b such that acb. The space is called a metric 
segment space if for any two points a,b£Y there is an isometric map 

q>: [0, d(a, 6)] — {x: axb} for which cp(p)=a and (p{d(a, b))—b. 

It is obvious that if the space Y is a metric segment space then it is convex. 
The converse statement is not generally true but it is true if the space is complete, 
as it is stated by the following theorem. 

T h e o r e m (Menger). If the metric space (Y,d) is complete and convex then 
it is a metric segment space. 

25 
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F i r s t p r o o f . It is sufficient to show, that for all A6(0, d(a, b)) there exists an 
xx such that a x} b and d(a,xx)—X, since the map A — i s isometric in 
this case. 

Let A€(0, d(a, b)) be a fixed number and put 

Y,. = {y£Y\d(a, y) ^ A} and Y2 = {y£Y\d(b, y) S d(a, b)-X}. 

We shall apply Theorem 3.1 for the complete metric space (YXXY2, G), where 

w2). («1, Va)) = d(u2, v^ + d(ux, vx). 

Define the map <P in the following way: 

^(Ji, yd = {Oi, u^YiXY^ay^ ux u2 y2 b}. 

The map satisfies the conditions of Theorem 3.1. The assumptions (3.1) and 
(3.2) are obviously fulfilled, while (3.3) follows from the transitivity of betweenness: 
(«!, u2) e $ ((yx, y2)) and (vx, v2)e<P ((«i, u2)) mean that a yx ux u2 y2b and 
a uy vt v2 u2 b, thus from transitivity a yx ux vx v2 u2 y2, hence a yx v± v2y2b, 
i.e. 0>i,»2)€<i»(0>i, j>2)). 

If (j£n)j '2, ))€^(0 ;i '_1)> yz"^)) is a generalized Picard-iteration then from the 
transitivity we have a y^ ... y[n) y(

2
n) j (

2
n_1) . . . y^ b as before. Hence 

d(a, yP) + ... + d(y{"\ yp) +... + d(y£\ b) = d(a, b), 

e{(fl,b),(y?\yP)) + ...+ 

+ e((yln~1\ yi"-»), (yln\ yln))) + d(yi"\ yP) = d(a, b), 

which yields at once that J(
2"-1)), (j>in)>j4n))] as n — i . e . the assumption 

(3.4) is also satisfied. 
According to the theorem we have a fixed point (yi,y2), i.e. ^(J ' i , — 

= {(j^, y2)}. Now we use the convexity of the space Y to prove that y1=y2. 
Assume y ^ y ^ , then there is a w such that w ^ y 2 and y x wy 2 , hence 
from transitivity we have ayxwy2b and since d(a, w)^A or d(w, b)^d(a, b)—A 
holds, (w, y2) or (y1, vv) is an element of y2), contradicting the fixed point 
property. Finally, we get yx—y2=y. Since y£ Yx, y£ Y2 and ay b, we have 
d{a, y)=X. 

Second p r o o f (Sketch). Let J f be the set of isometric maps / to { x \ a x b } 
having closed domains in [0, d(a, 6)] and with f(0)=a,f(d(a,b))—b. The set JC 
is not empty, since it contains the map / 0 , for which dom (/0) = {0, d(a, ¿)} and 
fo(0)=a,f(,(d(a, b))=b. Each element of ffl can be identified with its domain or 
range. Let us denote by J f the set of closed subsets of the interval [0, d(a, 6)], 
and introduce the Hausdorff-metric h on X. It is well known that the space 
( X , h) is complete. From the properties of the Hausdorff-metric one can prove 
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that is a closed subset of J f . Let us order the elements of J f (or equivalently, 
the adequate elements of J f ) according to the set inclusion of the domain of maps. 
It is easy to see that this ordering is continuous for the metric h in j f and also that 
it satisfies the last assumption of Theorem 3.2, since if dom (f„) (n—1,2,...) is 

an increasing sequence, then ¿ / i ( d o m (/ ,) , dom (f„+1))^d(a, b). The theorem 

gives a maximal element / in (with maximal domain in X). If dom ( / ) = 
=[0, d{a, fc)], then Menger's Theorem is proved, otherwise [0, d(a, ¿>)]\dom ( / ) 
is an open set and contains an open interval (zlt z2), zlt z2€dom (/) . Now using 
the convexity we have a point w with w^zx,w^z2 and zxwz2, and so the map 
/ : / = / on d o m ( / ) and f(w)=d(a,w) is isometric, contrary to the maximality 

5. Application in measure theory. In the theory of measure and integral there are 
a lot of ordered complete metric spaces, which satisfy the assumptions of Theorem 
3.2. So it is easy to show applications, and therefore our application can only be 
considered as an illustrative example, but it is worth noting that our proof is easier 
than the proof of [5] (p. I. 335.). 

Firstly we mention some well-known facts from measure theory. Let ( X , JI, ¡i) 
be a measure space and let M ^ , Ji, fi) be the space of classes of /¿-equivalent 
real functions on X. Ordering the space M(X, Ji, ¡i) by 

one may ask whether the lattice (M , S ) is complete, i.e. whether all subsets BQM 
having an upper bound in the ordering have a least upper bound fa — sup B£ 
£M(X, J{, n). The following famous theorem answers the question affirmatively. 
We shall deal with a finite measure, and the cr-finite case can be derived from this 
by standard arguments. 

T h e o r e m . If (X, Ji, fi) is a finite measure space, then M(X, Ji, p) is a 
complete lattice. 

Proo f . The set M is Frechet-space with the quasi-norm 

A crucial property of this space is, that whenever f„ converges to / 0 then it has 
a subsequence fn (k=l, ...), which converges /x-a.e. to f0, and the ordering is 
continuous. 

Let B^M be an order-bounded set, and let g be an upper bound of B. 
If C is the set of the least upper bounds of the finite subsets of B, then sup 5 = s u p C 
obviously, so we can assume that whenever f , f z £ B then / 3 = s u p ( / i , / 2 ) is also 

n = l 

o f / . 

/= g iff f(x)^g(x)p-a.e. 

25* 
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in B. Let B denote the closure of B in the Frechet-space M. We shall prove, 
that B has a maximal element / 0 , and f0 is the least upper bound of B. The 
metric space (B, || • ||) is complete and the ordering introduced before is continuous. 

If fn (n-l, 2 , . . . ) is an increasing sequence in the order bounded set S, then 
fn is convergent a.e., consequently it converges in the quasi-norm, too. According 
to the above, Theorem 3.2 is applicable and we have a maximal element / 0 . Now 
we shall prove that f0 is an upper bound for B. Since f0£B, we have a sequence 
fn(LB such that f„—f0 both in the quasi-norm and a.e. Hence if f£B, we have 
sup ( / 0 , / ) = s u p ( l im/„ , / )=l im[sup ( / „ , / ) ] € £ . As f0 is maximal in E, /=§ 

n n 
^ s u p ( / o , / ) = / o holds. Finally let / be an upper bound for B, i.e. / s / for all 

f£B. Since / 0 =l im/„( /„€-B) , /S l im/„ = / 0 , i.e. /„ is the least upper bound of B. 
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