On additive functions satisfying a congruence

I. KÁtai

1. Let f, g, u, v be real-valued completely additive functions,

$$
L_{n}=f(n)+g(n+1)+u(n+2)+v(n+3)
$$

We shall prove the following
Theorem. If $L_{n} \equiv 0(\bmod 1)$ for every $n \geqq 1$, then f, g, u, vassume integer values for every n.

Corollary. If $L_{n}=0$ for every $n \geqq 1$, then f, g, u, v are indentically zero-functions.

For the proof of the Corollary see [1].
Let A_{N} denote the assertion:

$$
A_{N}: f(N), g(N), u(N), v(N) \equiv 0(\bmod 1)
$$

Let \mathscr{P} denote the set of primes. For the sake of brevity we shall put $a \equiv b$ instead of $a \equiv b(\bmod 1)$.

We shall prove our Theorem in two steps. First we shall prove Theorem 1', after then Lemma 1:

Theorem 1^{\prime}. Theorem is true if A_{N} is true for $N \leqq 11$.
Lemma 1. If $L_{n} \equiv 0(\bmod 1)$ for every $n \geqq 1$, then A_{N} is true for $N \leqq 11$.
2. Proof of Theorem 1'. Assume that Theorem 1' does not hold. Then there exists a smallest N for which A_{N} does not hold. From $L_{N-3} \equiv 0(\bmod 1)$ it follows that $v(N) \equiv 0(\bmod 1)$. Furthermore,

$$
0 \equiv L_{N-2} \equiv u(N)+v(N+1)(\bmod 1)
$$

If $N+1 \notin \mathscr{P}$, then $v(N+1) \equiv 0(\bmod 1)$, and so $u(N) \equiv 0(\bmod 1)$. If $N+1 \in \mathscr{P}$, then N is even, and so $u(N) \equiv 0(\bmod 1)$. Hence it follows that $f(N) \not \equiv 0(\bmod 1)$,
or $g(N) \not \equiv 0(\bmod 1)$, and that $N \in \mathscr{P}$. Let $N=P \in \mathscr{P}$. Now we distinguish three cases:
(I) $f(P) \equiv \xi, \quad g(P) \equiv \eta, \quad \xi \not \equiv 0, \quad \eta \neq 0 ;$
(II) $\quad f(P) \equiv 0, \quad g(P) \equiv \eta, \quad \eta \not \equiv 0$;
(III) $f(P) \equiv \xi ; \quad g(P) \equiv 0, \quad \xi \not \equiv 0$.

Lemma 2. (1) Let $3 P+b=2 Z, b \equiv 1(\bmod 3), Z+1<2 P$. Then $u(Z) \equiv 0$, $v(Z) \equiv 0$.
(2) Let $3 P+c=2 U, c \equiv-1(\bmod 3), U+1<2 P$. Then $f(U) \equiv 0, g(U) \equiv 0$.

Proof. (1) We may assume that $Z \in \mathscr{P}$. Since $Z \equiv-1(\bmod 3)$, therefore all the prime factors occurring in $Z-3, Z-2, Z-1, Z+1$ are smaller than P. From $L_{Z-2} \equiv 0, L_{Z-3} \equiv 0$ we get that $u(Z) \equiv 0, v(Z) \equiv 0$.
(2) We may assume that $U \in \mathscr{P}$. Since $U \equiv 1(\bmod 3)$, therefore all the prime factors occurring in $U-1, U+1, U+2, U+3$ are smaller than P. From $L_{U} \equiv 0$, $L_{U-1} \equiv 0$ we get that $f(U) \equiv 0, g(U) \equiv 0$.

Case (1). Observing that $P-1, P+1, P+3$ are even numbers with prime factors $<P$, we get from $L_{P-1} \equiv 0, L_{P} \equiv 0$ that $U(P+2) \equiv-\xi, g(P+2) \equiv-\xi$, and so $P+2 \in \mathscr{P}, \mathscr{P} \equiv-1(\bmod 3)$. Similarly, in view of $2 P+5 \equiv 0(\bmod 3), 2 P+5 \leqq 3 P$, we see that $g(2 P+3) \equiv-\xi, 2 P+3 \in \mathscr{P}$. Since $2 P-1 \equiv 0(\bmod 3), 2 \mid P+1$, therefore $L_{2 P-1} \equiv 0$ implies that $u(2 P+1) \equiv-\xi, 2 P+1 \in \mathscr{P}$.

