Moment theorems for operators on Hilbert space. II

ZOLTÃN SEBESTYÉN

Introduction. The present note is a direct continuation of our previous investigation [1] about the momentlike problems of the existence of a contraction or a subnormal operator T on Hilbert space H such that $x_{n}=T^{n} x_{0}(n=1,2, \ldots)$ for some given sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ in H. The corresponding continuous problem was to find a continuous semigroup $\left\{T_{t}\right\}_{t \succeq 0}$ of contractions on H such that $T_{0}=I_{H}$ and $x_{t}=T_{t} x_{0}$ $(t \geqq 0)$ with some given continuous family $\left\{x_{t}\right\}_{t \geqq 0}$ in H. Our present object is to generalize these problems as follows.

Problems. Given a sequence $\left\{A_{n}\right\}_{n=0}^{\infty}$ of bounded linear operators on H it is natural to ask: under what condition does there exist an operator T on H with

$$
\begin{equation*}
A_{n}=T^{n} A_{0} \quad(n=1,2, \ldots) \tag{1}
\end{equation*}
$$

For a continuous family $\left\{A_{t}\right\}_{t} \geq_{0}$ of operators on H a continuous semigroup $\left\{T_{t}\right\}_{t} \geq_{0}$ of bounded linear operators with $T_{0}=I_{H}$ and

$$
\begin{equation*}
A_{t}=T_{t} A_{0} \quad(t \geqq 0) \tag{2}
\end{equation*}
$$

may be sought.
We shall treat only the following cases:
(A) (1) holds with a contraction T.
(B) (2) holds with a continuous semigroup $\left\{T_{t}\right\}_{t \leq 0}$ of contractions such that $T_{0}=I_{\mathrm{H}}$.
(C) (1) holds with a subnormal operator T.

Results.
Theorem A. Problem (A) has a solution if and only if

$$
\begin{gather*}
\left\|\sum_{n^{\prime}, n} A_{n^{\prime}+n} h_{n^{\prime}, n}\right\|^{2} \leqq \sum_{\substack{m \leq n \\
m^{\prime}, n^{\prime}}}\left(A_{m^{\prime}-n+m} h_{m^{\prime}, m}, A_{n^{\prime}} h_{n^{\prime}, n}\right)+ \tag{3}\\
+\sum_{\substack{n \lll \\
m^{\prime}, n^{\prime}}}\left(A_{m^{\prime}} h_{m^{\prime}, m}, A_{n^{\prime}-m+n} h_{n^{\prime}, n}\right)
\end{gather*}
$$

holds for any finite sequence $\left\{h_{n^{\prime}, n}\right\}_{n^{\prime} \geqq 0, n \geqq 0}$ in H.
Theorem B. Problem (B) has a solution if and only if

$$
\begin{equation*}
\left\|\sum_{i^{\prime}, t} A_{t^{\prime}+t} h_{t^{\prime}, t}\right\|^{2} \leqq \sum_{\substack{t \leq s, s^{\prime}, t^{\prime}}}\left(A_{s^{\prime}-t+s} h_{s^{\prime} s}, A_{t^{\prime}} h_{t^{\prime}, t}\right)+\sum_{\substack{s<t \\ s, t^{\prime}}}\left(A_{s^{\prime}} h_{s^{\prime}, s}, A_{t^{\prime}-s+t} h_{t^{\prime}, t}\right) \tag{4}
\end{equation*}
$$

holds for any finite sequence $\left\{h_{t^{\prime}, t}\right\}_{t^{\prime} \geq 0, t \geqq 0}$ in H.
Theorem C. Let $\left\{A_{n}\right\}_{n=0}^{\infty}$ be a sequence of operators on the Hilbert space H such that
(i) $\left\{\text { Range } A_{n}\right\}_{n=0}^{\infty}$ spans the space H.
(ii) $\left\|A_{n}\right\| \leqq x^{n}$ holds for some constant $x \geqq 0$ and $n=1,2, \ldots$.

