
Acta Sci. Math., 47 (1984), 117—106 

On the spectral residuum of closed operators 

WANG SHENGWANG 

1. Introduction 

The spectral residuum [5], [2] of a linear operator T is a minimal closed subset S 
of the spectrum a(T\ on whose complement T possesses the spectral properties of 
decomposable operators. It was shown in [2] that for every bounded linear operator 
there exists a spectral residuum. It is the purpose of the present paper to extend this 
property to the class of all closed operators which map a Banach space X into itself. 

Throughout this paper, T denotes a closed operator with domain DT and range 
in a complex Banach space X. C is the complex plane and C„ denotes its one-point 
compactification. All topological attributes for sets in C„ will be referred to the topo-
logy of C«,.If £ c C „ , then E°=Cm—E and E is the closure of E. For all operators 
involved in this paper, <r( •) denotes the extended spectrum. For a linear operator A, 
e(A) is the resolvent set and R(- ; A) denotes the resolvent operator. Further nota-
tions will be given later. 

We recall some basic concepts from [2], [5] and [6]. For x£X and A£C„, 
A£5T(x) if there exists a neighborhood U of I and there is a function fx: U->-DT, 
analytic on U such that 

(n-T)fx(ji) = x, neunc. 

Such a function fx is said to be T-associated with x. Given T, there exists a unique 
maximal open set QT<zC„ such that, for every set G c Q T and every analytic 
function / defined on G, the equation 

(H-T)f(n) = 0, veGf1C 

implies that f(fi)=0 on G. Put ST=QC
T and for any x£X, let 

yT(x) = ST(x)c, a T (x) = yT(x)UST, Qt(X) = aT(x)c. 
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Given T and FaC„, define the linear manifold 

XT(F) = {x£X: aT(x) c F}, 

which is non void only if FidSV [5]. 
For a subspace (closed linear manifold) Y of X, we write Y£I(T) if 

T(Yr\DT)aY and Y£IT if Y<zDT and r ( f ) c F . For a closed F c C „ , define 

I(T,F) = {Y£HT): a(T\Y) c F}, IT,F = {Y£IT: o(T\Y) c F}. 

The inclusion c defines a partial ordering in the families I(T, F) and 1T F . If I(T, F), 
(IT f ) has an upper bound belonging to I(T, F), ( / r F), denote it by X(T, F) (resp. 

F)• 
Y£I(T) is said to be a spectral maximal space of T if, for every Z£l(T), the 

relation a(T\Z)aa(T\Y) implies ZaY. It follows easily that if F c C M is 
closed and X(T, F) exists, then X(T, F) is a spectral maximal space of T. Conversely, 
if Y is a spectral maximal space of T, then Y=X(T, F), with F=o(T\Y). 

Let S c C „ be closed and let n be a given positive integer. The family of open 
sets {Gs, Glt ..., G„} is called an (S, n)-covering of a closed set F, if 

G s u ( u G,] 3 FU5, G , n s = 0 for / = 1, 2, ..., n. 

1.1. Def in i t ion . Given T, suppose Scza(T) is closed and n is a positive 
integer. Tis called (S, ^-decomposable if, for any (S, w)-covering {Gs, G1; G2, ..., G„} 
of a(T), there exist spectral maximal spaces XiCDT. (/'— 1, 2, ..., n) and Xs of T, 
such that 

X=XS+ Z o(J\Xs) c Gs, o(T\Xd c G, (i = 1, 2, . . . , n). ¿=1 

If T is (S, «)-decomposable for every positive integer n, then T is called S-decompo-
sable. 

Next, we list a few known properties that will be used in the subsequent theory. 

1.2. Lemma. [3] Given T, let F be closed such that 6 ' r c F c C O T . If XT(F) 
is closed, then Xj(F) = X(T, F). 

1.3. Lemma. [3] If T is (S, \)-decomposable, then STcS. 

1.4. Lemma. [3] If T is (S, \)-decomposable and FZDS is closed, then 

XT(F) = X(T, F) and a[T\XT(F)} c F. 

