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On commuting unbounded self-adjoint operators. I

KONRAD SCHMUDGEN

Dedicated to Professor B. Székefalvi-Nagy on the occasion of his 70th birthday

Let A and B be unbounded self-adjoint operators in a Hilbert space # which
are both essentially self-adjoint on a common dense domain 2S99 (AB)N2D(BA)
in 3 and commute on 9. We then write {4, B}¢®R,. It is well known that the
spectral projections of 4 and B may fail to commute for {4, B}¢N,. The first
counter-example was constructed by NELsoN [10]; see also [6], [9], [13], [15]. In this
paper we begin a study of this phenomenon in terms of commutators of bounded
operators. In the present paper we restrict ourselves to the case where the spectra
o(4) and o(B) are both different from the real line. A similar approach is possible
in the general case if we use the Cayley transforms of A and B. But the methods
of construction are somewhat different in that case (we have to deal with commutators
of two unitaries).

Suppose that a€ R;\o(4) and BER,\o(B). In Section 1 we characterize the
couples {4, B} in R, in terms of the bounded self-adjoint operators X :=(4—a)~?
and Y:=(B—p)~'. We show that {4, B}e®, if and only if Z(X,Y)NZ(X)=
=R(X,Y])NA(Y)={0}. Probably the simplest example of this kind for which
[X, Y]#0 is given by X=Re S, Y =Im S, where S is the unilateral shift. There-
fore, {4:=(Re S), B:=(Im S)71}¢N;, but A and B do not commute strongly.

In the remaining sections of the paper we establish pairs of bounded self-
adjoint operators X, Y having these properties. We describe three typical situations.
All irreducible pairs in RN, for which the commutator [X, Y] has rank one are
. classified in Section 2. Here we use the principal function [11] of the pair X, ¥ and
the tracial bilinear form [8]. Toeplitz operators (mainly with polynomial symbols)
are considered in Section 3. In Section 4 we study pairs of the class R, obtained
by taking real and imaginary parts of certain one-dimensional *“perturbations”
of normal operators.
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Let us fix some notation. If 7 is an operator in a Hilbert space 5, then we
use U T), #(T), Z(T) and o(T) to denote the domain, the kernel, the range
and the spectrum of T, respectively. For a subset 2 of o, is the closure of
A in the Hilbert space norm. We denote by N, and N the non-negative, resp.,
positive integers.

1. The class 0N, .

Throughout this section, let 4 and B denote self-adjoint operators in a Hilbert
space #.

1.1. Definition 1. We say that the couple {4, B} is of the class N, if
there exists a linear subspace 2 of # such that

(1) 2CS2(ABYNP(BA) and ABp=BAep. for all ¢cP.

(2) @ is dense in .

(3) A+ 2 and B} 2 are essentially self-adjoint*) (e.s.a.).

Remarks. 1. Suppose that {4, B}¢®R,. If 4 (or B) is bounded, then A
and B strongly commute (that is, by definition, the spectral projections E() of
A and F(u) of B commute for all 2, u€R;). We sketch the proof. Since A is
bounded and Bt 9 is e.s.a., (1) extends by continuity on %(B), i.e., ABp=BA¢
for all @€2(B). Since B is self-adjoint,. this gives [4, F(u)]=0 for u€R, and
hence [E(4), F(u)]=0 for A, ueR,.

2. A pair {4,B} in 9, is said to be irreducible if each decomposition # =
=H,® M, A=A, DAy, B=B,HB,, where 4; and B, are self-adjoint operators
in the Hilbert spaces 3, j=1,2, is trivial, that is, ={0} or #4={0}. Ob-
viously, this is the case if and only if each projection commutmg with 4 and B is
either 0 or 1. . _

1.2. As mentioned above, we restrict ourselves in this paper to the case where
a(A)=R; and o(B)>*R,. Suppose that acR\o(4) and BeR\o(B). We
now reformulate the conditions occurring in Definition 1 in terms of the bounded
self-adjoint operators X:=(4—a)~! and Y:=(B—f)"L.

For let P denote the orthogonal projection of s# on Z([X,Y]) and let
9(A, B):=XY(—P)H.

Definition 2. If {4, B}¢R,, then d(A4, B):=dim Ps# is called the defect
number of the pair {A B}.

*) Recall that a symmetric operator T is called essentially selfadjoint if its closure T is self-
adjoint. Thus (3) means that A} %=A4 and B} 2 =B.

9‘
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It is easy to check that d(4, B) does not depend on the choice of o€ R;\a(4),
BER\d(B). Moreover,” 4 and B commute strongly if and only if X and Y
commute, that.is, d(4, B)= 0

Lemma 3. 2(4, B) is the Iargest linear subspace of # satisfying (1).
Moreover, 2(A, B) =XY((-P)H# =YX(I—P)H# =2(B, A).

Proof. Suppose that ¢c2(4B)NP(BA) and AB¢=BA¢p. Then, ¢o=XY¢=
=YXn for some & n€A#. (A—a)(B—P)p=n and (B—B)(A—a)p=¢ imply that
¢=n. Hence O={((XY—-YX)¢, )=, —(XY—-YXW) for all yec#, ie. &1 P#
and thus ¢=XY({I—P)€P(A, B).

Conversely, let @=XY({I—P). for some Eci#. In particular, (I—P)¢,
—(XY-YXP({I—-P)E)=0=|(XY ~YX)I—P)|>. Therefore, @=XY{I—-P)=
=YX({I—P)¢ which gives ABp=BAp. Moreover, this shows that XY(I—P)# <
CYX(I—P)s#. Replacing XY by YX, we get YX(U—P)H# CSXY(I—P)# thus
completing the proof.