Under these assumptions Problem (C) has a solution if and only if there exists a double sequence $\left\{A_{n^{\prime}, n}\right\}_{n^{\prime}=0, n=0}^{\infty}$ of operators on H such that

$$
\begin{equation*}
A_{0, n}=A_{n} \quad \text { for } \quad n=0,1,2, \ldots \tag{iii}
\end{equation*}
$$

$$
\begin{gather*}
A_{m}^{*} A_{n^{\prime}, n}=A_{n^{\prime}+m}^{*} A_{n} \quad \text { for } \quad m, n^{\prime}, n=0,1,2, \ldots, \quad \text { and } \tag{iv}\\
\left\|\sum_{n^{\prime}, n} A_{n^{\prime}, n} h_{n^{\prime}, n}\right\|^{2} \leqq \sum_{\substack{n^{\prime}, m \\
n^{\prime}, n}}\left(A_{n^{\prime}+m} h_{m^{\prime}, m}, A_{m^{\prime}+n} h_{n^{\prime}, n}\right) \tag{v}
\end{gather*}
$$

hold for any finite (double) sequence $\left\{h_{n^{\prime}, n}\right\}_{n^{\prime}=0, n=0}$ in H.
Necessity. (A) Let U be a unitary dilation (see [2]) of T on some Hilbert space K containing H. Then

$$
\begin{equation*}
P U^{n} h=T^{n} h \quad(h \in H ; n=0,1,2, \ldots) \tag{5}
\end{equation*}
$$

where P is the orthogonal projection of K onto H. Let further $\left\{h_{n^{\prime}, n}\right\}_{n^{\prime}=0, n=0}$ be any finite (double) sequence in H. Then by (1) and (5)

$$
\begin{aligned}
&\left\|\sum_{n^{\prime}, n} A_{n^{\prime}+n} h_{n^{\prime}, n}\right\|^{2}=\left\|\sum_{n^{\prime}, n} T^{n} A_{n^{\prime}}, h_{n^{\prime}, n}\right\|^{2} \leqq\left\|\sum_{n^{\prime}, n} U^{n} A_{n^{\prime}} h_{n^{\prime}, n}\right\|^{2}= \\
&= \sum_{\substack{n \leq m \\
m^{\prime}, n^{\prime}}}\left(U^{m-n} A_{m^{\prime}} h_{m^{\prime}, m}, A_{n^{\prime}} h_{n^{\prime}, n}\right)+\sum_{\substack{m<n \\
m^{\prime}, n^{\prime}}}\left(A_{m^{\prime}} h_{m^{\prime}, m}, U^{n-m} A_{n^{\prime}} h_{n^{\prime}, n}\right)= \\
&= \sum_{\substack{n \leqq m \\
m^{\prime}, n^{\prime}}}\left(T^{m-n} A_{m^{\prime}} h_{m^{\prime}, m}, A_{n^{\prime}} h_{n^{\prime}, n}\right)+\sum_{\substack{m^{\prime}<n \\
m^{\prime}, n^{\prime}}}\left(A_{m^{\prime}} h_{m^{\prime}, m}, T^{n-m} A_{n^{\prime}} h_{n^{\prime}, n}\right)= \\
&=\sum_{\substack{n \leq m \\
m^{\prime}, n^{\prime}}}\left(A_{m^{\prime}-n+m} h_{m^{\prime}, m}, A_{n^{\prime}} h_{n^{\prime}, n}\right)+\sum_{\substack{m<n \\
m^{\prime}, n^{\prime}}}\left(A_{m^{\prime}} h_{m^{\prime}, m}, A_{n^{\prime}-m+n} h_{n^{\prime}, n}\right) .
\end{aligned}
$$

(B) Let U_{t} be a unitary dilation (see [2]) of the continuous semigroup $\left\{T_{t}\right\}_{t \leq 0}$ of contractions on some Hilbert space K containing H. Then

$$
P U_{t} h=T_{t} h \quad(h \in H ; t \geqq 0)
$$

where P is the orthogonal projection of K onto H. For any finite (double) sequence $\left\{h_{t^{\prime}, t}\right\}_{t^{\prime} \geqq 0, t \geqq 0}$ in $H(4)$ can be verified in the same manner as (3) was before.
(C) Let N be a normal extension of T on a Hilbert space K containing H. Then

$$
\begin{equation*}
P N^{* n^{\prime}} N^{n} h=T^{* n^{\prime}} T^{n} h \quad\left(h \in H ; n^{\prime}, n=0,1,2, \ldots\right) \tag{6}
\end{equation*}
$$

where P denotes the orthogonal projection of K onto H. Let further

$$
A_{n^{\prime}, n}=T^{* n^{\prime}} T^{n} A_{0} \quad\left(n^{\prime}, n=0,1,2, \ldots\right)
$$

