On minimal invariant manifolds and density of operator algebras

HEYDAR RADJAVI

Let \mathfrak{X} be a complex Banach space and let \mathfrak{H} be a subalgebra of $\mathscr{B}(\mathfrak{X})$, the algebra of all bounded linear operators on \mathfrak{X}. When is \mathfrak{A} strongly dense in $\mathscr{B}(\mathfrak{X})$, i.e., dense in the topology of pointwise convergence? This question can sometimes be answered by examining various lattices associated with \mathfrak{A}. The first result of this sort was obtained by Rickart and Yood [2, p. 62], a consequence of which is: if the only linear manifolds (i.e., not necessarily closed subspaces) of \mathfrak{X} invariant under all members of \mathfrak{H} are $\{0\}$ and \mathfrak{X}, then \mathfrak{H} is strongly dense in $\mathscr{B}(\mathfrak{X})$. If we denote by $\mathscr{L}(\mathfrak{H})$ the lattice of all linear manifolds invariant under \mathfrak{N}, the hypothesis in this assertion amounts to saying that $\mathscr{L}(\mathfrak{H})$ is trivial, that is, the only nonzero element of $\mathscr{L}(\mathfrak{H})$ is \mathfrak{X}. We shall prove the following result.

Theorem 1. Let \mathfrak{A} be an algebra of bounded linear operators on the Banach space \mathfrak{X}. If the nonzero elements of $\mathscr{L}(\mathfrak{A})$ have a dense intersection, then \mathfrak{A} is strongly dense in $\mathscr{B}(\mathfrak{X})$.

Note that the hypothesis of the theorem implies that $\mathscr{L}(\mathfrak{H})$ has no closed members other than $\{0\}$ and \mathfrak{X}, i.e., \mathfrak{X} is topologically transitive. It is not known whether topological transitivity for \mathfrak{A} is sufficient for strong density if \mathfrak{X} is a reflexive Banach space. (This is the Transitive Algebra Problem; see [3]).

Many examples of algebras satisfying the hypothesis of Theorem 1 exist. Here is a simple, nontrivial example. Fix an orthonormal basis $\left\{e_{i}\right\}_{i=1}^{\infty}$ for a separable, infinitedimensional Hilbert space $\mathfrak{5}$. Let \mathfrak{A} be the set of all those operators on \mathfrak{H} whose matrices relative to $\left\{e_{i}\right\}_{i=1}^{\infty}$ are "column-finite", i.e., each of their columns have finitely many nonzero entries. It is easy to see that \mathfrak{A} is in fact an algebra, that every operator in \mathfrak{A} leaves the linear span \mathscr{V} of $\left\{e_{i}\right\}_{i=1}^{\infty}$ invariant, and that, furthermore, \mathscr{V} is contained in every invariant linear manifold of \mathfrak{A}. Another example is the subalgebra \mathfrak{U}_{0} of the above \mathfrak{Q} consisting of finite-rank operators; \mathscr{V} is still the intersection of all nonzero members of $\mathscr{L}\left(\mathfrak{H}_{0}\right)$.
\vdots
Received July 19, 1982.

To prove Theorem 1, we shall need a lemma, which seems to be of independent interest, and which is itself an extension of the Rickart-Yood result referred to above. We first recall some definitions: An algebra \mathfrak{H} of linear operators on any vector space \mathscr{V} is called strictly transitive if for $x \neq 0$ and y in \mathscr{V} there exists A in \mathfrak{U} with $A x=y$. More generally, \mathfrak{H} is strictly n-fold transitive if for any independent vectors x_{1}, \ldots, x_{n} in \mathscr{V} and arbitrary y_{1}, \ldots, y_{n} in \mathscr{V} there exists A in \mathfrak{A} with $A x_{i}=y_{i}$ for $i=1, \ldots, n$. If \mathfrak{A} is strictly n-fold transitive for every n, then it is called strictly dense. The well-known theorem of Jacobson [1] (see [2, p. 50]) states that 2-fold transitivity implies strict density. In general, l-fold transitivity does not imply strict density.

Lemma 1. Let \mathfrak{H} be an algebra of bounded linear operators on the (not necessarily complete) complex normed linear space \mathfrak{X}. If \mathfrak{H} is strictly transitive, then it is strictly dense.
(Note that \mathfrak{X} is not assumed to be closed in any topology.)
Proof. Suppose \mathfrak{A} is strictly transitive but not strictly dense. Then by [1], \mathfrak{A} is not 2 -fold transitive. It follows (as in [2, p. 62]), that there exists a (not necessarily bounded) non scalar linear transformation T of \mathfrak{X} onto \mathfrak{X} that commutes with every A in \mathfrak{A}. Now

$$
(T-\alpha I) A=A(T-\alpha I)
$$

for every scalar α, and thus the nullspace and range of $T-\alpha I$ are invariant linear manifolds for \mathfrak{A}. It follows from the transitivity hypothesis that $T-\alpha I$ is bijective for every α. Thus $r(T)$ is a bijective linear transformation for every rational function r, and $r(T) A=A r(T)$ for all A in \mathfrak{A}.