Lemma 4. 9(A, B) zs dense in # if and only if (X, Y]) NR(XY)={0}.

_ Proof. @(d4,B)=#(YX(I—P)) is dense if and only if H((¥X(I—P))*)=
=A(I-P)XY)={0}. Obviously, ¢@eA#(I—P)XY) is equivalent to XYo¢
€2([X,Y]). This gives the assertion, because A(X)=AH(Y)={0}.

Lemma5. A} 9(4,B) is esa. if and only if
' Px’n@(m:gT([TY])nge(Y) = {0}.
Bt 9(4, B) is e.s.a. if and only if
| P#N2(A) = Z([X, YDNR(X) = {0).

Proof. We only prove the first assertion. Since (4—a) =X is a bounded
self-adjoint operator, A} 2(A4,B) is es.a. if and only if (4A—a)2(4, B)=
=Y(I—P)#=R(Y(I-P)) is dense in o or equivalently if 4 ((I—P)Y)={0}.
Since A (Y)= {0}, the latter is equlvalent to PHNAY)= {0} which completes
the proof.

In case that- @([X Y] is closed. the next Lemma gives a charactenzatlon of
the class 9, only in terms of domams

r Lemma 6. If {A B}Eﬂll, then 9(AB)ND(A)= @(BA)O@(B) 2(AB)N
ND(BA)=2(A, B) (and, by definition, this domain is dense in ). Conversely,
suppose that R([X,Y)] is closed. If 2(A, B) is dense in 3¢ and Q(AB)ﬂ@(A)_
—Q(BA)ﬂ@(B) DABYND(BA), then {A, B}eN,.
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Proof. Suppose that {4, B}€R,. Since XY(I—P)#=YX(I—-P)# by
Lemma 3, it is clear that Z(ABYND(A)2P(AB)ND(BA=YXH# NXYH 2
2 XY(I-P)#=2(4,B). Now let ¢=YX,=XncD(4B)ND(A). Then,
X(n—-Y&)=[X, Y](=&). Since {4,B}eR,, ZX)NA(X,Y])={0} by Lemma 5.
Hence X(n—Y&)=0 and, since #/(X)={0}, n=Y&. As in the proof of Lemma 3,
XYE=YXE implies that &1 Z([X,Y)). Therefore, ¢(=(I—P)¢ and ¢=
=YX(I—-P)t€D(4,B) which proves that 2(4, B)22(4AB)N2(4). Changing
the role of 4 and B, we get 2(BAND(B)=2(4, B).

We now prove the second assertion. Set 2=2(4, B) in Definition 1. Then
(1) and (2) are satisfied by Lemma 3, resp., by assumption. We show that
R([X, YDNA(X)={0}. Suppose that ¢:=[X, Y]é=Xn for some & n€s¥. Then
Vi=XYE-Xn=YXEcD(A)ND(AB). By assumption, Y€ D(BA), that is, Yy=X¥Y{
for some (€s#. Hence X(Y¢—n—Y{)=0 which gives n=Y(£—{). Therefore,
n€A(Y) and @eR(X,Y)NAXY). Since we assumed that 2(4, B) is dense,
Lemma 4 gives ¢=0. This proves Z([X, Y)NA(X)={0}. From Lemma 5 (recall
that Z([X, Y]) is closed !) we conclude that B} 2(4, B) is es.a. Similarly,
At 9(4,B) is es.a. Thus {4, B}eR,.

Remarks. 1. If we do not assume that 2(4, B) is dense, then the equality
of the domains in Lemma 6 does not ensure that {4, B}¢®R, in general. For an
example, recall that there are unbounded self-adjoint operators 4 and B so that
2(A)N2(B)={0} ([17]). Then, 2(AB)ND(A)=2(BA)ND(B)=2(AB)ND(BA)=
=9(4, B)={0}, but {4,B}¢N,.

2. The second assertion in Lemma 6 is no longer true if we replace the density
of 2(A4,B) by that of 2(4AB)N2(BA). To prove this remark, let s =L%1, 2),
let X be the multiplication operator by x, and let Y =7+ H/2, where H is the
finite Hilbert transform in L%(1, 2). Then X and Y have bounded inverses denoted
by A rtesp. B. Moreover, [X, Y] has rank one and 2(4B)=2(A)=2(BA)=
=9(B)=s, but {4, B}¢N, by the first remark in 1.1.

3. It follows from the preceding thatif {4, B}E N,, then we can take D=92(4, B)
in Definition 1. :

1.3. Theorem 7. Suppose {4, B}¢R, Suppose also that a€R\o(4) and
BERNG(B). If X:=(A—)™' and Y:=(B—P)~%, then '

@ HEX)=H®) ={0} and F({XYDNRX) = Z(X, TDNAF) = {0}.

Conversely, if X and Y are bounded self-adjoint operators satisfying (4), then

{4:=X"1+a,B:=Y 1+ B}cM, for «, PER,. 84
o BRI ot ond ey B e GRS N L B hulmw
The proof of Theorem 7 follows immediately from the three Lemmas 3, 4 and

5 above.
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2. Pairs with defect number one

In this section we classify, up to unitary equivalence, all irreducible pairs
{4, B}e9, with defect number one for which o(4)=R, and ¢(B)=R,.

2.1. We first collect some facts concerning bounded operators with rank one
self-commutstors. A very readable account of this theory is given in [3]; see also
(111, [2], (8], [4].