Then by (1) and (6) we have $A_{0, n}=T^{* 0} T^{n} A_{0}=T^{n} A_{0}=A_{n}$ for $n=0,1,2, \ldots$. Furthermore, for any h, k in H

$$
\begin{gathered}
\left(A_{m}^{*} A_{n^{\prime}, n} h, k\right)=\left(T^{* n^{\prime}} T^{n} A_{0} h, A_{m} k\right)= \\
=\left(T^{*\left(n^{\prime}+m\right)} T^{n} A_{0} h, A_{0} k\right)=\left(N^{*\left(n^{\prime}+m\right)} N^{n} A_{0} h, A_{0} k\right)= \\
=\left(N^{n} A_{0} h, N^{n^{\prime}+m} A_{0} k\right)=\left(T^{n} A_{0} h, T^{n^{\prime}+m} A_{0} k\right)= \\
=\left(A_{n} h, A_{n^{\prime}+m} k\right)=\left(A_{n^{\prime}+m}^{*} A_{n} h, k\right) .
\end{gathered}
$$

Finally, for any finite (double) sequence $\left\{h_{n^{\prime}, n}\right\}_{n^{\prime}=0, n=0}$ in H we have

$$
\begin{gathered}
\left\|\sum_{n^{\prime}, n} A_{n^{\prime}, n} h_{n^{\prime}, n}\right\|^{2}=\left\|P \sum_{n^{\prime}, n} N^{* n^{\prime}} N^{n} A_{0} h_{n^{\prime}, n}\right\|^{2} \leqq\left\|\sum_{n^{\prime}, n} N^{* n^{\prime}} N^{n} A_{0} h_{n^{\prime}, n}\right\|^{2}= \\
=\sum_{\substack{m^{\prime}, m \\
n^{\prime}, n}}\left(N^{n^{\prime}+m} A_{0} h_{m^{\prime}, m}, N^{m^{\prime}+n} A_{0} h_{n^{\prime}, n}\right)=\sum_{\substack{m^{\prime}, m \\
n^{\prime}, n}}\left(T^{n^{\prime}+m} A_{0} h_{m^{\prime}, m}, T^{m^{\prime}+n} A_{0} h_{n^{\prime}, n}\right)= \\
=\sum_{\substack{m^{\prime}, m \\
\prime^{\prime}, n}}\left(A_{n^{\prime}+m} h_{m^{\prime}, m}, A_{m^{\prime}+n} h_{n^{\prime}, n}\right)
\end{gathered}
$$

These prove the properties (iii), (iv), (v) as required.
Sufficiency. (A) Let F_{0} be the linear space of all double sequences $\left\{h_{n^{\prime}, n}\right\}\left(n^{\prime}, n=\right.$ $=0,1,2, \ldots$) in the Hilbert space H. In view of (3) one can define a semi-definite inner product $\langle\cdot, \cdot\rangle$ (for $\left\{h_{m^{\prime}, m}\right\},\left\{k_{n^{\prime}, n}\right\}$ in F_{0}) by

$$
\left\langle\left\{h_{m^{\prime}, m}\right\},\left\{k_{n^{\prime}, n}\right\}\right\rangle:=\sum_{\substack{n \leq m \\ m^{\prime}, n^{\prime}}}\left(A_{m^{\prime}-n+m} h_{m^{\prime}, m}, A_{n^{\prime}} k_{n^{\prime}, n}\right)+\sum_{\substack{m<n \\ m^{\prime}, n^{\prime}}}\left(A_{m^{\prime}} h_{m^{\prime}, m}, A_{n^{\prime}-m+n} k_{n^{\prime}, n}\right) .
$$

Hence we obtain a Hilbert space F by factoring F_{0} with respect to the null space of $\langle\cdot, \cdot\rangle$ and completing this factor space with respect to the norm arising from the new definite inner product (denoted also by $\langle\cdot, \cdot\rangle$). For simplicity the residue class of $\left\{h_{m^{\prime}, m}\right\} \in F_{0}$ in F is denoted by the same symbol. We have two natural operations on
F_{0} : for $\left\{h_{n^{\prime}, n}\right\}$ in F_{0} we set

$$
\begin{aligned}
U_{0}\left\{h_{n^{\prime}, n}\right\}=\left\{h_{n^{\prime}, n}^{\prime}\right\} \quad \text { where } \quad h_{n^{\prime}, n}^{\prime} & =h_{n^{\prime}, n-1} \quad \text { for } \quad n \geqq 1 \quad \text { and } \quad h_{n^{\prime}, 0}^{\prime}=0 ; \\
V_{0}\left\{h_{n^{\prime}, n}\right\} & =\sum_{n^{\prime}, n} A_{n^{\prime}+n} h_{n^{\prime}, n} .
\end{aligned}
$$

U_{0} and V_{0} induce an isometry U of F into F and a contraction V of F into H, as an easy calculation shows. We are going to show that $T=V U V^{*}$ is the desired contraction on H.

