· · · · · · · ·

On minimal invariant manifolds and density of operator algebras

HEYDAR RADJAVI

Let \mathfrak{X} be a complex Banach space and let \mathfrak{A} be a subalgebra of $\mathscr{B}(\mathfrak{X})$, the algebra of all bounded linear operators on \mathfrak{X} . When is \mathfrak{A} strongly dense in $\mathscr{B}(\mathfrak{X})$, i.e., dense in the topology of pointwise convergence? This question can sometimes be answered by examining various lattices associated with \mathfrak{A} . The first result of this sort was obtained by RICKART and YOOD [2, p. 62], a consequence of which is: if the only linear manifolds (i.e., not necessarily closed subspaces) of \mathfrak{X} invariant under all members of \mathfrak{A} are $\{0\}$ and \mathfrak{X} , then \mathfrak{A} is strongly dense in $\mathscr{B}(\mathfrak{X})$. If we denote by $\mathscr{L}(\mathfrak{A})$ the lattice of all linear manifolds invariant under \mathfrak{A} , the hypothesis in this assertion amounts to saying that $\mathscr{L}(\mathfrak{A})$ is trivial, that is, the only nonzero element of $\mathscr{L}(\mathfrak{A})$ is \mathfrak{X} . We shall prove the following result.

Theorem 1. Let \mathfrak{A} be an algebra of bounded linear operators on the Banach space \mathfrak{X} . If the nonzero elements of $\mathscr{L}(\mathfrak{A})$ have a dense intersection, then \mathfrak{A} is strongly dense in $\mathscr{B}(\mathfrak{X})$.

Note that the hypothesis of the theorem implies that $\mathscr{L}(\mathfrak{A})$ has no closed members other than $\{0\}$ and \mathfrak{X} , i.e., \mathfrak{A} is topologically transitive. It is not known whether topological transitivity for \mathfrak{A} is sufficient for strong density if \mathfrak{X} is a reflexive Banach space. (This is the Transitive Algebra Problem; see [3]).

Many examples of algebras satisfying the hypothesis of Theorem 1 exist. Here is a simple, nontrivial example. Fix an orthonormal basis $\{e_i\}_{i=1}^{\infty}$ for a separable, infinitedimensional Hilbert space \mathfrak{H} . Let \mathfrak{A} be the set of all those operators on \mathfrak{H} whose matrices relative to $\{e_i\}_{i=1}^{\infty}$ are "column-finite", i.e., each of their columns have finitely many nonzero entries. It is easy to see that \mathfrak{A} is in fact an algebra, that every operator in \mathfrak{A} leaves the linear span \mathscr{V} of $\{e_i\}_{i=1}^{\infty}$ invariant, and that, furthermore, \mathscr{V} is contained in every invariant linear manifold of \mathfrak{A} . Another example is the subalgebra \mathfrak{A}_0 of the above \mathfrak{A} consisting of finite-rank operators; \mathscr{V} is still the intersection of all nonzero members of $\mathscr{L}(\mathfrak{A}_0)$.

8

;.

1.

Received July 19, 1982.

To prove Theorem 1, we shall need a lemma, which seems to be of independent interest, and which is itself an extension of the Rickart—Yood result referred to above. We first recall some definitions: An algebra \mathfrak{A} of linear operators on any vector space \mathscr{V} is called *strictly transitive* if for $x \neq 0$ and y in \mathscr{V} there exists A in \mathfrak{A} with Ax = y. More generally, \mathfrak{A} is *strictly n-fold transitive* if for any independent vectors x_1, \ldots, x_n in \mathscr{V} and arbitrary y_1, \ldots, y_n in \mathscr{V} there exists A in \mathfrak{A} with $Ax_i = y_i$ for $i = 1, \ldots, n$. If \mathfrak{A} is strictly *n*-fold transitive for every *n*, then it is called *strictly dense*. The well-known theorem of JACOBSON [1] (see [2, p. 50]) states that 2-fold transitivity implies strict density. In general, 1-fold transitivity does not imply strict density.

Lemma 1. Let \mathfrak{A} be an algebra of bounded linear operators on the (not necessarily complete) complex normed linear space \mathfrak{X} . If \mathfrak{A} is strictly transitive, then it is strictly dense.

(Note that \mathfrak{A} is not assumed to be closed in any topology.)