Now we shall prove that $3 P+2 \not \equiv 0(\bmod 7)$, i.e., $P \neq 4(\bmod 7)$. Indeed, if $7 \mid 3 P+2$, then from $L_{3 P-1} \equiv 0$ we infer that

$$
0 \equiv f(3 P-1)+g(3 P)+u(3 P+1)
$$

which gives that $f(3 P-1) \not \equiv 0$ or $u(3 P+1) \cong 0$, but this is impossible as it was proved in Lemma 2. Since $P \not \equiv 4(\bmod 7)$, and $P, P+2,2 P+1,2 P+3 \in \mathscr{P}$, we get that $P \not \equiv 0,2,3,4,5(\bmod 7) ;$ consequently $P \equiv 1$ or $6(\bmod 7)$.

First, by considering $L_{2 P-2} \equiv 0$ we deduce that $v(2 P+1) \equiv 0$, and hence, by $L_{4 P-1} \equiv 0(\bmod 5)$, and by taking into account that $5 \mid 4 P-1$ we get that $g(4 P)+u(4 P+1) \equiv 0$, i.e., $u(4 P+1) \equiv-\xi$. So $4 P+1=3 R, u(R) \equiv-\eta$. It is obvious that $R \in \mathscr{P}$, since in the opposite case all its prime factors would be smaller than P. From $L_{R-2} \equiv 0$, by observing that $(R+1) / 2<P$, we deduce that $f(R-2) \equiv \eta$, and so that $R-2 \in \mathscr{P}$. Since $3(R-2)=4 P-5$, therefore $f(4 P-5) \equiv \eta$, and so

$$
0 \equiv \eta+g(4 P-4)+u(4 P-3)+v(4 P-2) \equiv \eta+u(4 P-3)
$$

Since $2 \nmid 4 P-3,3 \nmid 4 P-3$, therefore $P \not \equiv 6(\bmod 7)$.
It remains to consider the case $P \equiv 1(\bmod 7)$. Then $3 R \equiv 5(\bmod 7), R \equiv 4$ $(\bmod 7), 2 R-1 \equiv 0(\bmod 7)$. Let us consider now

$$
0 \equiv L_{2 R-2} \equiv f(2 R-2)+g(2 R-1)+u(2 R)+v(2 R+1)
$$

Since $R, R-2 \in \mathscr{P}$, therefore $R \equiv 1(\bmod 3)$, consequently $3 \mid 2 R+1$. Furthermore $(2 R+1) / 3<P+2$, and so $v(2 R+1) \equiv 0$. Since $4|2 R-2,7| 2 R-1$, therefore $f(2 R-2) \equiv 0, g(2 R-1) \equiv 0$, whence $u(R) \equiv 0$, which contradicts $u(R) \equiv-\eta$. So we have proved that Case (I) cannot occur.

Case (II). We get as earlier that $v(P+2) \equiv-\eta, P+2 \in \mathscr{P}$, and so $P \equiv-1(\bmod 3)$. Since $3 \mid 2 P+1$, therefore from $L_{2 P-1} \equiv 0$ we infer that $u(2 P+1) \equiv-\eta, 2 P+1 \in \mathscr{P}$. Lemma 2 implies that $f(3 P-1) \equiv 0, u(3 P+1) \equiv 0$, and so from $L_{3 P-1} \equiv 0$ we deduce that $v(3 P+2) \equiv-\eta, 3 P+2 \in \mathscr{P}$. Since $P, P+2,2 P+1,3 P+2 \in \mathscr{P}$, therefore $P \equiv-1$ $(\bmod 5)$. From $L_{2 P-2} \equiv 0$ it follows that $v(2 P+1) \equiv 0$, and so by $L_{4 P-1} \equiv 0$, $5 \mid 4 P-1$, we have

$$
0 \equiv L_{4 P-1} \equiv f(4 P-1)+g(4 P)+u(4 P+1)+v(4 P+2) \equiv 0+\eta+u(4 P+1)+0
$$

hence $u(4 P+1) \equiv-\eta$.
Thus $4 P+1=3 R, u(R) \equiv-\eta$, and so $R \in \mathscr{P}$. From $L_{R-2} \equiv 0$ we deduce that $f(R-2) \equiv \eta, R-2 \in \mathscr{P}$. Consequently $R \equiv 1(\bmod 3)$. Now we have $f(4 P-5)=$ $=f(3(R-2)) \equiv \eta$, implying

$$
\begin{align*}
0 \equiv L_{4 P-5}= & f(4 P-5)+g(4 P-4)+u(4 P-3)+v(4 P-2) \equiv \tag{2.1}\\
& \equiv \eta+0+u(4 P-3)+v(2 P-1)
\end{align*}
$$