Indeed, for any $\left\{h_{m^{\prime}, m}\right\}$ in F_{0} and h in H

$$
\begin{gathered}
\left\langle\left\{h_{m^{\prime}, m}\right\}, V^{*} A_{j} h\right\rangle=\left(V\left\{h_{m^{\prime}, m}\right\}, A_{j} h\right)=\sum_{m^{\prime}, m}\left(A_{m^{\prime}+m} h_{m^{\prime}, m}, A_{j} h\right)= \\
=\left\langle\left\{h_{m^{\prime}, m}\right\},\left\{k_{n^{\prime}, n}^{(j)}\right\}\right\rangle \quad(j=0,1,2, \ldots),
\end{gathered}
$$

where $k_{n^{\prime}, n}^{(j)}=h$ if $n=0, n^{\prime}=j$, and 0 otherwise. Hence $V^{*} A_{j} h=\left\{k_{n^{\prime}, n}^{(j)}\right\}$, and thus $U V^{*} A_{j} h=\left\{k_{n^{\prime}, n}^{(j)}\right\}$, where $k_{n^{\prime}, n}^{(j)^{\prime}}=h$ if $n=1, n^{\prime}=j$, and 0 otherwise. It follows that for h in $H, j=0,1,2, \ldots$,

$$
T A_{j} h=V U V^{*} A_{j} h=\sum_{n^{\prime}, n} A_{n^{\prime}+n} k_{n^{\prime}, n}^{(j) \cdot}=A_{j+1} h .
$$

This is actually identical with (1), and the proof is complete.
(B) The proof is completely analogous to the previous one. The continuity of the family of contractions is a direct consequence of the continuity of the original operator family and the construction given in the proof.
(C) Let $\left\{A_{n^{\prime}, n}\right\}\left(n^{\prime}, n=0,1, \ldots\right)$ be a double sequence of operators satisfying (i)-(v) of Theorem C on the Hilbert space H. Let K_{0} be the linear space of all finite double sequences $\left\{h_{n^{\prime}, n}\right\}\left(n^{\prime}, n=0,1, \ldots\right)$ in H with semi-definite inner product of $\left\{h_{m^{\prime}, m}\right\}$ and $\left\{k_{n^{\prime}, n}\right\}$ in K_{0} given by

$$
\begin{equation*}
\left\langle\left\{h_{m^{\prime}, m}\right\},\left\{k_{n^{\prime}, n}\right\}\right\rangle:=\sum_{\substack{m^{\prime}, m \\ n^{\prime}, n}}\left(A_{n^{\prime}+m} h_{m^{\prime}, m}, A_{m^{\prime}+n} k_{n^{\prime}, n}\right) . \tag{7}
\end{equation*}
$$

As in the proof of Theorem A we get a Hilbert space K in which the elements of K_{0} may be considered to form a dense linear manifold. We also have two operations on K_{0}, namely for $\left\{h_{n^{\prime}, n}\right\}$ in K_{0} we set

$$
\begin{aligned}
N_{0}\left\{h_{n^{\prime}, n}\right\}=\left\{h_{n^{\prime}, n}^{0,1}\right\} \quad \text { where } \quad h_{n^{\prime}, n}^{0,1} & =h_{n^{\prime}, n-1} \text { for } n \geqq 1 \text { and } h_{n^{\prime}, 0}^{0,1}=0 . \\
V_{0}\left\{h_{n^{\prime}, n}\right\} & =\sum_{n^{\prime}, n} A_{n^{\prime}, n} h_{n^{\prime}, n}
\end{aligned}
$$

