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On commuting unbounded self-adjoint operators. I 

KONRAD SCHMODGEN 

Dedicated to Professor B. Szokefalvi-Nagy on the occasion of his 70th birthday 

Let A and B be unbounded self-adjoint operators in a Hilbert space which 
are both essentially self-adjoint on a common dense domain 3sQ3i(AB)C\@(BA) 
in and commute on 3). We then write {A, It is well known that the 
spectral projections of A and B may fail to commute for {A, The first 
counter-example was constructed by NELSON [ 1 0 ] ; see also [6] , [9] , [13] , [15] . In this 
paper we begin a study of this phenomenon in terms of commutators of bounded 
operators. In the present paper we restrict ourselves to the case where the spectra 
a(A) and a(B) are both different from the real line. A similar approach is possible 
in the general case if we use the Cayley transforms of A and B. But the methods 
of construction are somewhat different in that case (we have to deal with commutators 
of two unitaries). 

Suppose that a€Ri\ff(^i) and / ?£R j \ o (B) . In Section 1 we characterize the 
couples {A, B} in in terms of the bounded self-adjoint operators X:=(A —a)-1 

and Y:=(B-P)~K We show that { A ^ } ^ if and only if @(IX,Y])n&(X) = 
=0t ([X, y]) n 0l(Y) - {0}. Probably the simplest example of this kind for which 
[X, Y]^ 0 is given by X = Re S, Y=Im S, where 5 is the unilateral shift. There-
fore, {vl:=(Re S) _ 1 , 2?:=(Im S) - 1}€9ti , but A and B do not commute strongly. 

In the remaining sections of the paper we establish pairs of bounded self-
adjoint operators X, Y having these properties. We describe three typical situations. 
All irreducible pairs in for which the commutator [X, Y] has rank one are 
classified in Section 2. Here we use the principal function [11] of the pair X, Y and 
the tracial bilinear form [8]. Toeplitz operators (mainly with polynomial symbols) 
are considered in Section 3. In Section 4 we study pairs of the class obtained 
by taking real and imaginary parts of certain one-dimensional "perturbations" 
of normal operators. 
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Let us fix some notation. If T is an operator in a Hilbert space then we 
use S)(T), Jf(T), 0t(T) and o(T) to denote the domain, the kernel, the range 
and the spectrum of T, respectively. For a subset J f of X is the closure of 
yC in the Hilbert space norm. We denote by N0 and N the non-negative, resp., 
positive integers. 

1. The class 

Throughout this section, let A and B denote self-adjoint operators in a Hilbert 
space 

1.1. Def in i t i on 1. We say that the couple {A, B) is of the class if 
there exists a linear subspace Si of ffl such that 

(1) ®<±@(AB)r\®(BA) and ABcp=BAq> for all 
(2) 2) is dense in J f . 
(3) A t 3> and B\ 9> are essentially self-adjoint*) (e.s.a.). 

Remarks . 1. Suppose that {A, If A (or B) is bounded, then A 
and B strongly commute (that is, by definition, the spectral projections E(A) of 
A and F(n) of B commute for all A, ft 6 R^. We sketch the proof. Since A is 
bounded and B\ is e.s.a., (1) extends by continuity on 3>(B), i.e., AB(p=BA<p 
for all ip£2>(B). Since B is self-adjoint,, this gives [A, F(ji)] = 0 for ¿i£Ri and 
hence [E(X), F(//)]=0 for A,/i<ERx. 

2. A pair (A, B} in is said to be irreducible if each decomposition Jf = 
— J^®^, A=A1®A2, B=B1®B2, where Aj and Bj are self-adjoint operators 
in the Hilbert spaces ^ , . / = 1,2, is trivial, that is, ^ = { 0 } or J(?2={0}. Ob-
viously, this is the case if and only if each projection commuting with A and B is 
either 0 or I. 