Proof. Suppose \mathfrak{A} is strictly transitive but not strictly dense. Then by [1], \mathfrak{A} is not 2-fold transitive. It follows (as in [2, p. 62]), that there exists a (not necessarily bounded) non scalar linear transformation T of \mathfrak{X} onto \mathfrak{X} that commutes with every A in \mathfrak{A} . Now

$$(T-\alpha I)A = A(T-\alpha I)$$

for every scalar α , and thus the nullspace and range of $T-\alpha I$ are invariant linear manifolds for \mathfrak{A} . It follows from the transitivity hypothesis that $T-\alpha I$ is bijective for every α . Thus r(T) is a bijective linear transformation for every rational function r, and r(T)A = Ar(T) for all A in \mathfrak{A} .

Fix a nonzero x_0 in \mathfrak{X} and let \mathfrak{X}_0 be the linear manifold $\{r(T)x_0: r \text{ a rational function}\}$. Let $\mathfrak{A}_0 = \{A \in \mathfrak{A}: Ax_0 \in \mathfrak{X}_0\}$. Observe that \mathfrak{X}_0 is invariant under \mathfrak{A}_0 . For each A in \mathfrak{A}_0 there is a rational function r_A such that $Ax_0 = r_A(T)x_0$ (r_A is unique because of the bijectivity of r(T) for nonzero r); thus it follows from

$$Ar(T)x_0 = r(T)Ax_0 = r(T)r_A(T)x_0 = r_A(T)r(T)x_0$$

that the restriction of A to \mathfrak{X}_0 is just that of $r_A(T)$. Conversely, by the transitivity hypothesis, every r(T) coincides with $r_A(T)$ for some A in \mathfrak{A}_0 . Hence the restriction of \mathfrak{A}_0 to \mathfrak{X}_0 is a field. Since this restriction consists of bounded operators on \mathfrak{X}_0 , the Gelfand—Mazur theorem implies that T is a scalar on \mathfrak{X}_0 : $T | \mathfrak{X}_0 = \alpha I$, which contradicts the bijectivity of $T - \alpha I$ on \mathfrak{X} . This proves that \mathfrak{A} is strictly dense.

Proof of Theorem 1. Let \mathscr{V} be the intersection of all nonzero invariant linear manifolds of \mathfrak{A} . Then the restriction of \mathfrak{A} to \mathscr{V} is clearly strictly transitive and thus strictly dense. Also, \mathfrak{A} has no closed invariant subspaces, because \mathscr{V} is dense in

۰,

 \mathfrak{X} . We use the notation and techniques described in [3, Chapter 8]. As in the proofs of Arveson's Lemma (Lemma 8.8) and Lemma 8.11 of [3], it suffices to show that each graph transformation for \mathfrak{A} has an eigenvalue; this will imply the strong density of \mathfrak{A} in $\mathscr{B}(\mathfrak{X})$.

Let $\{x \oplus T_1 x \oplus ... \oplus T_n x: x \in \mathfrak{D}\}$ be an invariant graph subspace for $\mathfrak{A}^{(n+1)}$ for some positive integer *n*. We must show that each linear transformation T_i has an eigenvalue.

If T_i has nonzero null space, we are done. Otherwise, observe that the \mathfrak{A} -invariant linear manifolds \mathfrak{D} and $T_i\mathfrak{D}$ both contain \mathscr{V} , by hypothesis. Hence the identities

$$AT_i = T_i A$$
 on \mathfrak{D} and $AT_i^{-1} = T_i^{-1} A$ on $T_i \mathfrak{D}$

(for all A in \mathfrak{A}) hold on \mathscr{V} . This implies that $T_i \mathscr{V}$ and $T_i^{-1} \mathscr{V}$ are also invariant under \mathfrak{A} , and thus contain \mathscr{V} . This yields $T_i \mathscr{V} = \mathscr{V}$. Now \mathfrak{A} is strictly dense on \mathscr{V} and commutes with the linear transformation T_i on \mathscr{V} . We conclude that T_i is a scalar on \mathscr{V} and complete the proof.

We conclude with a question an affirmative answer to which would be a generalization of Theorem 1.

Question. If \mathfrak{A} is a topologically transitive algebra of bounded linear operators on \mathfrak{X} and if $\mathscr{L}(\mathfrak{A})$ has minimal nonzero elements, is \mathfrak{A} necessarily strongly closed in $\mathscr{B}(\mathfrak{X})$?

References

- N. JACOBSON, Structure theory of simple rings without finiteness assumptions, Trans. Amer. Math. Soc., 57 (1944), 228-245.
- [2] C. E. RICKART, General Theory of Banach Algebras, D. Van Nostrand (Princeton, 1960).
- [3] H. RADJAVI and P. ROSENTHAL, *Invariant Subspaces*, Springer-Verlag (Berlin—Heidelberg—New York, 1973).

DALHOUSIE UNIVERSITY HALIFAX, N.S., CANADA