A bounded operator T in 2 is said to be completely hyponormal if T is
hyponormal (that is, [7*, T]1=0) and if T has no nontrivial reducing subspace on
which it is normal. Suppose that T is completely hyponormal and that
dim Z([T*, T])=1. The essential underlying result for our study is the following.
There is a function g(x, y)€L}(R,) with compact support such that

1 dp 0 dp 0
) Tri[p(xn,q(x,r')1=2—n/ (gt~ g2 et ndxay

for all polynomials p and g in X and Y. Moreover, 0=g(x, y)=1 a.e. on R,.
g=gr is called the principal function of T. It was introduced by Pincus [11].
gr is a complete unitary invariant for 7, that is, two completely hyponormal
operators T and T with rank one self-commutators are unitarily equivalent if
and only if their principal functions g; and g, coincide (considered as elements
of LY(R,)). Moreover, for each function g€ L*(R,) with compact support satisfying
0=g=1 there exists a completely hyponormal operator T with principal function
g such that dim £([X, Y])=1.

We now return to the class R,. Let {4, B} and {4, B} be pairs of the class
9N, in Hilbert spaces # and #. {4, B} is called unitarily equivalent to {4, B}

if there is an isometry U of 3 onto # such that 4=U*4U and B=U*BU.
In that case we clearly have U2(4, B)=9(4, B). As in Section 1, we assume that
ac RN\ a(4) and BER,\o(B). It is easy to see that {4, B} is unitarily equivalent to
{4, B} if and only if a¢o(d), B¢o(B) and Ti=X+i¥=(A—a) '+i(B—p)~?
is unitarily equivalent to T:=X+i¥=(4—a)~ 1+z(B P~ Moreover, {4, B}
is irreducible if and only if T is irreducible.

Suppose now in addition that d(A4, B)=1. Then the self-adjoint operator
D:=[T*, T] has rank one and therefore either D=0 or D=0. Obviously, sign D
is a unitary invariant for {4, B}¢®,. By changing the role of 4 and B in case
D=0, we can restrict ourselves to pairs {4, B}¢®R, for which D=[T*, T]1=0,
that is, T is hyponormal. Since D has rank one, {4, B}¢®R, is irreducible (or
equivalently, T is irreducible) if and only if T is completely hyponormal. There-
fore, under the above assumptions (i.e., d(4,B)=1,aeR\0d(4), B¢R,\d(B)
and [T* T]1=0), gr is a complete unitary invariant for irreducible {4, B}eR,.
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To proceed in the converse direction, it still remains to decide when a given
completely hyponormal operator with rank one self-commutator leads to an (ir-
reducible) pair {4, B} in RN,. The answer is contained in

Theorem 1. Suppose that T is a completely hyponormal operator in the Hilbert
space ¥ with rank one self-commutator. Let g be the principal function of
T,X=ReT and Y=ImT. Let Xy, yo€Ry. Then the inverses A:=(X—x,)?
and B:=(Y—yy)! exist. {4, B}N, if and only if ffg(x, P(x—x0)~2 dxdy=
= [ [e(x, y)(y—yo)~2dxdy = +co.

'2.2. In the proof of Theorem we use the following easy

Lemma 2. Let N be a bounded operator in # and Iet o, yEH. Let
{z,, n€N} be a zero sequence of complex numbers such that z,¢o(N) for all nEN,

0 If ligln (N—z)y W=¢, then No=y.

(ii) Suppose that N is normal and that A (N)={0}. Suppose that

= sup |z,|(dist (z,, 6(N))) ! <o
neN :

If No=y, then linm(N——z,,)“llP=§0.

Proof. (i) y=NN-2z,) Y —2,(N—2z,) Y ~>Np—0¢ as n—~==, ie., No=y.
(ii) Letting N= f zdG(z) be the spectral decomposition for N, we have

[0—GAOz(N—z) 0|t = [ leaflz—2]2dIG@0IP = [d|G(2) o] <.
a(\(0}
The dominated Lebesgue theorem yields li{.n (I-G({OD))zAN—2z,)2¢=0. Since
A (N)={0}, we have G({0})=0 and therefore ]i"m z(N—z,) 19 =0. Therefore,
N—-z) W=z (N—z,) ¢+¢@—~0+¢ as n—o, which completes the proof.
Proof of Theorem 1. Since T is hyponormal and dim Z([T* TDH=1,
there is a vector £#0 in s# such that [T* T]=2i[X,Y]=¢(®¢ Since T is
completely hyponormal, the operators X and Y are absolutely continuous ([12],
Theorem 2.2.4 or [3], Theorem 3.2). In particular, (X —x)=A (¥ —yo)={0}.
Hence the inverses 4 and B exist and are self~adjoint operators in 2.

By induction it follows that 2/[X"*+!, ¥Y]= ZX’ EQX"IE for neN,. There-
fore, Tr2i[X"*, Y]=(n+1)(X"¢, &). Applymg the tracial functional calculus in
case p(X Y)= X"“, q(X, Y) Y, weget o .

Trz[X"“ Y] = (1/27:) [f (n+1)x"g(x, ¥) dxdy.
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Putting both together, we conclude that
©) p(X)E, & = [[p()a(x, y)dxdy

for each complex polynomial p(-) in X.

~ Setting N:=X-x, and z,:=27"i for n€N, the assumptions of Lemma 2
are fulfilled. Therefore, by Lemma 2, {€cZ(X—x,) if and only if the sequence
@, =(X—x,+2,)72, neN, converges in #. We prove that

¢eR(X—x,) ifandonlyif [[g(x, y)(x—x)2dxdy <eo.

For simplicity in notation, let x,=0. Assume that {¢,} converges. Take
a positive number L so that suppgS[—L,LIXR;, and o(X)E[—L,L}]. Let
néN. If we approximate the continuous function |x+27"i|~% by polynomials
uniformly on [—L, L], it follows from (6) that

nlgall? = 7l X +27") 2R = [[g(x,»)x+27"i "2 dx dy.
By Fatou’s lemma (recall that g(x, y)=0 a.e.), we obtain

[[e ) xtdxdy = 1inmfjg(x, Vx+27"i|"2dx dy = zlim |@,]? < <.