1.5. Lemma. [2,7] If T and YO(T) are such that a(T)Uo(T\Y)^C, then 
Hie coinduced operator ton the quotient space X/Y is closed and o(f)c.a(T) U a (F|y), 

cr(T\Y)<zo(T') Ua(T), c{T)ao{f)VJo(T\Y). 
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1.6. Lemma. [8] Given T, every spectral maximal space Y of Tis hyperinvariant 
under T, in particular, a(T\Y)(Z<s(T). 

1.7. T h e o r e m . [1] Given T, for every x£X and A06C, the following assertions 
are equivalent: 

(i) there is a neighborhood <5<rC of A<> and there is afunction f : d—DT, analytic 
on S, satisfying 

( A - 7 W ) = x; 

(ii) there are numbers M^-0, R>0 and a sequence K } " = 0 c D T with the follow-
ing properties: 

(a) (Ao-Dflb = (b) (Ao -T)a n + 1 = an; (c) | | f lJ ^ MR" (« = 0, 1, ...). 

2. Some properties of (S, l)-decomposabIe operators 

2.1. T h e o r e m . Suppose that T is (S, \)-decomposable, H is closed in C«,, 
Hf]S = Q. Then XTH exists and 

(2.1) XT(SUH) = XT{S)®XTtH. 

P r o o f . Put F=SUH. Lemma 1.4 implies that 

XT(F) = X(T, F) and a[T\XT(F)] c F= SUH. 

Refer to [3, Theorem 1], consider S x = S 2 = S in the hypotheses of Part (2) of the 
proof, note that the proof holds for (Sh l)-decomposable operators ( /=1 ,2) and 
conclude that XT H exists and 

(2.2) XT(F) = Zs®XTtH 

where ZS£I(T) and a(T\Zs)dS. It remains to show that Zs=XT(S). The 
existence of XT(S) follows from Lemma 1.4 and the inclusion ZscXT(S) is evi-
dent. Since <r[r |Z T (S ' ) ]c5 , cF, we have XT(S)cXT(F). Letting aH=a{T\Xr H), 
it follows from [3, Theorem 1] that aH is bounded. Let D be a bounded Cauchy do-
main such that oHa.Dc:D(zSc, with the positively oriented boundary 3D. Put 

Ph = ^Zt ¡[X-T\XT(F)]-ldX. Zni So 

It follows from X T ( S ) c Z T ( F ) and (j[7'|A'r(5')]c>S', that for every x£XT(S), 
we have 

PhX = ¿7 /[X-TlXAF^xd?. = ¿7 j [k-T\XT(S)]~lxdX = 0. 
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Therefore, XT(S)<zZs and hence 

(2.3) XT(S) = Zs. 

Relations (2.2) and (2.3) conclude the proof. 

2.2. Remark . By the method used in the proof of Theorem 2.1, we can actually 
prove a more general result: If Tis (S, 1 )-decomposable and F, H are disjoint closed 
sets with Fz^S, then 

XT(FUH) = XT(F)®XT<H. 

2.3. Theorem. Suppose that T is (S, \)-decomposable and F, H are closed sets 
with FuS and Sf)H=Q. Then 

(2.4) XT(F)nXT,„ = XT,FnH. 

Proof . By Theorem 2.1, we have 

XT (S U I I ) = XT (S) ®XTtH, AV[S U (F fl H)] = XT (S) ®XT,FnH. 

Consequently. 

(2.5) [Jr r(S)©AV,w]njr r(.F) = * T ( S U # ) n j r r ( F ) = j r r [ ( S U / / ) f l F ] = 

= AV[SU (Ffli/)] = XT(S)®XT,FrtH. 

The following evident relations 

XT(S) + iXT(F)f]XT^]cXT(F). 