Fix a nonzero x_{0} in \mathfrak{X} and let \mathfrak{X}_{0} be the linear manifold $\left\{r(T) x_{0}: r\right.$ a rational function $\}$. Let $\mathfrak{A}_{0}=\left\{A \in \mathfrak{A}: A x_{0} \in \mathfrak{X}_{0}\right\}$. Observe that \mathfrak{X}_{0} is invariant under $\mathfrak{\Re}_{0}$. For each A in \mathfrak{Q}_{0} there is a rational function r_{A} such that $A x_{0}=r_{A}(T) x_{0}$. r_{A} is unique because of the bijectivity of $r(T)$ for nonzero r); thus it follows from

$$
A r(T) x_{0}=r(T) A x_{0}=r(T) r_{A}(T) x_{0}=r_{A}(T) r(T) x_{0}
$$

that the restriction of A to \mathfrak{X}_{0} is just that of $r_{A}(T)$. Conversely, by the transitivity hypothesis, every $r(T)$ coincides with $r_{A}(T)$ for some A in \mathfrak{M}_{0}. Hence the restriction of \mathfrak{Q}_{0} to \mathfrak{X}_{0} is a field. Since this restriction consists of bounded operators on \mathfrak{X}_{0}, the Gelfand-Mazur theorem implies that T is a scalar on $\mathfrak{X}_{0}: T \mid \mathfrak{X}_{0}=\alpha 1$, which contradicts the bijectivity of $T-\alpha I$ on \mathfrak{X}. This proves that \mathfrak{H} is strictly dense.

Proof of Theorem 1. Let \mathscr{V} be the intersection of all nonzero invariant linear manifolds of \mathfrak{A}. Then the restriction of \mathfrak{H} to \mathscr{V} is clearly strictly transitive and thus strictly dense. Also, \mathfrak{H} has no closed invariant subspaces, because \mathscr{V} is dense in
\mathfrak{X}. We use the notation and techniques described in [3, Chapter 8]. As in the proofs of Arveson's Lemma (Lemma 8.8) and Lemma 8.11 of [3], it suffices to show that each graph transformation for \mathfrak{A} has an eigenvalue; this will imply the strong density of \mathfrak{U} in $\mathscr{B}(\mathfrak{X})$.

Let $\left\{x \oplus T_{1} x \oplus \ldots \oplus T_{n} x: x \in \mathfrak{D}\right\}$ be an invariant graph subspace for $\mathfrak{U}^{(n+1)}$ for some positive integer n. We must show that each linear transformation T_{i} has an eigenvalue.

If T_{i} has nonzero null space, we are done. Otherwise, observe that the \mathfrak{M}-invariant linear manifolds \mathfrak{D} and $T_{i} \mathfrak{D}$ both contain \mathscr{V}, by hypothesis. Hence the identities

$$
A T_{i}=T_{i} A \quad \text { on } \mathfrak{D} \text { and } A T_{i}^{-1}=T_{i}^{-1} A \quad \text { on } \quad T_{i} \mathfrak{D}
$$

(for all A in \mathfrak{H}) hold on \mathscr{V}. This implies that $T_{i} \mathscr{V}$ and $T_{i}^{-1} \mathscr{V}$ are also invariant under $\mathfrak{Q l}$, and thus contain \mathscr{V}. This yields $T_{i} \mathscr{V}=\mathscr{V}$. Now \mathfrak{A} is strictly dense on \mathscr{V} and commutes with the linear transformation T_{i} on \mathscr{V}. We conclude that T_{i} is a scalar on \mathscr{V} and complete the proof.

We conclude with a question an affirmative answer to which would be a generalization of Theorem 1.

Question. If \mathfrak{A} is a topologically transitive algebra of bounded linear operators on \mathfrak{X} and if $\mathscr{L}(\mathfrak{H})$ has minimal nonzero elements, is \mathfrak{U} necessarily strongly closed in $\mathscr{B}(\mathfrak{X})$?

References

[1] N. Jacobson, Structure theory of simple rings without finiteness assumptions, Trans. Amer, Math. Soc., 57 (1944), 228-245.
[2] C. E. Rickart, General Theory of Banach Algebras, D. Van Nostrand (Princeton, 1960).
[3] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag (Berlin-Heidelberg-New York, 1973).