Conversely, assume that f fg(x, Y)x~2dxdy<ee. Again uniform approxi-
mation by polynomials yields

(7) nlen—oul® = [f 20, MI(x+27"1) 1 = (x+27"i) P dx dy

for n,meN. Since |x+27"i|"1=|x|"! for n€N and the above integral is finite,
Lebesgue’s dominated convergence theorem (in the formulation given in [1],
1V, § 3, 7.) applies and gives

lim [[e@ Nx+27") " —x"Pdxdy = 0.

Because of (7), the latter implies that {¢,} is a Cauchy sequence in 5#. Therefore,
{p.} convergesin 3. This completes the proof of (5).

Similarly, £€A(Y —y,) if and only if f fg(x, Yy —=yo)~ 2dxdy<o. Theorem
1.7 now gives the result. .

2.3. Remarks. 1. Each hyponormal operator on a separable Hilbert space
can be represented as a singular integral operator on a direct integral Hilbert space
(16], [11]; see [3], 2.3). This result can be used to obtain concrete realizations for
pairs {4, B}eN, with d(4, B)=1, 6(4)#R, and o(B)#R,.

2. Given a function g€LY(R,;) with compact support satisfying OS g=1
and f f gx~2dxdy= f f gy~ 2dxdy=-co, there exists an (unique up to unitary equi-
valence) irreducible pair {4:=X"1, B:=Y "1}, with defect number one such
that g is the principal function of the completely hyponormal operator T=X+7Y.
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This follows from Theorem 1 and the discussion before Theorem 1. Especially, we
see that there is a large variety of irreducible pairs of the class R, even in the case
d(4,B)=1.

3. We illustrate Theorem 1 by a well-known general example (see, for example,
[3]). Let # be a Lebesgue measurable bounded subset of R;. Let a, b€ L™(¥),
where b(t)#=0 a.e. on S and a(?) is real valued. Define an operator T on
# =L¥S) by

@NG) = (X+0)0 = 10 +ia 70+

b [ BOIE 4],
nog t—s

Then, [T*, T]=(2/z)b®b. By a result of XA DAO-XENG [16], T is the most general
completely hyponormal operator with rank one self-commutator whose real part

has a cyclic vector. The principal function of T is the characteristic function
of the set

8= {(x))eRy: x€F and @)~ =y = a()+BE.

If (xg, ¥o)ER, is in the interior of &, then the conditions in Theorem 1 are,
of course, satisfied and thus {4:=(X—x,)7%, B:=(¥Y —y,)"1}€RN;. In that case
o(A)2(—, —L)U(L, +) and o(B)2(—<, L)U(L, +) for some L=0.
If (%o, ¥p) is not in the closure of &, then {4, B}¢%R,.

We now discuss two rather simple (but typical) examples for which (xg, y,)
isin the boundary of &. First suppose x, isintheinterior of # and a(x,)— |[b(x,)|*=
=yo<da(xy)+|b(x)|2. Assume that a+]b|? is continuous at x,. Assume that
a(x) — bl (x)|2=A|x|* for xo—e<x=<x, and that a(x)—|b(x)2=u}x|? for xo<x<
<xp+¢& with A, u€R;, >0, >0 and e>0. Then, {4, B}¢M, if and only if
A=>0, u=0, <1 and B<I1. Moreover, 6(4)2(—c, —LYU(L, +=) for some
L=0.

In the second example we assume that S S(x,, +0), (X9, Xo+&)ES for
some £=0 and a(x)—|b(x)|]>*=0 on S. Suppose that a(x)—|b(x)|?*=A1]|x|* and
a(x)+ |b(x)[2=ulx|? for x€(xy,xo+&) with 1=>0, u=0,a=>0 and B=0. Then
{4, B}, if and only if f=1=a. (Note that A<pu in case a=p, since b(x)=0
a.e. on #.) In this example 4 and B are positive operators.

3. Toeplitz operators

3.1. Let. L?=I%T) be the L2space on the unit circle T with normalized
Lebesgue measure. Let H? be the usual Hardy space on T and let P, denote
the orthogonal projection on HZ2 If @€L™(T), then the Toeplitz operator T,

is defined by T,f=P,of for fcH: Let o= S’ @,¢, be the Fourier expansion

n=—oco
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of ¢, where e,;=¢™ for n€Z. The matrix (@ ken, Of the self-commutator
D=[T,, T,) with respect to the orthonormal base (e,),cn, of H? is given by

®) Ay = <Dek, en) = jg(; Pi-kPj—n=—Pn~jPx—j-

As usual, we identify H? and /,(N,) via Fourier expansion. If @€ H™, then
¢,=0 for all n<0 and (8) yields

) dy, = ((SH)"+10, (S¥)**+1¢) for all k, n€N,.

Here S* is the backward shift in [,(N,) which is defined by S*(,, ¥1, ¥2, ...)=
=W, Y2, -..).

Theorem 1. Let p(z)=a;z’ be a non-constant complex polynomial of
degree n. Let X=ReT,, Y=ImT,, A=X"' and B=Y1. Then {d4,B}c%N,
if and only if each z€C,, z#0, satisfying

(10) (3@ +p@)(P(2)—p(2)) = 0
lies on T, where p(z):=2 a;jz~J. If this is true, then d(A, B)=n.