1.2. As mentioned above, we restrict ourselves in this paper to the case where 
a(A)^Rj and a(B)^R^ Suppose that a€Rx \(7(^) and ! \ f f ( B ) . We 
now reformulate the conditions occurring in Definition 1 in terms of the bounded 
self-adjoint operators X:—(A — a ) - 1 and Y:—(B —j?)-1. 

For let P denote the orthogonal projection of ffl on 3t([X, y]) and let 
®(A,B):=XY(I-P)Jf. 

Def in i t ion 2. If { / l . ^ } ^ , then d(A, B):= dim Ptf is called the defect 
number of the pair {A,B}. 

*) Recall that a symmetric operator T is called essentially selfadjoint if its closure T is self-
adjoint. Thus (3) means that A f S>=A and B\2)=B. 

9* 
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It is easy to check that d(A, B) does not depend on the choice of otCRjXo^), 
/?€'Ri\<J(B). Moreover, A and B commute strongly if and only if X and Y 
commute, that is, d(A,B)—0. 

L e m m a 3. 3(A, B) is the largest linear subspace of satisfying (1). 
Moreover, 3>(A, B)=XY(I-P)^e=YX(I-P)^f=3(B, A). 

Proof . Suppose that <p€!3(AB)C\3(BA) and AB(p=BA<p. Then, <p=XY£ = 
= YXTJ for some (A-tx)(B-F})<p=RI and ( B - P ) ( A - u ) < p = £ imply that 
£ = I J . Hence Q=((XY-YX)q, <A> = <C, -(XY-YX)\JJ) for all ipe^, i.e. 
and thus <p=XY(I-P)^3(A,B). 

Conversely, let (p=XY(I-P)£, for some idje. In particular, <( / -P)^ , 
-(XY-YXy(I-P)£)=0=\\(XY-YX)(I-P)l;V. Therefore, <p=XY(I-P)^= 
= YX(I-P)f which gives ABcp =BA<p. Moreover, this shows that XY(I-P)/c 
<gYX(I-P)^. Replacing XY by YX, we get YX(I-P)2^^XY(I-P)2^ thus 
completing the proof. 

L e m m a 4. 3(A,B) is dense in tf if and only if &([X, T]) D M ( X Y ) = {0}. 

P roo f . ®(A,B)=®{YX(I-P)) is dense if and only if Jf((YX(I-P))*) = 
=Jf{(I-P)XY)={0}. Obviously, q>eJf({I-P)XY) is equivalent to XYcp£ 
£@([X,Y]). This gives the assertion, because Jr(X)=Jr(Y)={0}. 

L e m m a 5. A \ 3(A, B) is e.s.a. if and only if 

P ^ C \ 3 ( B ) = ® ([X, Y]) 0 St(Y) = {0}. 

B t 3(A, B) is e.s.a. if and only if 

pye n ®(A) = m ([x, y j ) nœ(x) = {o}. 

P roof . We only prove the first assertion. Since (A—a)~1=X is a bounded 
self-adjoint operator, A\3>(A,B) is e.s.a. if and only if (A—a)S>(A,B) = 
=Y(I-P)3V=3t(Y(I-P)) is dense in or equivalently if Jf((I-P)Y)= {0}. 
Since Ji(Y) = {0}, the latter is equivalent to P^fCl^(Y) = {0}, which completes 
the proof. 

In case that ât([X, F]) is closed, the next Lemma gives a characterization of 
the class only in terms of domains. 

p Lemma 6. If {A, then 3(AB) (13(A) =3(BA) (13(B) =3(AB) fl 
fl 3 (BA)=3(A, B) (and, by definition, this domain is dense in J f ) . Conversely, 

