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On the spectral residuum of closed operators

WANG SHENGWANG

1. Introduction

'The spectral residuum [5], [2] of a linear operator 7 is a minimal closed subset .S
of the spectrum ¢(7’), on whose complement T possesses the spectral properties of
decomposable operators. It was shown in {2] that for every bounded linear operator
there exists a spectral residuum. It is the purpose of the present paper to extend this
property to the class of all closed operators which map a Banach space X into itself.

Throughout this paper, T denotes a closed operator with domain D, and range
in a complex Banach space X. C is the complex plane and C.. denotes its one-point
compactification. All topological attributes for sets in C,, will be referred to the topo-
logy of C... If EcC,,, then E°=C_—E and E is the closure of E. For all operators
involved in this paper, &(-) denotes the extended spectrum. For a linear operator 4,
0(4A) is the resolvent set and R(- ; 4) denotes the resolvent operator. Further nota-
tions will be given later.

We recall some basic concepts from [2), [5] and {6). For x¢X and A€C.,
A€d(x) if there exists a neighborhood U of 1 and there is a function f,: U—Dy,
analytic on U such that

w—"7fi(w = x, peUNC.

Such a function f is said to be T-associated with x. Given T, there exists a unique
maximal open set QrCC.. such that, for every set GC Q,; and every analytic
function f defined on G, the equation '

w—-T)f(w) =0, peGNC
implies that f(#)=0 on G. Put S,=Q% and for any x€JX, let

yr() = 8: (9 0r( = 1 @USr, er() = or(y.
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Given T and FcC_, define the linear manifold
XT(F) = {xEX: G‘T(x) C F},
which is non void only if FoS; [5).

For a subspace (closed linear manifold) Y of X, we write YcI(T) if
T(YNDPCY and Y€l if YCDy and T(Y)CY. For aclosed FCC,,, define

I(T, F) = {YeI(T): o(T\Y) C F}, Irp= {YcI;: o(T)Y) C F}.

The inclusion C defines a partial ordering in the families (7, F)and Iy . If I(T, F),
(I, ¢) has an upper bound belonging to I(T, F), (Ir g), denote it by X(T, F) (resp.
Xr.p).

Y€I(T) is said to be a spectral maximal space of T if, for every ZcI(T), the
relation o(T|Z)<o(T|Y) implies ZcY. It follows easily that if FcCC,, is
closed and X (T, F) exists, then X(T, F) is a spectral maximal space of 7. Conversely,
if Y is a spectral maximal space of T, then Y=X(T, F), with F=o(T|Y).

Let ScC,, be closed and let n be a given positive integer. The family of open
sets {Gs, G, ..., G,} is called an (S, n)-covering of a closed set F, if

U(OG,)DFUS, G,nS=ﬂ for i—‘—"—-l,z,...,".
i=1

1.1. Definition. Given T, suppose Sco(T) is closed and n is a positive
integer. T is called (.S, n)-decomposable if, for any (S, n)-covering {Gs, G4, G, .., G,
of a(T), there exist spectral maximal spaces X;,Cc Dy, (/=1,2,...,n) and X of T,
such - that

X=Xs+ ZX,', U(T'XS)C Gs, O'(TIX,)CG, (1=1,2, ...,n).
i=1

If Tis (S, n)-decofnposable for every positive integer n, then T is called S-decompo-
sable.

Next, we list a few known properties that will be used in the sul;sequent theory.

1.2.- Lemma. (3] Given T, }et F be closed such that S;cFcC.,. If Xp(F)
is closed, then X{(F)=X(T, F).

1.3. Lemma. [3] If T is (S, 1)-decomposable, then S+CS.
1.4. Lemma. [3] If T is (S, 1)-decomposable and F>S is closed, then
Xr(F)=X(T,F) and o[T|X¢(F)]C F.

1.5. Lemma. [2,7) If T and YcI(T) are such that ¢(T)Ue(T|Y)#C, then
'he coinduced operator T on the quotient space X|Y is closed and a(T)C a(TYUs (T|Y),
o(T|Y)ca(TYUs(T), o(TYca(TYUa(T]Y).
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1.6. Lemma. [8) Given T, every spectral maximal space Y of T is hyperinvariant
under T, in particular, (T |Y)ca(T).