Now we shall prove that $v(2 P-1) \equiv 0(\bmod 1)$. Indeed,

$$
0 \equiv L_{2 P-4} \equiv f(2 P-4)+g(2 P-3)+u(2 P-2)+v(2 P-1)
$$

whence by $5 \mid 2 P-3$ it follows immediately that $v(2 P-1) \equiv 0$, and so from (2.1), $u(4 P-3) \equiv-\eta, 4 P-3 \in \mathscr{P}$. Since $P, P+2,2 P+1,3 P+2,4 P-3,4 P+3 \in \mathscr{P}$, therefore $P \equiv 2(\bmod 7)$. From $4 P+1=3 R, R \equiv 1(\bmod 8)$ we get that $P \equiv 5(\bmod 9)$.

Let us consider now the relation

$$
0 \equiv f(5 P-1)+g(5 P)+u(5 P+1)+v(5 P+2)
$$

We have $7|5 P+2,6| 5 P-1$, and so $f(5 P-1) \equiv 0, \quad v(5 P+2) \equiv 0$, yielding $u(5 P+1) \equiv-\eta$. Thus $5 P+1=4 X$ or $5 P+1=2 X$ with a prime $X>P$. First we consider the case $5 P+1=4 X$. Since $u(X) \neq 0$, therefore from $L_{X-2} \equiv 0$ we get that $f(X-2) \not \equiv 0$. But, from $P \equiv-1(\bmod 3)$ we get that $X \equiv-1(\bmod 3), 3 \mid X-2$, $(X-2) / 3<P$, where $f(X-2) \equiv 0$.

It remains to consider the case $5 P+1=2 X, X \in \mathscr{P}$. We have $u(X) \equiv-\eta$. Furthermore $X \equiv 2(\bmod 7)$. So

$$
0 \equiv L_{X-2} \equiv f(X-2)+g(X-1)+u(X)+v(X+1)
$$

Observing that $7|X-2,6| X-1$, and that $X / 6<P$, we get that

$$
\begin{equation*}
v(X+1) \equiv \eta \tag{2.2}
\end{equation*}
$$

Taking into account that $2 X+2=5 P+3,9 \mid 5 P+2$, from $L_{5 P} \equiv 0$ we deduce that $g(5 P+1) \equiv-\eta$, i.e., $g(X) \equiv-\eta$. This, together with

$$
0 \equiv f(X-1)+g(X)+u(X+1)+v(X+2)
$$

$3 \mid X+2$, and $(X+2) \mid 3<P$, implies that

$$
\begin{equation*}
u(X+1) \equiv \eta \tag{2.3}
\end{equation*}
$$

Consequently $X+1=2 Z$.
From (2.2) and (2.3) we get that $u(Z) \equiv \eta, v(Z) \equiv \eta, Z \in \mathscr{P}$. Using $(Z+1) / 2<P$ and $2 \mid Z+1, Z-1, Z-3$, we see immediately that $f(Z-2) \equiv-\eta, g(Z-2) \equiv-\eta$, $Z-2 \in \mathscr{P}$. Since $2(Z-2)=X-3$, we have $g(X-3) \equiv-\eta$. Let us consider the relation

$$
0 \equiv f(X-4)+g(X-3)+u(X-2)+v(X-1)
$$

In view of $X \equiv 2(7), u(X-2) \equiv 0$. Furthermore $2,3 \mid X-1$, and so $v(X-1) \equiv 0$. Consequently $f(X-4) \equiv \eta$. But this is impossible, since $3 \mid X-4,(X-4) / 3<P$.