XT(S) + [XT(F)nxT,H] c XT(S)@XT:II 

imply 

(2.6) XT(S) + [XT(F)nxT:ll] c [Xr(S)®XTJI]C)XT(F). 

From (2.5) and (2.6), we obtain 
(2.7) XT(S) + [XT(F)nxT,H] c J T r ^ e l r . F n H . 
Since, evidently 
(2.8) XT(F)DXT ,u ^ mi/, 

(2.7) is actually an equality. Moreover, the left-hand side of (2.7) being a direct sum, 
we obtain 

(2.9) XT(S)®[XT(F)f]XT,„] = XT(S)®XT,Fmi-

Now, (2.8) and (2.9) imply that 
XT(F)C\XTH = XT,FCIH 

and hence (2.4) follows. 
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2.4. Theo rem. Suppose that T is (S, V)-decomposable, and Hx, H2 are closed 
disjoint sets such that / / ¡ П 5 = 0 , /=1 ,2 . Then 

(2.Ю) XTi и ,Гг = XT © Хт н„. 

Proof . It follows from the relations 

Хт.ШгПХт.Иг с Hl П [ЛГГ(5) ® „ J = XT Hl ПXr(SUH2) 

and from Remark 2.2, that 

(2-11) I r , H i n i T , H ! - {0}. 

Since X T > H i U H p X T Hi ( /=1, 2), (2.10) would follow from (2.11) if we could prove 

(2-12) XT, н, и иг с: Xr Hl + XT H,,. 
Let V=T\XT HiUHi. Then с г ( К ) с Я 1 и я 2 . Therefore, the] sets a„=a(V)r\Hi 

are disjoint spectral sets of V. It follows from [4, V. Theorem 9.2] that 

Хт.щинг = ZHl@ZH2 and a(V\Z„) = a,,. (i = 1,2). 
Since V is bounded, T\ZH = V\Zir are also bounded and then ZH €IT>a (i= 1,2). 
Hence ZHcXTHi ( /=1,2) and (2.12) follows. 

2.5. Theorem. Suppose that T is (S, \)-decomposable and H is a closed set 
satisfying H n»S=0. Then X(T,H) exists and X(T H)=XT U. 

Proof . By Theorem 2.1, XT I, exists. If S is bounded then T is bounded [6, 
Proposition 3.1] and the statement of the theorem is evident. So suppose that 
Then H(~)S=$ implies that H is bounded. As we mentioned in the Introduction, 
for every operator appearing in this paper, we consider the extended spectrum. Hence, 
for each Y£I(T, H), a(T\Y)<z.H implies that the extended spectrum o(T\Y) 
is bounded. Then Y£IT n and hence I(T,H)<zIt h. On the other hand, we evi-
dently have I T H c I ( T , H). Thus, 

(2.13) ' I(T, H) = JTyH 

and the conclusion of the proof follows immediately from (2.13). 

2.6. Theorem. Suppose that T is (S, \)-decomposable and G is open in C„ 
such that GC\S=&. Then the coinduced operator T° on the quotient space XjXTS 

is closed and o(Tg)cGC. 

Proo f . Let X^G and let G s ^ S be open in C„ such that {Gs, G} is an (S, 1)-
covering of o(T) and By Lemma 1.4 and Theorem 2.5, XT(GS) and XT G 

are spectral maximal spaces of T. Consequently, 

(2.14) X — Xr(Gs) + XTt c. 
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Let = denote the topological isomorphism between two Banach spaces. In 
view of (2.14), 

X/XT.G = XT(.GS)IXT(GS) H XT G. 

It follows from Theorem 2.3 that 
Xr(Gs)r\XTC = XTicsnG 

and hence 
(2.15) X/XTTG S XR{GS)IXT,GSNC. 

In view of (2.15), TG can be considered as an operator on XT(GS)/XT G n c . Since 
;.(|GS and A{T\XR(GS)} U O(T\XTGsnG)ciGs, it follows from Lemma 1.5 that 
TC is closed and M(T C ) . As ). is arbitrary in G, we have O(TG)C.GC. 