1.7. Theorem. [1] Given T, for every x€X and 24€C, the following assertions
are equivalent:

(i) there is a neighborhood 6 C C of 2y and there is a function f: §—~Dr, analytic
on d, satisfying

A-D)f() = x;

(ii) there are numbers M =0, R>0 and a sequence {a,}>> ,CD, with the follow-
ing properties.

@) (h—Tay=x; (®) (l—T1)C+y =0, (©) alf = MR" (n=0,1,...).

2. Some properties of (S, 1)-decomposable operators

2.1. Theorem. Suppose that T is (S, 1)-decomposable, H is closed in C_,,
HNS=0. Then X1 g exists and

(2]) . XT(SUH) = XT(S)@XT,H'
Proof. Put F=SUH. Lemma 1.4 implies that
X (F)=X(T,F) and o[T|X;(F)lc F= SUH.

Refer to {3, Theorem 1], consider S;=8,=S in the hypotheses of Part (2) of the
proof, note that the proof holds for (S}, 1)-decomposable operators (7=1, 2) and
conclude that Xy y exists and

22 ' Xr(F) = Zs® X4

where Z¢€I(T) and o(T|ZgcS. It remains to show that Zg=X(S). The
existence of X;(S5) follows from Lemma 1.4 and the inclusion - Z;C X4(S) is evi-
dent. Since ¢[T|X7(S)ICSCF, we have X1 (S)C X7 (F). Letting oy3=0(T|Xr ),
it follows from [3, Theorem 1] that o is bounded. Let D be a bounded Cauchy do-
main such that oey,cDcDcS° with the positively oriented boundary dD. Put

—_ 1 ~1
P,,—-ﬁa[ [A— T|Xp(F)]* d2.
It follows from X (S)CXr(F) and o[T|X1(S)]CS, that for every x€Xr(S),

we have

1
—_— — ~1 —_ | — =1, =
Pax = 5o Df (=T (O xdh = 5 4 [ — T|X7(S)] " x dA = .
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Therefore, X (S)cZg and hence
(23) XT(S) = Zs.
Relations (2.2) and (2.3) conclude the proof.

2.2. Remark. By the method used in the proof of Theorem 2.1, we can actually
prove a more general result: If 7 is (S, 1)-decomposable and F, H are disjoint closed

sets with F> S, then
Xp(FUH) = X+ (F)D X7, 4.

2.3. Theorem. Suppose that T is (S, 1)-decomposable and F, H are closed sets
with F5S and S(\H=0. Then

24 Xe(F)N X7y p = Xr,pon-
Proof. By Theorem 2.1, we have

Xp(SUH) = X¢(S)® X1y, X7 [SUFNH)] = X (S)®Xr,rrn-
Consequéntly,
@2.5)  [Xr(S)® X7, ul N Xr(F) = Xp(SUH)N X (F) = X;[(SUH)NF] =

= X [SUFNH)] = Xr(S)® X1,FnH.
The following evident relations
Xy (S)+[Xr(F) N X1, ] © Xp(F).

X))+ X (FYNXy gl € X2 (S)D X1y
imply :
(2.6) X () +{ X (F)NXy 4] € [Xp(S)® Xp, y] N Xr (F).

From (2.5) and (2.6), we obtain

@7 Xr(S)+[Xr(F)NXrp) € Xr(S)® X1, Frvm-
Since, evidently
2.8) XT(F)mXT,II D Xrrans

(2.7) is actually an equality. Moreover, the left-hand side of (2.7) being a direct sum,
we obtain

(2.9 X+ (S)S[Xr(FYN X4l = X1 (S)D X1, pu -

Now, (2.8) and (2.9) imply that

XT(F)OXT,H = Xr,ron
and hence (2.4) follows.
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. 2.4, Theorem. Suppose that T is (S, 1)-decomposable, and Hy, H, are closed
disjoint sets such that H;N\S=0, i=1,2. Then

(2.10) Xr,mun, = Xr,m,® X1, 11, -
Proof. It follows from the relations
Xr,g,N Xr 4, © Xp, g, M[X7(S)D X5, 1,] = X1, 5, N X7 (SUH))
and from Remark 2.2, that
@1y o Xr,u,N X1, 1, = {0}.
Since X7,y ypn,DXr, 5, ((=1,2), (2.10) would follow from (2.11) if we could prove
2.12) Xrmuon, © Xrg,+ X1 5,