In view of (v), V_{0} induces a contraction V of K into H.
By (7) for any $\left\{h_{m^{\prime}, m}\right\}$ in K_{0} and h in H

$$
\begin{gathered}
\left\langle\left\{h_{m^{\prime}, m}\right\}, V^{*} A_{j} h\right\rangle=\left(V\left\{h_{m^{\prime}, m}\right\}, A_{j} h\right)= \\
=\sum_{m^{\prime}, m}\left(A_{m^{\prime}, m} h_{m^{\prime}, m}, A_{j} h\right)=\left\langle\left\{h_{m^{\prime}, m}\right\},\left\{k_{n^{\prime}, n}^{(j)}\right\}\right\rangle \quad(j=0,1,2, \ldots),
\end{gathered}
$$

that is,
(8) $\quad V^{*} A_{j} h=\left\{k_{n^{\prime}, n}(j)\right\}$ where $k_{n^{\prime}, n}(j)=h$ if $n=j, n^{\prime}=0$, and 0 otherwise.

It follows that $V V^{*} A_{j} h=A_{0, j} h=A_{j} h$, and hence by (i)

$$
\begin{equation*}
V V^{*}=I_{H}(=\text { the identity on } H) \tag{9}
\end{equation*}
$$

That N_{0} induces a normal operator on H needs some further argument.
First of all we show that $N_{0}^{*}\left\{k_{n^{\prime}, n}\right\}=\left\{k_{n^{\prime}, n}^{1,0}\right\}$ where $k_{n^{\prime}, n}^{1,0}=k_{n^{\prime}-1, n}$ for $n^{\prime} \geqq 1$ and $k_{0, n}^{1,0}=0$. This follows from (7) since for any $\left\{h_{m^{\prime}, m}\right\}$ in K_{0} we have

$$
\begin{gathered}
\left\langle\left\{h_{m^{\prime}, m}\right\}, N_{0}^{*}\left\{k_{n^{\prime}, n}\right\}\right\rangle=\left\langle N_{0}\left\{h_{m^{\prime}, m}\right\},\left\{k_{n^{\prime}, n}\right\}\right\rangle= \\
=\sum_{\substack{m^{\prime}, m \\
n^{\prime}, n}}\left(A_{n^{\prime}+m+1} h_{m^{\prime}, m}, A_{m^{\prime}+n} k_{n^{\prime}, n}\right)=\left\langle\left\{h_{m^{\prime}, m}\right\},\left\{k_{n^{\prime}, n}^{1,0}\right\}\right\rangle .
\end{gathered}
$$

Let $h_{n^{\prime}, n}^{j^{\prime}, j}=h_{n^{\prime}-j^{\prime}, n-j}$ for $n^{\prime} \geqq j^{\prime}, n \geqq j$, and 0 otherwise. Then

$$
\left(N_{0}^{*} N_{0}\right)^{2 j}\left\{h_{n^{\prime}, n}\right\}=\left\{h_{n^{\prime}, n}^{2 j}\right\} \quad \text { for any } \quad\left\{h_{n^{\prime}, n}\right\} \quad \text { in } \quad K_{0} .
$$

Hence

$$
\begin{gathered}
\left\|N_{0}\left\{h_{n^{\prime}, n}\right\}\right\|^{2}=\left\langle N_{0}^{*} N_{0}\left\{h_{n^{\prime}, n}\right\},\left\{h_{n^{\prime}, n}\right\}\right\rangle \leqq \triangleq N_{0}^{*} N_{0}\left\{h_{n^{\prime}, n}\right\}\|\cdot\|\left\{h_{n^{\prime}, n}\right\} \| \leqq \\
\leqq\left\|\left(N_{0}^{*} N_{0}\right)^{2}\left\{h_{n^{\prime}, n}\right\}\right\|^{1 / 2} \cdot\left\|\left\{h_{n^{\prime}, n}\right\}\right\|^{3 / 2}
\end{gathered}
$$