Proof. Let X,:=Lin {¢;:j=0,...,n—1}. First we check that Z([X, Y])=
=R(Ty, T,)=%(D)=A,. From (9) it is obvious that DH?*C ;. Since a,=0,
it follows that the n vectors (S*)p=(4,,0,..), ()" Pp=(a,_1, a,,0, ...), ...
., 8*p=(ay, ..., a,,0,..) are linearly independent. That is, the Gram deter-
minant det (dy)p, k=o,..,n-1 1S non-zero. Therefore, the map D:,—~X, is
one-to-one and (X, Y))=Z#(D)=4%,.

Clearly, 2X=T;,, and 2Y=T,;_ ,. It is well-known that each nonzero
bounded self-adjoint Toeplitz operator has trivial kernel ([7], Ex. 198). Hence
N (X)=AH(¥Y)={0} and the operators 4:=X"! and B:=Y ! exist.

Set q(z)=z"(p(z)+p(2)). Let f€H® Obviously, Xf€x, is equivalent to
0=(Xf, e,4sy for all k€N,. Since p+p is real on T, this is equivalent to
0=(T} o f: €0sy=(P(F+D) 1, ensiy={fs B+P)ensy= s SKB+PIesy=(f, S*q) for
keN,. Combined with A (X)={0}, this shows that Z(X)NA,={0} if and only
if g(z) is a cyclic vector for the shift operator, that is, if g(z) is an outer function
in H2. But a polynomial is an outer functionin H? if and only if it does not vanish
in the set . {zE C,: |z]<1}. Since Z(1X, Y])=2, as we have seen above, it follows
that ZX)NRZ(X,Y]))=R(X)NA,={0} if and only if ¢(z) has no zeros in
{z€C;: |z|<1}. Obviously, ¢(z)=0 for a complex number z=0 implies that
q(z"9)=0. Moreover, ¢(0)#=0, since a,70. Therefore, Z(X)NZ(X,Y])={0}
if and only if each solution z€C,, z50, of p(z)+ p(z)=0 lies on the unit circle.
Similarly, 2(Y)N&([X, Y])={0} if and onlyif p(z)—p(z)=0 for some z€C;, z50,
implies |z|=1..
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Now the assertion follows immediately from Theorem 1.7.
Corollary 2. If all zeros of p(z) are in {z€C;: |z|=1}, then {A4,B}cN,.

Proof. Let b,,...,b, be the zeros of p(z). Assume the contrary, that is,
{4, B}¢N,. Then, by Theorem 1, there is a non-zero z€ Cy, |z|#1, satisfying (10).
Hence |p(2){=|p(2)|. Since |p(z7Y)|=|p(z*)], we can assume that |z|]<1. From

=@\ =p@)I =

n — 2 (1 —_
o [ b @ [ (+-%)
we obtain |z|" [] |(b;—z)(1—b;z)~*|=1. Since |b;|=1 by assumption and |z|<]1,
1t follows that I(b —z)(1-b;2)~ =1 and |z|"<1, and we have our contradiction.

Examples. 1. Applying Corollary in case p(z)=z, we see that the shift
operator S=T, gives a pair {4=(Re S)7%, B=(Im §)~1}¢N, with defect number
one. This could be verified directly or obtained from Section 2 as well.

2. Let p(2)=2z—V2) and let py(D)=(1+i)p(D2=(1+i)(z—V2). Let
X;=Re T and Y;=Im7, for-j=1,2. Then X;=X,+Y, and Y,=Y,—X,.
In case pz(z) the solutions of (10) are given by z,=z,=(14+1)/V2, zz=2,=(1 —i)/}2.
Since they are all of modulus one, {X;%, Y, '}¢M, by Theorem 1. Since the zero
of pi(z) is not contained in {|z|=1}, we see that the condition given in Corollary 2
is sufficient, but not necessary. On the other hand, z,=}2+1 is a solution of (10)
for p,(z). Consequently, {X7%, ¥;7'}={(Xo+Ys) % (Y2—X) 1} does not belong
to the class ;. This also follows from the fact that X;! is bounded, because

o(Xy)=[-2-2Y2,2-2Y2].

3.2. Afurther study of the function ¢€L* forwhich X=Re T, and ¥ =Im T,
satisfy the conditions of Theorem 1.7 seems to be of some interest. As a result in
the opposite direction we mention

Proposition 3. Suppose that @€H® is a cyclic vector for the backward
shift operator. If the sequence (|(S*)'¢l),en is in L(N), then R(T;, T,)) is
dense in H? (and the conditions (4) in Theorem 1.7 are certainly not fulfilled).

Proof. Since D=[T,, T,] is self-adjoint, it suffices to show that D has
trivial kernel. Suppose that Df=[T,, T,]f=0 for some function f= 5 f;e;€HA

From (J(S*)"¢l)€l and (f,)€l; it follows that the series 2 (8t 1p converges
in the Hilbert space H? and thus defines a function h€ H2. :

Df=0 implies that Z' i fi= Z (S*)+1o, (S*)*19) fi=((S *)"*190 h)=
={(S*)"p, Sh)=0 for all nEN0 Because @ is cyclic for S*, this yields Sh=0
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and hence h=0. This gives 0=<é,,,h):ké';fkgon,,ﬂ—'—-(Sﬁ(S* oy for nENO.

Again by the cyclicity of ¢ for S* it follows that Sf=0 and f=0 thus completing
the proof.

Remark. Examples of functions ¢ as in Proposition 3 are easily obtained by
taking lacunary series. Let (n),n be a sequence of positive integers such that
M1 ZAn for some A=1. If (@),n 15 an ly-sequence such that a,=0 for ail

keEN, then ¢:= 2 ace, €H 2 is cyclic for $* ({5]), Theorem 2.5.5). The assumption
(IGS""ell)€ly can be fulﬁlled by choosing g, sufficiently small for large k.