3. Equivalence of closed (S, 1 )-decomposabIe and S-decomposable operators 

3.1. Theo rem. Suppose that Tis (S, \)-decomposable and G c C is open in C „ 
such that GC\S=0. Let { / J ^ be a sequence of analytic Devalued functions defined 
on G, with the property 

(3.1) h„ (/.) = ( / - T)f„ (/) — 0 as n — 

in the strong topology of X and uniformly on every bounded subset of G. Then 

/„( A ) - 0 as « - c o 

in the strong topology of X and uniformly on every bounded subset of G. 

Proof . We may suppose that 

G = {A(EC: \X\ < R,R > 0}. 

By decreasing R, we may suppose that (3.1) holds uniformly on G. Let R^ with 
0<R0<R be arbitrary. Choose the numbers Ry, R\, R'2, R2 such that Rq^R^ 
-^R'1<R'2-^R2<R and put 

Gj = {A6C: |A| < Rj), 7 = 0 ,1 ; 

H = {A6C: Rt s \l\ i?2}; H' = {;.£C: R[ == |A| s R£. 

By Theorem 2.6, the coinduced operator T" on X\XT H is closed and 

(3.2) a(TB) c (H°)c, 

where #°={A€C: R ^ |A|</Ja}. 
If xdX and / i s an Z-valued function, then we use the notations x=x+XT„ 

and jV)=f(/-)+XT U for the cosets in the quotient space XjXT H. In X/XT<H, 
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the convergence (3.1) gives rise to 

fin(A) = ( / - r f l ) / „ (A) - 0 ( „ - « » ) 

in the strong topology of X/XTH and uniformly on G. In view of (3.2), (?. — TH)~1 

is uniformly bounded on H' and hence 

/„(A) - (A - J " ) " 1 ¿„(A) - 0 (n 

in the strong topology of X/XTi H and uniformly on H'. By the maximum principle, 

/ „ ( A ) - 0 ( « — ) 

in the strong topology of XjXr „ and uniformly on G,. 
For A£G and 77=1,2,..., let 

L W = 2 ^ k 

k=0 

be the power series expansion of /„. Then 

fc = 0 
By the Cauchy inequalities, we have 

l l t f j s en/R\, n = 1, 2, . . . , k = 0, 1, ..., 
where 

e„ = max{||/„(A)||: l i G j - 0 (« — ) . 

For every ank, there is bnk£ank such that \\b„k\\ ^2 | | d n J . For every 77, let 

(3.3) 
k=0 

Then 

lls-WII S 2 ll^ll • №k S 2e„ 2 ^ G , k=0 k=0 

and hence the series (3.3) is absolutely and uniformly convergent in G0, with 

(3.4) U&, (A)|| ^ 2e„R1/(Rl - R0) - 0, A € G0. 

Since bnk£ank implies that /„(A) = g„(A) on G0, we have 

(3.5) kH(X)=fm(k)-gmWeXT,Ht A €G0. 

Next, consider positive numbers Rx, R[, R2, R2 related by the inequalities 
R ^ R ^ R ' ^ R ' ^ R ^ R , and put {AgC: R^m^R. . ,} . All the above conclu-
sions remain valid for jj^, R[, R2, R2 substituting Rt, R[, R2, R2, respectively. Hence, 
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for и = 1, 2, ..., there exists an ^-valued analytic function gn with 

(3.6) ||а,(Я)Ц =g. I e M R . - R , ) - 0, ;.€G0, 

where e„ is the analogue of en. Furthermore, we have . 

(3.7) ^ ( A ) = / „ ( A ) - g „ ( l ) 6 Хт,я, A£G0. 

Now, subtract (3.7) from (3.5) and use (3.4) and (3.6) to obtain 

(3.8) | |^(Я)-£Л(Я)| | = |ЫЯ)- | „ (Я) | | == 2(£„ + е „ ) А / № - 7?о) - 0, AeG0. 