Let V=T|X; 4y, Then o(V)cH,UH,. Therefore, the] sets o =a(V)NH,
are disjoint spectral sets of V.-It follows from [4, V. Theorem 9.2] that

XT H,UH, = Z}11®ZH2 and U(V'Z") = 0'" (l = 1 2)

Smce Vis bounded, T|Z, =V|Z, are also bounded and then Zy €Iy, (i=1,2).
Hence Zy Xy, (=1, 2) and (2 12) follows.

2.5. Theorem. Suppose that T is (S, 1)-decomposable and H is a closed set
satisfying H(S=0. Then X(T, H) exists and X(T, H)=Xr p.

Proof. By Theorem 2.1, Xy 4 exists. If S is bounded then T is bounded [6,
Proposition 3.1] and the statement of the theorem is evident. So suppose that e€S.
Then HNS=@ implies that H is bounded. As we mentioned in the Introduction,
for every operator appearing in this paper, we consider the extended spectrum. Hence,
for each Y€I(T, H), o(T|Y)CH implies that the extended spectrum o(T'|Y)
is bounded. Then Y€I; ; and hence I(T, H)CI; y. On the other hand, we evi-
dently have I ,cI(T, H). Thus,

.13) " I(T,H) = I g
and the conclusion of the proof follows immediately from (2.13).

2.6. Theorem. Suppose that T is (S, 1)-decomposable and G is open in C_,
such that GNS=0. Then the coinduced operator T® on the quotient space X|Xr g
is closed and o(T®)CG".

Proof. Let 1€G and let GsoS be open in C_, such that {Gg, G} is an (S, 1)-
covering of 6(T’) and 2¢Gs. By Lemma 1.4 and Theorem 2.5, X1(Gy) and X o
are spectral maximal spaces of 7. Consequently,

(214) ) X’-—-“ X?'(GS)+XT,G'
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Let == denote the topological isomorphism between two Banach spaces. In
view of (2.14),

X/Xr,g = Xr(Gs)/Xr(Gs) N Xr,5.
It follows from Theorem 2.3 that

Xr(G)NXr g = X1,6,nc
and hence

2.15) X/Xr,g = X1(Gs)/Xr,65nc-

In view of (2.15), T can be considered as an operator on X7(Gs)/ X7, Geng- Since
764Gs and o[T|Xr(Gy)) U o(T|X7, 6:ne)< G, it follows from Lemma 1.5 that
7€ is closed and 4¢(TC). As 2 is arbitrary in G, we have ¢(T%)<G".

3. Equivalence of closed (S, 1)-decomposable and S-decomposable operators

3.1. Theorem. Suppose that T is (S, 1)-decomposable and G C is open in C,,

such that GNS=0. Let {f,}>., be a sequence of analytic Dr-valued functions defined
on G, with the property

3.1 (D) =0G-Df(A) -0 as n—o
in the strong topology of X and uniformly on every bounded subset of G. Then
' £i() =0 as n-—oo
in the strong topology of X and uniformly on every bounded subset of G.
Proof. We may suppose that
= {4€C: [l < R,R = 0}.

By decreasing R, we may suppose that (3.1) holds uniformly on G. Let R, with
0<Ry<R be arbitrary. Choose the numbers R,, R;, R;, R, such that R0<R1
<R;<R;<R,<R and put

G;=1{C: ] <R}, j=0,1;
= (A€C: R, = |)| = R}; H’ = {i€C: R] = |l = R}}.
By Theorem 2.6, the coinduced operator T# on X/X7. g is closed and
3.2 o(T") c (H°),
where H°={l¢C: R,<[A|<R,}.