4. Perturbations of normal operators

4.1. Suppose that {4, B}¢9,. As in Section 1, we assume that a€R;\o(4)
and BERN\o(B) and we set X=(4—a)"! and Y =(B—f)"1. It is easy to check
that 4 and B commute strongly if and only if the bounded operator T=X+iY
is normal. Another method to construct couples of the class N, (with non-zero
defect numbers!) is the following. We “perturb” the normality of T by adding
an appropriate operator, say R, and we then take the inverses of the real and imagi-
nary parts of 7+ R. We will discuss this method in the case R= —NE, where E is
a rank one projection.

We denote by U,(x, y) the closed disk of radius r centered at (x, p)ER,,
and by K, the circle of radius r centered at the origin.

Theorem 1. Let N be a bounded normal operator with spectral resolution
N=fsz(z). Let X=ReN and Y=Im N. Suppose that N (X)=H(Y)=/{0}.
Let é€o, ||Ell=1. Let X:=Re N(I—E;) and Y:=Im N(I—E;), where E;=({@®¢.
If & can be chosen such that X and Y satisfy the condition (4) in Theorem 1.7
and if d(A:=X"1, B:=Y-1)0, then either d(4, B)=2 or d(4, B)=3.

(i) There is a &€ such that d(A, B)=3 if and only if the (self-adjoint)
operators (X—a)(X—b)Y 1 and (¥ —a)(Y —b)X 1 are unbounded for all a,beR,.

(i) There exists a (€3 such that d(A, B)=2 if and only if there is an r>0
such that the (self-adjoint) operators (X—a)Y 1+ #, and (Y—a)X 1} #, are
unbounded for all ac R, (or equivalently, the points (0, r), (0, —r), (r, 0) and (—r, 0)
are in the spectrum of N\ H#,), where H#,:=G(K,)# .

4.2. Proof. We will denote by " the linear span of the vectors &, N¢ and
N*N¢ in . 4
Suppose that €, ||£||=1, is chosen such that X and ¥ satisfy (4). Suppose
that d(A=X-1, B=Y1)=0. By the normality of N, we have 2i[X, ¥]=
=[(NUI—Ey)*, NU—E)]|=(I—E)N*N(I—E;) —N(I — E)N*=(—N*N{+|IN||%) @
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RE~-E(EQN*NE+NEQNE., From this formula we see that ¢ cannot be an eigen-
vector of N, because in this case [X, ¥]=0 and thus d(4, B)=0. Moreover,
(X, YDE.

We begin with the case d(A4, B)=3. Since #([X, Y])S, we then have
R(X, Y])=o and dim #=3. We show that (¥ —a)(¥ —b)E¢A(X) for all
a, beR,. Assume the contrary, that is, (¥ —a)(Y —b)é=Xn for some n€s#. Then,
N*NE+(a+b)iNE+abé=(Y —a)(¥Y —b)E+X2E+(a+b)iXé=XYy with

V¥ :=n+(a+b)il+X¢
and

Xy = Xy —(1/2) P, NEYE—(1)2) Y, EYNE = (.. )E+(...)NE+N*NE.

Since dim #'=3, ¢, N¢ and N*N¢ are linearly independent and hence Xy 0.
On the other hand, XycZ(X)NA=RX)NA(X, ¥]). This contradicts (4).
Therefore, (Y —a)(Y —b)t ¢ %(X) which implies that (Y —a)(¥—b)X~! is un-
bounded for all a, b€R,. The proof for (X—a)(X—b)Y ! is similar.

Now assume that O<d(A4, B)<3. If the vectors —N*NE+|NE(|2%, —¢ and
N¢ would be linearly independent, then we could choose vectors @€ orthogonal
to two of these vectors, but not orthogonal to the third. This would imply that
dim (X, Y1)=d(4, B)=3 which contradicts our assumption d(A4, B)<3. There-
fore, the vectors N*N¢&, ¢ and N¢E are linearly dependent. That is, there is a non-
trivial relation AN*NE+uNE+E=0. If 2=0, then ¢ is an eigenvector for N.
Because d(A4, B)=0, this is not possible. Thus we can assume without loss of
generality that A=1. From the spectral theorem (recall that N is normal) we
conclude that €G(&), where &:={z€C,: |z|*+pz+0=0}.

The next step is to show that ¢=0. Assume the contrary, that is, 0. Then
& 1is the intersection of a circle and a straight line. Hence & consists of at most
two points. Therefore, £=¢,+&,, where N& =2z, and Néy=z,¢, with &, &6
and z,, z,€ C,. Since ¢ is not an eigenvector as noted above, it follows that &, 0,
¢,#0 and z,7#z,. From this we conclude that #'=Lin {£, Né}=Lin {&,, &}
and dim #=2. Since &, and &, are eigenvectors of X=ReN as well, X¥=
=X—(12)NEQE—(1/2)EQNE leaves o invariant. Since A(X)={0} by as-
sumption, X maps 2 onto #. Therefore, Z(X)242%(X. ¥]) and Z(X)N
NZ(X, ¥1)={0). Because of (4), this is the desired contradiction. This proves
that u=0.