and by induction, for any $j=0,1,2, \ldots$,

$$
\begin{gathered}
\left\|N_{0}\left\{h_{n^{\prime}, n}\right\}\right\|^{2^{j+2}} \leqq\left\|\left(N_{0}^{*} N_{0}\right)^{2^{j}}\left\{h_{n^{\prime}, n}\right\}\right\|^{2} \cdot\left\|\left\{h_{n^{\prime}, n}\right\}\right\|^{2 j+2-2}= \\
=\left\|\left\{h_{n^{\prime}, n}^{2^{j}, j^{j}}\right\}\right\|^{2} \cdot\left\|\left\{h_{n^{\prime}, n}\right\}\right\|^{2+2-2}= \\
=\left\|\left\{h_{n^{\prime}, n}\right\}\right\|^{2^{j+2}-2} \sum_{\substack{m^{\prime}, m \\
n^{\prime}, n}}\left(A_{n^{\prime}+m+2^{j}} h_{m^{\prime}, m}, A_{m^{\prime}+n+2^{j}} h_{n^{\prime}, n}\right) \leqq \\
\leqq\left\|\left\{h_{n^{\prime}, n}\right\}\right\|^{j+2-2} \sum_{\substack{m^{\prime}, m \\
n^{\prime}, n}}\left\|A_{n^{\prime}+m+2^{j}}\right\| \cdot\left\|A_{m^{\prime}+n+2^{2}}\right\| \cdot\left\|h_{m^{\prime}, m}\right\| \cdot\left\|h_{n^{\prime}, n}\right\| \leqq \\
\leqq\left\|\left\{h_{n^{\prime}, n}\right\}\right\|^{2+2-2} \varkappa^{2 j+1}\left(\sum_{m^{\prime}, m} x^{m^{\prime}+m}\left\|h_{m^{\prime}, m}\right\|\right)^{2} .
\end{gathered}
$$

Letting $j \rightarrow \infty$ we get $\left\|N_{0}\left\{h_{n^{\prime}, n}\right\}\right\| \leqq \sqrt{\varkappa}\left\|\left\{h_{n^{\prime}, n}\right\}\right\|$ for any $\left\{h_{n^{\prime}, n}\right\}$ in K_{0}. Thus N_{0} can be extended by continuity to a normal operator N on K.

We shall show that $T=V N V^{*}$ is the desired subnormal operator on H. In view of (9), we may regard N as a normal extension of T, only H must be identified (by the aid of V^{*}) with a subspace of K. Finally (8) implies

$$
T A_{j} h=V N V^{*} A_{j} h=V N\left\{k_{n^{\prime}, n}(j)\right\}=V\left\{k_{n^{\prime}, n}^{0,1}(j)\right\}=A_{j+1} h
$$

for any h in H and $j=0,1,2, \ldots$, which amounts to (1).
The proof is complete.

We remark that

$$
T^{*} A_{j} h=V N^{*} V^{*} A_{j} h=V N^{*}\left\{k_{n^{\prime}, n}(j)\right\}=V\left\{k_{n^{\prime}, n}^{1,0}\right\}=A_{1, j} h
$$

for any h in H and $j=0,1,2, \ldots$.
The method of proof of Theorem C yields also the following.
Proposition. Let $\left\{A_{n^{\prime}, n}\right\}\left(n^{\prime}, n=0,1,2, \ldots\right)$ be a double sequence of operators on the Hilbert space H such that $\left\{\text { Range } A_{0, n}\right\}_{n=0}^{\infty}$ spans H. There exists a normal operator T on H with

$$
\begin{equation*}
A_{n^{\prime}, n}=T^{* n^{\prime}} T^{n} A_{0} \quad \text { for } \quad n^{\prime}, n=0,1,2, \ldots \tag{*}
\end{equation*}
$$

if and only if
(iv**) $A_{n^{\prime}, n}^{*} A_{m^{\prime}, m}=A_{0, m^{\prime}+n}^{*} A_{0, n^{\prime}+m}$ for $m^{\prime}, m, n^{\prime}, n=0,1, \ldots$, and
(ii*) there exists a constant $\varkappa^{\prime} \geqq 0$ such that $\left\|A_{n^{\prime}, n}\right\| \leqq \varkappa^{n^{\prime}+n}\left(n^{\prime}, n=0,1,2, \ldots\right)$.
Proof. The necessity of the condition is simple so that we omit the details. Assume, on the contrary, that (ii*) and (iv*) are satisfied. Set $A_{n}=A_{0, n}$ for $n=0,1,2, \ldots$. Then we have equality in (v) of Theorem C, and therefore V is an isometry of K into H (see the proof of Theorem C) so that by (9) V is unitary between K and H. As a consequence, $T=V N V^{*}$ is unitarily equivalent to the normal operator N, hence is itself normal and by (10), satisfies (1^{*}). The proof is complete.

References

[1] Z. Sebestyén, Moment theorems for operators on Hilbert space, Acta Sci. Math., 44 (1982), 165-171.
[2] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space with extend beyond this space, Appendix to F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar (New York, 1960).