Case (III). From $L_{P} \equiv 0$ we get that $u(P+2) \equiv-\xi, P+2 \in \mathscr{P}$. Hence $P \equiv-1$ $(\bmod 3)$. Observing that $3 \mid 2 P+5$, we get from $L_{2 P+2} \equiv 0$, that

$$
\begin{equation*}
g(2 P+3) \equiv \xi, \quad 2 P+3 \in \mathscr{P} . \tag{2.4}
\end{equation*}
$$

Let us consider now the relation

$$
f(3 P+4)+g(3 P+5)+u(3 P+6)+v(3 P+7) \equiv 0
$$

From Lemma 2 we get that $g(3 P+5) \equiv 0, v(3 P+7) \equiv 0$, thus $f(3 P+4) \equiv \xi, 3 P+4 \in \mathscr{P}$. Since, $P, P+2,2 P+3,3 P+4 \in \mathscr{P}$, therefore $P \equiv-1(\bmod 5)$.

Furthermore $L_{2 P+3} \equiv 0$ immediately implies that $f(2 P+3) \equiv 0$. Thus, by $5 \mid 4 P+9$, we get that

$$
\begin{gathered}
0 \equiv L_{4 P+6} \equiv f(4 P+6)+g(4 P+7)+u(4 P+8)+v(4 P+9) \equiv \\
\\
\equiv 0+g(4 P+7)+u(P+2)+0
\end{gathered}
$$

i.e., $g(4 P+7) \equiv \xi$.

Let $4 P+7=3 E, g(E) \equiv \xi, E \in \mathscr{P}$. From $L_{E-1} \equiv 0$ we deduce that $v(E+2) \equiv-\xi$. Hence it follows that $E \equiv-1(\bmod 3)$ and so $P \equiv 2(\bmod 9)$. Now we prove that $u(E) \equiv 0$. Indeed, in the opposite case from $L_{E-2} \equiv 0$ it would follow that $f(E-2) \not \equiv 0$, but this is impossible since $3 \mid E-2,(E-2) / 3<P$.

So we have that $u(3 E) \equiv u(4 P+7) \equiv 0$. Then

$$
\begin{gathered}
0 \equiv f(4 P+5)+g(4 P+6)+u(4 P+7)+v(4 P+8) \equiv \\
\equiv f(4 P+5)+g(2 P+3)+0+v(P+2)
\end{gathered}
$$

From $L_{P-1} \equiv 0$ we get that $g(P)+v(P+2) \equiv 0$, and so $v(P+2) \equiv 0$. Using (2.4) we see that $f(4 P+5) \equiv-\xi, 4 P+5 \in \mathscr{P}$. Since $P \equiv-1(\bmod 5)$, we get that $E \equiv 1$
$(\bmod 5)$. Consequently $5 \mid 2 E+3$. So

$$
0 \equiv f(2 E+1)+g(2 E+2)+u(2 E+3)+v(2 E+4) \equiv f(2 E+1)+0+0-\xi
$$

i.e., $f(2 E+1) \equiv \xi, 2 E+1 \in \mathscr{P}$. Similarly, $3 \mid 2 E-1$, therefore

$$
0 \equiv f(2 E-1)+g(2 E)+u(2 E+1)+v(2 E+2) \equiv 0+\xi+u(2 E+1)+0
$$

i.e., $u(2 E+1) \equiv-\xi$. We have $3(2 E+1)=8 P+17$, hence

$$
\begin{gathered}
0 \equiv f(8 P+15)+g(8 P+16)+u(8 P+17)+v(8 P+18) \equiv \\
\equiv f(8 P+15)+g(P+2)-\xi+v(4 P+9)
\end{gathered}
$$

Since $4 \mid P+4$, we get from $L_{P-1} \equiv 0$ that $g(P+2) \equiv 0$. Also, $5 \mid 4 P+9$ implies that $v(4 P+9) \equiv 0$. Thus we have that $f(8 P+15) \equiv \xi$.

Hence $8 P+15$ has to be a prime or the product of 7 and K, where $K \in \mathscr{P}, f(K) \equiv \xi$. Assume that $8 P+15=7 K, f(K) \equiv \xi$. Then we get from $L_{K} \equiv 0$ that $u(K+2) \equiv-\xi$, $K+2 \in \mathscr{P}$. But $8 P+15 \equiv 7 K, P \equiv-1(\bmod 3)$ imply that $3 \mid K+2$, and hence, by $(K+2) / 2<P, u(K+2) \equiv 0$.