Since H and H are disjoint bounded closed sets with 5 Т ) # = 0 , S(~)H=&, Theorem 
2.4 implies that 

XT,H\jb — Хтн@Хтд. 

Hence, there is M>0 so that, for x £ X r H and x£XT й , 

(3.9) IWI + PH s J l f | | x + jc||. 

It follows from (3.8) and (3.9) that 

(3.10) 11&п(Я)|| = 2(en + E„)MR1/(RI — R0) — 0, 

Thus, (3.5), (3.4) and (3.10) imply that 

ll/nWII ^ ll*„(A)|| + Bft,(A)|| - 0 

uniformly on G0. Since R0d(0, R) is arbitrary, the proof is complete. 

It is easily seen that if {/„} in Theorem 3.1 is replaced by a double sequence, then 
the conclusion remains valid. 

3.2. C o r o l l a r y . Suppose that T is (S, l)-decomposable, G c С is open in C „ 
such that GnS=9. If {/„,„: G—D r} is a double sequence of functions, analytic on 
G such that 

(Я-Г)/„ т(Я) + 0 ) 

in the strong topology of X and uniformly on every bounded subset of G, then 

fnm (Я) 0 (n, m 

in the strong topology of X and uniformly on every bounded subset of G. 
3.3. Theo rem. Let T be (S, l)-decomposable. If for x£X there is a sequence 

{/„: G->-DT} of analytic functions on an open set G c C with СПб1 —0, such that 

(3.11) | |л:-(Я-Г)/п(Я)!| - 0 ( и — ) 

uniformly on every bounded subset of G, then GcgT(x). 
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Proof . Put fm(k)=fn(k)-fm{X), ^G. Corollary 3.2 implies that fm(X)-~0 
(n, m-* in the strong topology of X and uniformly on every bounded subset of G. 
Then the function f : G—X, defined by 

f(X) = lim/,(A) 

is analytic on G. Since T is closed, (3.11) implies that 

(3.12) f(X)iDT and . (X-T)f(X) = x for X£G. 

Since, by Lemma 1.3, G n 5 ' r c G n 5 , = 0 , (3.12) implies that GcoT(x). 

3.4. Theorem. Suppose that T is (S, \)-decomposable, f c C „ is closed such 
that X(T, F) (resp. XTF) exists. Then for every (S, m)-covering {Gs, G l5 ...,Gm} 
of F, where m is a positive integer, we have 

m 
(3.13) X(T,F) cz XT(GS)+ ZXTtGi, 

i=l 
respectively, 

m 
(3.130 Xt,F^XT(Gs)+ZXT>Gi. i=l 

Proof . We confine the proof to (3.13), that of (3.13') being similar. 
If S is bounded, the statement of the theorem is [2, Theorem 4]. Therefore, we 

suppose that We divide the proof into four parts. 

Part A. Assume that m=1. Then {Gs, Gx} is an (S, l)-covering of F. Let 
H—GsC\Gt. Then HP\S=0 and by Theorems 2.1 and 2.6, XT H exists, the con-
duced operator T" on XIXT H is closed and 

(3.14) °(TH) c (Gs fl G^f. 

For the cosets in X/XTt „ and for the A7Zr>H-valued functions we use the notations 
introduced in the proof of Theorem 3.1. 

Let x£X(T,F) and put x{X)=[X — T\X(T, F)] - 1x, for ?.£FC. It follows from 
(X-T)x(X)=x, that (X-T")x(X)=x, X£FC. In view of (3.14), the resolvent oper-
ator R(X; Ta) is defined for X^GsC\Gl. Define 

U(A), if XeF<, 
n ) 1 R(X;TH)x, if XtGsHG^ 

Clearly,/is well-defined and is analytic on F cU(G snGj). Since °°£Sc.Gs, F—Gs 

is bounded. Let D be a bounded Cauchy domain such that F—GsaD and 
Df)(F—Gx)=0. If dD is the positively oriented boundary of D, put 