By the preceding, &={z€C;: |z|*=—p}. Since & contains more than one
point (otherwise {=0 or £ is an eigenvector for N), it follows that —g is positive.
Let ri=Y—p. Let #A=G(&)#=GK,)#. Since ¢cH, 2[X V1=—0t®@E+
+NEQNE. From this we easily see that the case d(4, B)=1 is not possible.
Indeed, d(4, B)=dim (X, Y))=1 implies that ¢ is an eigenvector for N.
But this leads to d(4, B)=0. ~ :
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. We show that (Y —a)t ¢ Z(X) for all a€R;. Otherwise, (Y —a)=Xn for
some n€H#. Then NE—aié=i(Y—a)é+Xé=Xy with Y:=in+¢ and Ry=
= XY —(1/2)(0, NEYE—(1/2)0, EYNE= (1 —(1/2) (b, ) NE—(ai+(1/2) (W, NEYEE X
Because &€, dim #'=2. Since Z([X, Y])SA and wearein the case d(4, B)=2,
we obtain A=2A((X, ¥1). Since #X)NR(X, ¥)={0} and #(X)={0} by (4),
it follows that Xy =0 and hence ¥ =0. Putting this in the above formula for
XY, we get XyYy=0=NE&—aié=0 which contradicts d(4, B)=0. This proves
that (Y —a)é¢ Z(X). Obviously, 5#, reduces both X and Y. Because &€,
(Y —a)X "'} #, must be unbounded for all acR,. The proof for (X—a)¥Y ~1} A
is almost the same.

We now turn to the proof of the opposite directions. We begin with (i).

Assume that the operators (X—a)(X—b)Y " and (Y—a)}(¥Y—-b)X~' are
unbounded for all a, b€R,;. Suppose for a moment we have proved the existence
of a vector £€3# of norm one such that

(1) X —-2)X—-w)E¢RQY) and (Y—2)(X—w)E¢R(X) forall z, weC,.
Since X and Y are bounded and XY =YX, this implies that

12) (@21 X2+ 2, X +23)E¢ Z(Y) and  (z/Y?+2,Y+2;)E¢ R(X)
for all z, zy, z;€Cy, (23, 22, Z5) = 0.

We check that X¥=ReN(I—E;) and Y=ImN(/—E;) satisfy condition (4).
Recall that 2(X, Y])S . Suppose that Xpc#, that is,

KXo = Xp—(1/2){p, NE)E—(1/2)(p, ) NE = (A+pN+oN*N)¢
for some 4, p, 0€C;.

Then  X(o—((1/2)(@, &)+H)E—0XE)=(h+(1/2)(p, NEE +(u+(1/2)p, ENFE+
+eY ¥ =:y. By (12), ¥=0. Again by (12), the vectors &, Y& and Y2 are linearly
independent. Hence (1/2){(¢, &)+p=0¢=0 which gives X¢=0. Since A(X)=1{0}
by assumption, ¢=0. This proves Z(X)NA(X, Y)={0}. The same argument
shows that Z(T)NR(X, ¥1)={0} and #(X)=#(¥)={0}. By Theorem 1.7,
(A:=X"1, B:=Y1}eM,. It remains to prove that d(d4, B)=3. As noted in
the proof of the necessity part, it suffices to show that &, N¢ and N*N¢ are linearly
independent. If AE+uNE+oN*NE=0 for 4, p, 0€C,, then X(ué+oX§&)=
=— A —uiY & — Y € A(X). By (12), thisleadsto A=u=90=0.

To complete the proof of (i), we have to prove the existence of a unit vector
Ees satisfying (11). Welet & and % denote the x-axis, resp., y-axis. The follow-
ing preparatory construction will be needed below. Let s be one of the numbers
0,1,2. Let y€R,, and let ¢>0. Suppose that (0,y)¢a(N). Since A(X)=
=N (Y)={0}, there exists a sequence (x,, y,)€6(N), n€N, such that li,r.n x> Vo) =
=(0,7) and x,=0 and y,#0 for all n€EN. Let us assume in addition that
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hmly,,—yl [X | Tl=eo. Let &= U U, (x,,,y,,), where 0<2¢,<min {|x,], |y.[}

and k is chosen so large that |y,,—'y|’>2[x| for n=k and Z,SU,0,7). Then
./' N%={(0, y)}. First we consider the case where y=0 or s=0. Smce Y—yyrx-?
is obviously unbounded on G(&#,), there is a vector ¢,£G(#,) such that
0,4 2((Y —yy’X 1Y), that is, (¥Y—7)¢,4%(X). Now let y=0 and s=0. Since
FN%=F,N%={(0,0)} by construction and the function_f(x, y)=min {1/|x], 1/|y]}
is not essentially bounded on %, w.r.t. the spectral measure G(-), we can find
a vectol @,€G(F,) such that ¢,§2(f(X, Y)). By the spectral theorem this implies
Yoo ¢ 2(X) and Xgo¢ #(Y).

v

In order to construct ¢ we consider three cases.

Case 1: #Na(N) contains at least three different points (0, y,). (0, ys), (0, y5).
We apply the preceding construction to each 7y; in case s=0,0<3e<
<min {ly;~v|; /#1} and we obtain vectors ¢, , ¢, ., . Set &=, +¢, +¢, .

Case 2: ¥ Na(N) consists of two different points (0, y,), (0, y,). :

Since (Y —y)(¥ —y)X~' is unbounded and A4 (X)=A4(Y)={0}, there is
a sequence (x,, y,)€(N) such that lim [(Fe =) —Ve)x5 | = and x,3<0, y,#0
for all n€N. By passing to a subsequence if necessary (recall that (y,) is bounded,
since Y is bounded) we can assume that li,r'n y.=y exists. Since (0,y)EFNa(N),
we must have y=y, or y=y,. Say y=y,. Since y;#y, and Y is bounded, we
have li’rln x,=0. Let O<3e<|y,—y,|- Setting s=1 in case y, and s=0 in case
7e, the above construction yields vectors ¢, and ¢, . Put &=¢, +o, .

Case 3: ¥ No(N) contains only one point (0, 7).