If x€X and fis an X-valued function, then we use the notations £=x+X7 g
and f(1)=f(1)+Xr,y for the cosets in the quotient space X/Xy y. In X/Xr g,
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the convergence (3.1) gives rise to
b = Q=T () ~ 0 (n~)

in the strong topology of X/Xr 4 and uniformly on G. In view of (3.2), (A—T")"!
is uniformly bounded on H’ and hence

) = Q=TH () -0 (n )
in the strong topology of X/Xy y and uniformly on H’. By the maximum principle,
fn(}") -0 (n _’oo)

in the strong topology of X/X; y and uniformiy on G,.
For 1€G and n=1,2, ..., let

L) = 2 an it
k=0
be the power series expansion of f,. Then
fn().) = kg(; d,,k )»k.
By the Cauchy inequalities, we have

Gl = &,/RE, n=1,2,..., k=0,1,.

where B
& = max {|fL(DI: 216G} ~0 (n—+<o).
For every 4., there is b, €d,, such that |b,l=2|d,l|. For every n, let
(3.3) g.(1) = kg(" b AX.
Then

gDl = k;(') Nbaell - 121 = 2e, kzo |A*/RY, 2€G,

and hence the seties (3.3) is absolutely and uniformly convergent in Gy, with
(34 len (Dl = 2¢,Ry/(R,—Ry) - 0, A€G,.

Since b€d, implies that £,(2)=g,(1) on G,, we have

3.5) | k() = fu() — 8, (DE X7, 2€Go.

Next, consider positive numbers R, R[, R}, R, related by the inequalities
R,<R,<R;<R,<R,<R, and put A={1cC: R =|}|=R,}. All the above conclu-
sions remain valid for R,, K], R,, R, substituting R,, R}, R}, R,, respectively. Hence,
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for n=1,2, ..., there exists an X-valued analytic function £, with
35) 18Dl = 286, Ro/(Ry—Ry) - 0, 2€G,,
where g, is the analogue of ¢,. Furthermore, we have . -
G.7) k() = f,() —2.(WEXr.n, “A€Cy.
Now, subtract (3.7) from (3.5) and use (3.4) and-(3.6) to obtain
B8 Ik, (=KD = 112D — D] = 2(e +E) R/ (Ry— Re) ~ 0; 2€Go.

Since H and H are disjoint bounded closed sets with SN H=0, SNH=0, Theorem
2.4 implies that :
Xraua = Xr,n® X1 -

Hence, there is M=0 so that, fo; xEXT,H and X€X; g5,
(3:9) lxll + 1% = Mix+ x|
It follows from (3.8) and (3.9) that
(3.10) Ik, (D = 2(e, +E)MR,J(R,— Ry) —~ 0, AcG,.
Thus, (3.5), (3.4) and (3.10) imply that
1/ = 1k, (D] + llgn (DIl ~ O
uniformly on G,. Since R,€(0, R) is arbitrary, the proof is complete.

It is easily seen that if {£,} in Theorem 3.1 is replaced by a double sequence, then
the conclusion remains valid.

3.2. Corollary. Suppose that T is (S, 1)-decomposable, GcC is open in C..
such that GNS=0. If {fum: G—Dy} is a double sequence of functions, analytic on
G such that

in the strong topology of X and uniformly on every bounded subset of G, then
Jam(A) =0 (n,m —~oo)
in the strong topology of X and uniformly on every bounded subset of G.

3.3. Theorem. Let T be (S, 1)-decomposable. If for x€X there is a sequence
{f.: G—~Dy} of analytic functions on an open set GCC with GNS=0, such that

(311) : Ix=@-DLA] -0 @ —~e)

uniformly on every bounded subset of G, then GC gr(x).
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Proof. Put f,(A)=f(A)—f.(A), AEG. Corollary 3.2 implies that f,,(1)—~0
(n, m—<o) in the strong topology of X and uniformly on every bounded subset of G.
Then the function f: G—+1X, defined by

) = lmf)
is analytic on G. Since T is closed, (3.11) implies that
312  fO)eDy and (—T)f() = x for A€G.
Since, by Lemma 1.3, GNSycGNS=0, (3.12) implies that Gop(x).

3.4. Theorem. Suppose that T is (S, 1)-decomposable, FCC.. is closed such
that X(T, F) (resp. X g) exists. Then for every (S, m)-covering {Gs, Gy, ..., G}
of F, where m is a positive integer, we have

(313 " X(T,F) € Xp(Go)+ 3 Xr.g,
ic1

respectively, A

@ XT FC XT(GS)+ ZXT G:*

Proof. We confine the proof to (3.13), that of (3. 13’) being similar.
If S is bounded, the statement of the theorem is [2, Theorem 4]. Therefore, we
suppose that «€S. We divide the proof.into four parts.