(3.15) = T"T f?(fydX, A = x-x0. 2.%l do 
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Evidently, x0 is independent of the choice of D. Now (3.15) gives rise to the following 
representation of x : 

(3.16) x = x 0 + x1+.)', with x,€xi ( / = 0 , 1 ) , y£XT,H-

Part B. In this part we prove that x0£XT(Gs)+XT c . 
Let A ^ S U ^ and let 5 be a neighborhood of A0 so that 5 F L ( 5 U G 1 ) = 0 . We 

may choose the Cauchy domain D satisfying Di)5=&. For A6<5, we have success-
ively 

v 2ni 3d X-n H 2ni/D X-n * 

By Theorem 1.7, there is a sequence {a n }^ 0 aD T „ and there are numbers Af=-0, 
i?>0, such that 

(3.17) (X0-TB)d0 = xo, (X0-T*)an+1 = &„, \\dn\\ ^ MR", n = 0 , 1 , . . . . 

By the definition of Z>rW, a„nZ)7-^0. Let a„€anf)DT. Then a„=an+XTHczDT 

and hence we may choose a„ to satisfy the inequality | | a j s 2 | | d j , «=0, 1, .... 
In view of (3.17), we have 

(3.18) (X0-T)a0 = x0 + b0, (l0-T)an+1 = an + bn+1, 

\\a„\\ ^ 2MRn, n = 0,1, ... 

where {6„}7= 0<=XTH. Let 

= Bn{X) = Zbk(X0-X)k. 
t=0 *=0 

Then, it follows from 

a(T\XTtB)nS C Hf)5 C G X D S = 0 , 

that for X£d, 

(X-T)[A„(X)-{X-T\XTtB)-*BB(X)] = (X —T) A „ (A) — B„ (A) = 

Let ¿0={A€C: |A-A0 |< l/2fl}. For A€5fl50, the last inequality of (3.18), imphes 

and hence 

||(A - T) [A„ (X) - (A - T\XT, b)~xB„ (A)] - *0|| - 0, 

uniformly on ¿n<50- By Theorem 3.3, ¿n5 oC0T (x o ) and hence A06eT(x0). Since 
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/ 0 $ S U Gx is arbitrary, we have crT(;c0)c:1S'UG1. Thus, 

(3.19) x0<EXT(SUGx) = XT(S)®XTCi c XT(GS) + XTtCl. 

Part C. In this part we show that x1^XT(Gs). Let A0$GS. There exists a neigh-
borhood y of A0 such that y Pi Gs =0. We can choose a Cauchy domain D such that 
Z)3yU (F—Gs). Then for we obtain successively 

( i - n f - i f M . J ' f Q - p f M dll = 

= - ¿ T - f f O ^ d f i + J-z f — = x-xa = 
Z7T7 dD •¿Til SD A. 

By repeating the method used in Part B, one obtains 

(3.20) Xi€*T(Gs). 

Part D. It follows from (3.16), (3.19), (3.20) and yeXTtHaXT(Gs), that 

X(T,F) c XT(Gs) + XTtGl. 

A subsequent repetition, via induction on m, leads one to (3.13). 

3.5. Theorem. Every closed (S, \)-decomposable operator is S-decomposable. 

Proo f . Let {Gs, G1( ..., G„} be an ^-covering of a(T). By Theorem 3.4, we have 

X = X[T, a(T)] a JTr(Gs) + 2 c X 
1 

and hence T is ^-decomposable. 

4. The spectral residuum 

4.1. D e f i n i t i o n . Given T, let I(T) be the family of all closed sets S such that 
ST<zSczo(T) and T is ¿'-decomposable. If there exists S*£I(T) such that 
S*czS for any S£Z(T), then S* is called the spectral residuum of T. 