So $8 P+15 € \mathscr{P}$. Since $P, P+2,2 P+3,3 P+4,4 P+5,8 \mathscr{P}+15 \in \mathscr{P}$, therefore $P \equiv 3(\bmod 7)$. Let us consider now the relation

$$
0 \equiv f(5 P+8)+g(5 P+9)+u(5 P+10)+v(5 P+11)
$$

Since $9|5 P+8,6| 5 P+11$, and $u(5 P+10) \equiv u(P+2) \equiv-\xi$, therefore $f(5 P+8) \equiv 0$, $v(5 P+11) \equiv 0$, and so $g(5 P+9) \equiv \xi$. Then $5 P+9=2 A$, or $5 P+9=4 A$, where $A \in \mathscr{P}, g(A) \equiv \xi$. The second case cannot occur. Let us assume that $5 P+9=4 A$, $g(A) \equiv \xi$. Then, taking into account that $2 \mid A-1, A+1,(A+1) / 2<P$, we get from $L_{A-1} \equiv 0$ that $v(A+2) \equiv-\xi$. But this is impossible since $3 \mid A+2$.

Let us assume that $5 P+9=2 A$. It follows from $P \equiv 3(\bmod 7)$ that $A \equiv 5$ $(\bmod 7)$, i.e., $7 \mid A+2$. Furthermore, $\quad 3 \mid A+1, \quad(A+1) / 3<P$, consequently $u(A+1) \equiv 0, v(A+2) \equiv 0$, and so $L_{A-1} \equiv 0$ immediately implies that $f(A-1) \equiv-\xi$. Since $A-1$ is an even number and has a prime divisor greater than P, therefore $A-1=2 B, B \in \mathscr{P}, f(B) \equiv-\xi$. From $L_{B} \equiv 0$ we deduce that $u(B+2) \equiv \xi$. Since $5 P+7=4 B, 9 \mid 5 P+8, v(P+2) \equiv 0$, we get

$$
0 \equiv f(5 P+7)+g(5 P+8)+u(5 P+9)+v(5 P+10) \equiv-\xi+u(2 A)
$$

i.e., $u(A) \equiv \xi$. So we have

$$
f(A-2)+g(A-1)+u(A)+v(A+1) \equiv 0
$$

Since $3 \mid A-2, A+1$, and $(A+1) / 3<P$, therefore $f(A-2) \equiv 0, v(A+1) \equiv 0$, and so $g(A-1) \equiv g(B) \equiv-\xi$. In view of $L_{B-1} \equiv 0$ this yields that

$$
\begin{equation*}
v(B+2) \equiv \xi \tag{2.5}
\end{equation*}
$$

Since $2 B+4=A+3$, we have that $u(A+3) \equiv \xi, v(A+3) \equiv \xi$. Let us consider now the relation

$$
f(A+1)+g(A+2)+u(A+3)+v(A+4) \equiv 0
$$

Since $7 \mid A+2$, therefore $g(A+2) \equiv 0$. Furthermore $3|A+1,3| A+4$. As

$$
(A+1) / 3=(2 A+2) / 6=(5 P+11) / 6<P
$$

for $P>11$, we have $f(A+1) \equiv 0$. We know that $v(P) \equiv 0$ and $v(P+2) \equiv 0$. Since $P, P+2 \in \mathscr{P}$, therefore $P+4$ is a composite number, and so the smallest integer on which v assumes a nonzero value $(\bmod 1)$ is $\geqq P+6$. However,

$$
(A+4) / 3=(2 A+8) / 6=(5 P+17) / 6<P+6,
$$

therefore $v(A+4) \equiv 0$. Consequently $u(A+3) \equiv 0$, contradicting (2.5).
The proof of Theorem 1^{\prime} is finished.
3. Proof of Lemma 1. For an arbitrary completely additive function $h(n)$ we can extend the domain of definition for the set of positive rational numbers by $h(a / b)=h(a)-h(b)$. Let us do it for f, g, u, v. For the sake of brevity the relation

$$
f(a)+g(b)+u(c)+v(d) \equiv 0(\bmod 1)
$$

will be denoted by $\langle a, b, c, d\rangle$, where a, b, c, d are arbitrary positive rational numbers.
From the additivity it follows that

$$
\text { if }\langle a, b, c, d\rangle \text { and }\langle A, B, C, D\rangle, \text { then }\langle a A, b B, c C, d D\rangle .
$$

We shall say that $\langle a A, b B, c C, d D\rangle$ is the product of $\langle a, b, c, d\rangle$ and $\langle A, B, C, D\rangle$. It is obvious that $\langle 1 / a, 1 / b, 1 / c, 1 / d\rangle$ holds if $\langle a, b, c, d\rangle$ holds.