Part A. Assume that m=1. Then {Gs,G.} is an (S, 1)-covering of F. Let
H=Gs(\G,. Then HNS=0 and by Theorems 2.1 and 2.6, Xy, 4 exists, the coin-
duced operator T on X/X; y is closed and

(3.14) - o(TP) < (GsNGY-.

For the cosets in X/X7 y and for the X/Xy yz-valued functions we use the notations
introduced in the proof of Theorem 3.1.

Let x€X(T, F) and put x(A)=[A—T|X(T, F)]~'x, for AcF°. It follows from
(A—T)x()=x, that (A—TH£(L)=%, AcF°. In view of (3.14), the resolvent oper-
ator R(4; T¥) is defined for A€GsNG;. Define :

(2, i AP,
f(’l)“{R(z 0z, if A€GsNG,.

Clearly, f is well-deﬁned and is analytic on F°U(GsNG,). Since «~€ScGs, F—Gy
is bounded. Let D be a bounded Cauchy domain such that F—-GgscD and
DN(F-Gy)=0. If BD is the pos1t1ve1y oriented boundary of D, put

@1 . ffwdz fmtetu
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Evidently, %, is independent of the choice of D. Now (3.15) gives rise to the following
representation of x:

(3.16) X=Xxo+x+y, with x¢e% (=01, yeXyy.

Part B. In this part we prove that x,€Xr(Gg)+ Xy, G,

Let 2,4 SUG, and let § be a neighborhood of 4, so that NS UG)=0. We
may choose the Cauchy domain D satisfying DNé=0. For A€d, we have success-
ively

JECh i‘(u) [A=THiw (i—T”)i(u) i

H
T)Zm 2m,;
1 x
= S o) A #a’u+27r ff(u)du Zo.

By Theorem 1.7, there is a sequence {4,}:> D, and there are numbers M =0,
R=0, such that

B17)  (Ae—TMdo = %o, (A—TM 41 = ds, ldal = MR, n=0,1,....

By the definition of D,x, 4,NDy#9. Let a,€4,NDy. Then 4,=a,4+ Xy gDy
and hence we may choose a, to satisfy the inequality [a,[=2]4,l, n=0,1, ....
In view of (3.17), we have

(3.18) (Qo—Tay = x4+ by, (Qo—T)ay11 = Gy+byyn,
lall = 2MR", n=0,1, ...

where {b,};.,C X g Let

| 4,0) = Zala=0, B = 2 bi(o—F.
Then, it follows from

. G(TIXT,H)HSCH05C6105=0,
that for A¢€é,

—N)[4,(3)— AT\ X7, 5) ' B,(A)) = (A—-T)4,(A) — B, () =
= xo—a,(ly—A)"+1.
Let 8,={A€C: |A—Aj}<1/2R}. For A€8NJ,, the last inequality of (3.18), implies

"an" * I)‘O_"'I’H‘l = M/Z'lR - 0 (n —»oo)
and hence } .
I(A—T)[A4n (D) — (A= T| X1, &) ' Bu ()] — Xoll = O,

uniformly on 6Nd,. By Theorem 3.3, 6Nd,Cor(x,) and hence A,€05(x,). Since
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4,4 SUG, is arbitrary, we have o;(xg)=SUG,. Thus,
(3.19) X€ X (SUG) = X1 (S)® Xy,5, © Xr(Gs)+ X715,

Part C. In this part we show that x,€ X7(Gs). Let 1,4 Gg. There exists a neigh-
borhood y of A, such that N\ Gs=0. We can choose a Cauchy domain D such that
Do3U (F—Gs). Then for A€y, we obtain successively

B
-1 ff(u) a =L [ G )f(u) "
X

- 2m ff(ﬂ) 2m T—_Ad# AT =R

27!1 8D

By repeating the method used in Part B, one obtains
3.20) x, € Xr(Gy). .
Part D. Tt follows from (3.16), (3.19), (3.20) ar_ld y€Xr yCXr(Gs), that
_ X(T, F) c X1(Gs)+ Xr,g,-
A subsequent repetition, via induction on m, leads one to (3.13).
3.5. Theorem. Every closed (S, 1)-decomposable operator is S-decomposable.
Proof. Let {Gs, Gy, ..., G,} be an S-covering of ¢ (7). By Theorem 3.4, we have

X = X[T, o(T)] C X7(Gs) + _Z]'lz‘l’r,al cX

and hence T is S-decomposable.