Because (¥ —7)2X~! is unbounded, we can find 4 sequence (x,,y,)€06(N)
such that 1ip|(y,,——y)2x,,‘1|=oo and x,#0, y,=0 for nEN. As in Case 2 we can
assume without loss of generality that li'r‘n y.=7v and li'rp x,=0. We apply the above
construction in case s=2,e=1 and we set &, =¢,.

Since X! must be unbounded, #MNo(N)=0. That is, we have discussed
all possible cases.

It is not difficult to sce that in each case (Y —z)(Y —w)&, ¢ 2(X) for all z, we C,.
We check this in Case 2. Recall that, by the spectral theorem, (¥ —z)(¥ —w) &, § Z(X)
is equivalent to /f|() —2)(y—w)x" R dIG(x, ¥) &%= First let zsy, and
w=y,. Since / N#={(0, y,)}, we then have (¥— z)(Y —w)e, ¢2(X). Because
U0, yv)NULO, yg) 0, (Y —2)(Y —w)¢, 4 %(X). Now let z=y,. It is plane from
the construction of ¢, that (¥ —w)e, ¢ Z(X) for all weC,. Again by U0, y)"
NUL0, y;)=9, this gives (Y——z)(Y—w)(ple Z(X) and (Y —z)(¥ —w)é ¢ Z(X).

We now change the role of X and Y and we repeat the same procedure. The
corresponding vectors will be denoted by l//‘,l and &,. If (0,0)€a(N) and if the
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case §=0, y=0=0 occurs in the first and in the second procedure, then we set
Vo=@,. As in the first part, we have (X—z)(X—-w){:4Z(Y) for all z, weC,.
If we take the radii of the circles around (0, y;), resp., (6;,0) small enough, then
except from the possible case Y,=¢, we have just mentioned the vectors ?,, and
¥, have disjoint support w.r.t. the spectral measure G(-). Therefore, ¢&:=
=&+ E)/EL+ &)l has the desired properties. Now the proof of (i) is complete.

We only sketch the proof of the sufficiency part of (ii). Assume that the op-
erators (X—a)Y "'} o, and (Y—a)X~1} H#, are unbounded for all a€R,. Since
H,=G(K,)# reduces X and ¥, we can assume for simplicity in notation that
H=H#, Then o(N)SK,. Since (X—r)Y~* is unbounded, there are points
(Xa> Y)EO(N), n€N, so that lim |(x,—r) y7l=e<o. By taking a subsequence if
necessary, we can assume that limx,=:y exists. Since x2+y2=r for n€N, it
follows that y=-—r, li'rln Y,=0 and (—r,0)¢€a(N). Using that (X+r)¥ -3,
Y—-r)X-! and (Y+r)X~' are unbounded, the same argument shows that
(r, 0), (0, —r), (0, r)Ec(N). Hence we can take vectors &y, &, &; and &, in (=)
supported in the neighbourhood of (—r,0), (r,0), (0, —r), resp.; (0,r) w.r.t.
G(-) such that & 42(Y), 6E42(Y) and £ A(X), £ ¢ A(X). Setting  E=
=¢+E+E+&,, we then have that (AY+p)é¢A(X) and AX+p)¢R(XY) for
all A, ucC,, (4, u)>#0. Asin part (i) we can show that X and Y fulfil condition
(4) in Theorem 1.7 and d(4, B)=2.

Now the proof of Theorem 1 is complete.

4.2. Remarks. 1. There are many examples of operators N satisfying the
assumptions of Theorem 1. We mention only two of them.

Example 1. Let N be a normal operator such that #(Re N)=A"(Im N)=
={0}. If o(N) intersects both the x-axis and the y-axis in at least three points,
then (as we have seen in the preceding proof) the assumptions of part (i) are fulfilled.
Hence, by Theorem 1, ¢ can be chosen such that the corresponding pair {E, B}
isin M, and has defect number three.

Example 2. Let R be an unbounded self-adjoint operator, and let N=
=(R—i)(R+i)~! be its Cayley transform. N is unitary. Suppose that A (R)=
=N/ (R+D)=A#(R-1)={0}. Obviously, this is equivalent to A4 (Re N)=
=4 (Im N)={0}. If the points 0, —1 and 1 arein o(R), then the assumptions
of part (ii) are satisfied (in case r=1) and Theorem 1 (ii), yields a pair {4, B}e%R,
with d(4, B)=2. In this case N(I—E,) is a partial isometry with corank one and
defect one.

2. We want to interpret the method used in this section from another point of
view. Again let N=X+/Y be normal and assume that A(X)=A4(Y)={0}.
Of course, {4:=X"%, B:=Y 1}¢N, and d(4, B)=0. Suppose that {f=X"1,

10
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B=Y-1} is a pair of the class RN, constructed as in Theorem 1 (i) or (ii). Then
P=X—(I/)NERE—(1/DEQNE and F=Y—(1/2)iNEQE+(1/2iE@NE. We de-
note by F the orthogonal projection on #;:=Lin {§, X¢, Y&, NX¢, NYE). Modify-
ing some arguments of the proof of Theorem 1, it can be shown that (XY )N, =
={0}. This implies that P,:=XY(I—F)3# is densein . Since the vectors & and
N¢  are orthogonal on (I—F)s#, X(I—F)# and Y(I—F)3# by construction,
it is easily seen that A} Do=At Dy, B} Dy=Bt D, and A4} BD,=A} BY,,
Bt A9,=B} A9,. In other words, the pair {4, B}¢M, can be considered as an
extension of the restriction to the dense domain 2,S 2(4B)ND(BAND(AB)N
N@D(BA) of the strongly commuting pair {4, B}eR,.

The author would like to thank Kevin Clancey for valuable discussions during
the eighth conference on operator theory in Romania, 1982.
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