Let now $L_{n}=\langle n, n+1, n+2, n+3\rangle$. First we shall express the values $f(p), g(p)$, $u(p), v(p)$ for primes $p \leqq 20$ as linear combinations of

$$
K=\{f(2), g(2), u(2), v(2), f(3), g(3), u(3), v(3)\}
$$

The appropriate formulas will be denoted by $F(p), G(p), U(p), V(p)$. Hence we can get some linear relations between the values listed in K.

$$
\begin{gathered}
V(5)=L_{2}=\left\langle 2 ; 3 ; 2^{2} ; 5\right\rangle, \\
U(5)=L_{3}=\left\langle 3 ; 2^{2} ; 5 ; 2 \cdot 3\right\rangle, \\
F(7)=L_{7} L_{2}^{-1}=\left\langle 7 \cdot 2^{-1} ; 2^{3} \cdot 3^{-1} ; 2^{-2} \cdot 3^{2} ; 2\right\rangle, \\
G(7)=L_{6}=\left\langle 2 \cdot 3 ; 7 ; 2^{3} ; 3^{2}\right\rangle, \\
V(11)=L_{8} L_{3}^{-1}=\left\langle 2^{3} \cdot 3^{-1} ; 2^{-2} \cdot 3^{2} ; 2 ; 11 \cdot 2^{-1} \cdot 3^{-1}\right\rangle, \\
V(17)=L_{48} L_{3}^{-2} L_{6}^{-2}=\left\langle 2^{2} \cdot 3^{-3} ; 2^{-4} ; 2^{-5} ; 17 \cdot 2^{-2} \cdot 3^{-5}\right\rangle, \\
G(5)=L_{14}(F(7) V(17))^{-1}=\left\langle 3^{3} ; 2 \cdot 3^{2} \cdot 5 ; 2^{11} \cdot 3^{-2} ; 2 \cdot 3^{5}\right\rangle,
\end{gathered}
$$