4. The spectral residuum

4.1. Definition. Given T, let £(T) be the family of all closed sets S such that
SycSco(T) and T is S-decomposable. If there exists S*€Z(7) such that
S*c S for any S€Z(T), then S$* is called the spectral residuum of T.

42. Theorem. The spectral residuum exists for every closed operator T.

Proof. We only sketch the proof because it is similar to that of [2, Theorem 6].
Since 6(T) is in X(T), Z(T) is nonempty. Let {S,: a€ A} be a totally ordered sub-
family of Z(T) and let Sy=N{S,: acA4). If HCC.. is a closed set disjoint from S,
then, since C.. is compact, there is a€.4 such that HNS,=0. Hence an S,-covering
of o(T) is an- S,-covering of ¢(T) for some a€A. Since T is S,-decomposable, it is
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also S,-decomposable. By Zorn’s lemma, there is a minimal element in Z(7). It
remains to prove that, for S;, S,€Z(T), S=S,NS£Z(T).

Let {Gs, G} be an S-covering of ¢(T). In view of [3, Theorem 1 (6)] or [2, Theo-
rem 6], we may choose open sets Gs, G; (i=1, 2), such that

(4.1) Gsi D S,'UGS, i= 1, 2;
(4.2) Gsln GS;: = GS’
4.3) G;cG, GNS; =0, GUGs;>G, i=12"

Thus, {Gs, G;} (i=1, 2) is an (S, 1)-covering of o(T). Let G’s, be open in C., such
that ngéGsz and {Gj_, G»} is an (S,, 1)-covering of ¢(7). Since T'is S,-decompo-
sable, we have

4.4 X = X1(Gs,) + Xr1,g,-

Since T is §;-decomposable (i=1, 2), X ; exists by part 2 of the proof of [3, Theo-
rem 1]. It follows from G,—G and (4.4), that

@.5) X = X1 (Gs,)+ Xr, 5.
Put F= (—}gzﬂa(T ). Since X. T(G;g) is a spectral maximal space of T, by Lemma 1.6,
o[T1X:(G5)] < o (T). |
o[TIXp(Gs)l < Go,Ne(T) = F
and it follows easily that X. r(Gy,) is the upper bound of 1(T, F), i.e.
(4.6) X1(Gs,) = X(T, F).
Furthermore, SrCS,NS,=SCGs and (4.2) imply that X;(Gj) exists and .
X1(Gs) = X1(Gs) N X7 (Gsy).
Hence X,(Gy) is closed. Similarly, $=S5;NS, implies that
X1 (S) = Xr(S) NXr(Se)

and hence X;(S) is closed.
By (4.2), we have G5 NGs G, and hence

Thus, we have

F= Gs,No(T) € Gs,N(Gs,UGy)  G5,NGs)UG,  GsUG,.
Next, we prove
@n X(T, Fyc XT(GS)+XT,61'

Let H=GsNG,. Then HNS,cG,NS,=0. Since T is S;-decomposable, -Xr g
exists by Theorem 2.1, the coinduced operator T# on X/X; g is closed and- ¢ (TH)c
c(GsNG,)° by Theorem 2.6. By repeating parts A, B and C of the proof of Theo-
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rem 3.4, one obtains that, for every x€X(T, F), x=xp+x,+y, where ycXr y,
0:(x)cGs and or(xg)cSUG,. Hence

“4.8) . y€Xr,x C X (Gy),

“.9) x € X7 (Gy).

As for x,, by repeating the proof of Theorem 2.1, we obtain
4.10) X0€ X7 (S)® Xr,g, < X1(Gs) + X1,

Thus (4.7) follows from (4.8), (4.9) and (4.10). In view of (4.3), we have X g CX; o
and then, with the help of (4.5), (4.6), (4.7), we obtain’

X = X7(Gy) + X1,5-
Thus, T is (S, 1)-decomposable. Theorem 3.5 concludes the proof.
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