4.2. T h e o r e m . The spectral residuum exists for every closed operator T. 

Proo f . We only sketch the proof because it is similar to that of [2, Theorem 6]. 
Since <r(T) is in Z(T), I(T) is nonempty. Let a£A} be a totally ordered sub-
family of Z(T) and let S ,

0 =n{5 ' a : a£A). If ffcC«, is a closed set disjoint from S0 

then, since C„ is compact, there is a£A such that HC\Sa=0. Hence an S0-covering 
of o(T) is an Sa-covering of a(T) for some a£A. Since T is Sx-decomposable, it is 
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also Sq-decomposable. By Zorn's lemma, there is a minimal element in Z(T). It 
remains to prove that, for S1; S2£Z(T), S=S1HS2£Z(T). 

Let {G5, G) be an S'-covering of o(T). In view of [3, Theorem 1 (6)] or [2, Theo-
rem 6], we may choose open sets GS(, G, ( /= 1, 2), such that 

(4.1) G S ( 3 5,UGS , i = l , 2 ; 

(4.2) GSinGS2 = G5, 
(4.3) G, c G, G; fl S, = 0, G; U GSi 3 G, i = 1, 2. 

Thus, {Gs., G;} ( /= 1, 2) is an (Sh l)-covering of a(T). Let G'Si be open in CM such 
that G'sciGSz and {G^, G2} is an (S2, l)-covering of <7(r). Since Tis ^ -decompo-
sable, we have 
(4.4) X= Xt(G'Si) + XTiG2. 

Since Tis 5,-decomposable ( /=1, 2), XT G exists by part 2 of the proof of [3, Theo-
rem 1]. It follows from G 2 C G and (4.4), that 

(4.5) X= XT(G'S2) + XTtG. 

Put F=G'sOa(T), Since XT(G'SJ is a spectral maximal space of T, by Lemma 1.6, 

rr[T\XT(G'S2)] c a(T). 
Thus, we have 

a[T\XT(G'sJ\ c G's^a{T) = F 

and it follows easily that XT(G'SJ is the upper bound of I(T, F), i.e. 

(4.6) Xt(G'S2) = X(T, F). 

Furthermore, 5 ,
r c . S ' i n 5 ' 2 = S ' c G s and (4.2) imply that XT(GS) exists and 

XT(GS) = XT(GSJ fl XT(GS,). 

Hence XT(GS) is closed. Similarly, ¿>'=S^ f] S2 implies that 

Xr(S) = XT(SjnxT(SJ 

and hence XT(S) is closed. 

By (4.2), we have G S i r )G S j cG s , and hence 

F = GSa D a (T) c GSa 0 (GSl U G j c (GS2 fl GSl) U Gt c G s U Gx. 

Next, we prove (4.7) X(T,F)c XT(Gs) + XT,Gl. ... . 

Let # = G ^ n G a . Then / / n 5 1 c G i n 5 1 = 0 . Since T is S^-decomposable, XT [I 

exists by Theorem 2.1, the coinduced operator T" on X/XT H is closed and o(TH)a 
c(G s f lG 1 ) c by Theorem 2.6. By repeating parts A, B and C of the proof of Theo-
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rem 3.4, one obtains that, for every x£X(T, F), x=x0+xl+y, where y£XT u, 
cT(X])czGs and ffT(x0)cS UGX. Hence 

(4.8) y£XT>a c XT(GS), 

(4.9) x1€XT(Gs). 

As for x0, by repeating the proof of Theorem 2.1, we obtain 

(4.10) x0eXT(S)®XT,Gl c XT(GS) + rTiGl. 

Thus (4.7) follows from (4.8), (4.9) and (4.10). In view of (4.3), we have XT G czXTtG 

and then, with the help of (4.5), (4.6), (4.7), we obtain 

X = XT (Gs) + XTj G. 

Thus, T is (S, l)-decomposable. Theorem 3.5 concludes the proof. 

Acknowledgement. The author would like to express his gratitude to Professor 
I. Erdélyi for his help. 
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