$$
\begin{aligned}
& V(7)=L_{4} G(5)^{-1}=\left\langle 2^{2} \cdot 3^{-3} ; 2^{-1} \cdot 3^{-2} ; 2^{-10} \cdot 3^{3} ; 7 \cdot 2^{-1} \cdot 3^{-5}\right\rangle, \\
& F(11)=L_{24} L_{4} L_{11}^{-1} G(5)^{-3}=\left\langle 11^{-1} \cdot 2^{5} \cdot 3^{-8} ; 2^{-5} \cdot 3^{-7} ; 2^{-31} \cdot 3^{7} ; 2^{-4} \cdot 3^{-12}\right\rangle, \\
& F\left(5^{3}\right)=L_{5} L_{25} V(5) L_{12}^{-1} V(7)^{-1}=\left\langle 5^{3} \cdot 2^{-3} \cdot 3^{2} ; 2^{3} \cdot 3^{4} ; 2^{11} ; 2^{6} \cdot 3^{4}\right\rangle, \\
& V(13)=\frac{L_{54} L_{15} L_{12}^{2} L_{7} L_{3} F\left(5^{3}\right)}{L_{168} L_{10} L_{5}^{3}} \frac{L_{2}^{3} G(5)}{G}=\left\langle 2^{-5} \cdot 3^{5} ; 2^{8} \cdot 3^{-4} ; 2^{-4} \cdot 3^{3} ; 13^{-1} \cdot 2^{-1} \cdot 3^{3}\right\rangle, \\
& F(5)=L_{75} L_{4} L_{3} V(13) L_{5}^{-1} L_{18}^{-1} L_{9}^{-1}=\left\langle 5 \cdot 2^{-4} \cdot 3^{3} ; 2^{10} \cdot 3^{-5} ; 2^{-5} \cdot 3^{4} ; 2^{-4} \cdot 3^{3}\right\rangle, \\
& U(7)=F(5) L_{5}^{-1}=\left\langle 2^{-4} \cdot 3^{3} ; 2^{9} \cdot 3^{-6} ; 7^{-1} \cdot 2^{-5} \cdot 3^{4} ; 2^{-7} \cdot 3^{3}\right\rangle, \\
& G(13)=L_{12} U(7) L_{2}^{-1}=\left\langle 2^{-3} \cdot 3^{4} ; 13 \cdot 2^{9} \cdot 3^{7} ; 2^{-6} \cdot 3^{4} ; 2^{-7} \cdot 3^{4}\right\rangle, \\
& G(11)=F(5) V(13)^{-1} L_{10}^{-1}=\left\langle 3^{-4} ; 11^{-1} \cdot 2^{2} \cdot 3^{-1} ; 2^{-3} ; 2^{-3}\right\rangle, \\
& U(17)=F(5) L_{15}^{-1}=\left\langle 2^{-4} \cdot 3^{2} ; 2^{6} \cdot 3^{-5} ; 17^{-1} \cdot 2^{-5} \cdot 3^{4} ; 2^{-4} \cdot 3\right\rangle, \\
& U(13)=F(11) L_{11} V(7)^{-1}=\left\langle 2^{3} \cdot 3^{-5} ; 2^{-2} \cdot 3^{-4} ; 13 \cdot 2^{-21} \cdot 3^{4} ; 2^{-2} \cdot 3^{-7}\right\rangle, \\
& U(11)=L_{9} G(5)^{-1}=\left\langle 3^{-1} ; 3^{-2} ; 11 \cdot 2^{-11} \cdot 3^{2} ; 2 \cdot 3^{-4}\right\rangle, \\
& V(19)=L_{54} G(11) U(7) G(5)^{-1}=\left\langle 2^{-3} \cdot 3^{-1} ; 2^{10} \cdot 3^{-9} ; 2^{-16} \cdot 3^{6} ; 19 \cdot 2^{-11} \cdot 3^{-1}\right\rangle, \\
& G(17)=V 19) L_{16}^{-1}=\left\langle 2^{-7} \cdot 3^{-1} ; 17^{-1} \cdot 2^{10} \cdot 3^{-9} ; 2^{-17} \cdot 3^{4} ; 2^{-11} \cdot 3^{-1}\right\rangle, \\
& F(17)=\frac{L_{85} L_{9} L_{6} L_{7} L_{2}}{L_{42} L_{27} F(5) G(5) V(11)}=\left\langle 17 \cdot 2^{2} \cdot 3^{-6} ; 3^{2} \cdot 2^{-6} ; 3 \cdot 2^{-4} ; 2^{9} \cdot 3^{-7}\right\rangle, \\
& U(19)=F(17) L_{2} L_{17}^{-1}=\left\langle 2^{3} \cdot 3^{-6} ; 2^{-7} \cdot 3 ; 19^{-1} \cdot 2^{-2} \cdot 3 ; 2^{7} \cdot 3^{-7}\right\rangle, \\
& G(19)=L_{18} V(7)^{-1} L_{3}^{-2}=\left\langle 2^{-1} \cdot 3^{3} ; 19 \cdot 2^{-3} \cdot 3^{2} ; 2^{11} \cdot 3^{-3} ; 2^{-1} \cdot 3^{4}\right\rangle, \\
& F(19)=L_{19} U(7) V(11)^{-1} G(5)^{-1}=\left\langle 19 \cdot 2^{-5} \cdot 3 ; 2^{12} \cdot 3^{-10} ; 2^{-17} \cdot 3^{7} ; 2^{-6} \cdot 3^{-1}\right\rangle . \\
& F_{1}:=L_{1}=\left\langle 1 ; 2 ; 3 ; 2^{2}\right\rangle, \\
& F_{2}:=\frac{F(5)^{3} L_{1}^{12}}{F(5)^{3}}=\left\langle\frac{2^{9}}{3^{7}} ; \frac{3^{19}}{2^{15}} ; 2^{26} ; \frac{2^{42}}{3^{5}}\right\rangle, \\
& F_{3}:=\frac{L_{340} L_{2} L_{8} G(11) L_{1}^{7}}{L_{17} L_{30} L_{3} V(7)^{3}}=\left\langle\frac{3^{2}}{2} ; 2^{9} \cdot 3^{6} ; 2^{25} ; 2^{11} \cdot 3^{13}\right\rangle, \\
& F_{4}:=\frac{L_{133} L_{20} L_{15} L_{2} G(5)^{2} L_{1}^{21}}{L_{66} L_{14} L_{9} L_{3} L_{7} L_{6} F(19) F(11) F(5)}=\left\langle 2^{6} ; 2^{7} \cdot 3^{27} ; 2^{69} ; \frac{2^{58}}{3^{17}}\right\rangle, \\
& F_{5}:=\frac{L_{32} G(11) U(17)}{L_{2} L_{1} V(7)}=\left\langle\frac{3}{2^{2}} ; \frac{2^{8}}{3^{4}} ; 2 ; \frac{3^{6}}{2^{9}}\right\rangle, \\
& F_{6}:=\frac{L_{3} L_{1}^{15}}{L_{33} F(11) G(17) U(7)}=\left\langle 2^{6} \cdot 3^{6} ; 2^{2} \cdot 3^{22} ; 2^{53} ; 2^{63} \cdot 3^{9}\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& F_{7}:=\frac{L_{31} L_{6} L_{4} L_{2} L_{1}^{8}}{L_{62} L_{9}}=\left\langle 2^{4} ; 2^{5} \cdot 3^{5} ; 2^{19} ; 2^{7} \cdot 3^{8}\right\rangle, \\
& F_{8}:=\frac{L_{7}^{2} G(5)^{2} L_{1}^{8}}{L_{49} L_{2}^{2} U(17) V(13)}=\left\langle\frac{2^{7}}{3} ; 2 \cdot 3^{11} ; 2^{27} ; 2^{24} \cdot 3^{6}\right\rangle \\
& F_{9}:=\frac{L_{63} L_{2} L_{1}^{6}}{L_{8} L_{7} U(13)}=\left\langle\frac{3^{7}}{2^{5}} ; 2^{11} \cdot 3^{3} ; 2^{22} ; 2^{14} \cdot 3^{8}\right\rangle \\
& F_{10}:=\frac{L_{55} L_{13} F(11) U(19)}{L_{26} L_{6}^{3} L_{3} U(7) F(5) L_{1}^{2}}=\left\langle\frac{2^{13}}{3^{23}} ; \frac{3^{2}}{2^{31}} ; \frac{1}{2_{25}} ; \frac{2^{14}}{3^{30}}\right\rangle, \\
& F_{11}:=\frac{L_{37} L_{8} L_{4}^{2} L_{1}^{2}}{L_{74} L_{18} L_{2} U(19) U(13)}=\left\langle\frac{3^{9}}{2^{2}} ; 2^{12} \cdot 3^{3} ; 2^{20} ; 2^{2} \cdot 3^{13}\right\rangle \\
& F_{12}:=\frac{L_{30} L_{23} L_{45} L_{2}^{3} V(19) V(13) L_{1}^{7}}{L_{92} L_{22} L_{8} L_{3} F(11) F(5)^{2}}=\left\langle\frac{3^{10}}{2^{7}} ; 2^{12} \cdot 3^{5} ; 2^{27} ; 2^{18} \cdot 3^{9}\right\rangle .
\end{aligned}
$$

Let R denote the column vector $[f(2, f(3), g(2), g(3), u(2), v(2), v(3)]$. The formulas F_{2}, \ldots, F_{12} lead to the linear equation $M R \equiv 0(\bmod 1)$, where

$$
M=\left[\begin{array}{rrrrrrr}
9 & -7 & -15 & 19 & 26 & 42 & -5 \\
-1 & 2 & 9 & 6 & 25 & 11 & 13 \\
6 & 0 & 7 & 27 & 69 & 58 & -17 \\
-2 & 1 & 8 & -4 & 1 & -9 & 6 \\
6 & 6 & 2 & 22 & 53 & 63 & 9 \\
4 & 0 & 5 & 5 & 19 & 7 & 8 \\
7 & -1 & 1 & 11 & 27 & 24 & 6 \\
-5 & 7 & 11 & 3 & 22 & 14 & 8 \\
13 & -23 & -31 & 2 & -25 & 14 & -30 \\
-2 & 9 & 12 & 3 & 20 & 2 & 13 \\
-7 & 10 & 12 & 5 & 27 & 18 & 9
\end{array}\right] .
$$

By using the Gaussian elimination over the ring of integers, we get easily that the only solution of it is $R \equiv 0(\bmod 1)$. Hence, by the formulas $F(p), \ldots, V(p)$ we get immediately that $f(p), g(p), u(p), v(p) \equiv 0(\bmod 1)$ for $p \leqq 19$.

References

[1] I. Kátai, A remark on additive functions satisfying a relation, Ann. Univ. Sci. Budapest. Eötvōs Sect. Math., in print.