suppose that @([X,Y)] is closed. If 3(A, B) is dense in 3V and 3(AB)i~)3>(A) = 
=3(BA) fl3(B)=3(AB) H3(BA), then {^..B}^. 
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Proof . Suppose that { ¿ . ¿ K ^ . Since XY(I-P)JP=YX(I-P)tf by 
Lemma 3, it is clear that @(AB)(~] 2(A) ¡2 3>(AB) fl 2>(BA)=YXJ? fl XYtf 2 
2 XY(I-P)tf=2>(A,B). Now let q> = YXZ=Xr\<i®(AB)(\2>(A). Then, 
X(ri-YZ)=[X> Since {A, B } ^ , ®(X)C)@([X, 7 ] )= {0} by Lemma 5. 
Hence X(t] — Y^)=0 and, since Jf(X)={0}, t] = Y£. As in the proof of Lemma 3, 
XY£, = YXE, imphes that £±®([X,Y}). Therefore, £=(I-P)£, and cp = 
= YX(I-P)£<=2i(A,B) which proves that S>(A, B)^2i(AB)C\2l(A). Changing 
the role of A and B, we get S(BA)DS(B)=S(A, B). 

We now prove the second assertion. Set B) in Definition 1. Then 
(1) and (2) are satisfied by Lemma 3, resp., by assumption. We show that 
®([X,Y])C\®(X)={0}. Suppose that (p:=[X, Y]£=XRI for some ^RJ^YF. Then 
il/:=XYt-Xti = YXZ£9(A)r\9(AB). By assumption, i¡f£S(BA), that is, \}/=XYC 
for some Hence X(Y£-T]-Y0=0 which gives T}=Y(£,-Q. Therefore, 
T]£@(Y) and (P£@([X, Y])C\@(XY). Since we assumed that 2>(A, B) is dense, 
Lemma 4 gives (p=0. This proves @([X, Y])(~)0LL(X) = {0}. From Lemma 5 (recall 
that &([X, Y]) is closed!) we conclude that B\2>(A,B) is e.s.a. Similarly, 
A\9(A,B) is e.s.a. Thus 

Remarks . 1. If we do not assume that @(A,B) is dense, then the equality 
of the domains in Lemma 6 does not ensure that in general. For an 
example, recall that there are unbounded self-adjoint operators A and B so that 
3>(A) fl 3)(B)={0} ([17]). Then, ®(AB) fl3>(A)=@(BA) f)@(B)=3l(AB) fl3>(BA) = 
=3>(A,B)={0}, but { / ( , £ } № . 

2. The second assertion in Lemma 6 is no longer true if we replace the density 
of 2>(A,B) by that of 2>(AB)C\9I(BA). To prove this remark, let jf=L\l,2), 
let X be the multiplication operator by x, and let Y=I+H/2, where H is the 
finite Hilbert transform in L\ 1,2). Then X and Y have bounded inverses denoted 
by A resp. B. Moreover, [X, Y] has rank one and ®(AB)=S)(A)=S(BA)= 
=9>(B)=JE, but {A,B}§Six by the first remark in 1.1. 

3. It follows from the preceding that if {A, B }£ , then we can take 2i=3)(A, B ) 
in Definition 1. 

1.3. Theo rem 7. Suppose {A, Suppose also that a € R { \ a ( A ) and 
0€RI\<J(B). I f X:—(A—A)~1 and Y:=(B-fi)-\ then 

(4) JV(X) = JV(Y) = {0} and m ([Z, Y])Dâi(X) = 3k ([JST, 7]) f}@(Y) = {0}. 

Conversely, if X and Y are bounded self-adjoint operators satisfying (4), then 
{ / l : - I - 1 + a ) B : = y - 1 + / î } 6 9 l 1 /or 

The proof of Theorem 7 follows immediately from the three Lemmas 3, 4 and 
5 above. 
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2. Pairs with defect number one 

In this section we classify, up to unitary equivalence, all irreducible pairs 
{A, -6}€9li with defect number one for which o f ^ ^ R i and 

2.1. We first collect some facts concerning bounded operators with rank one 
self-commutators. A very readable account of this theory is given in [3]; see also 
[11], [2], [8], [4]. 

A bounded operator T in 3V is said to be completely hyponormal if T is 
hyponormal (that is, [T*, T] =e0) and if T has no nontrivial reducing subspace on 
which it is normal. Suppose that T is completely hyponormal and that 
dim £%([T*, r ] ) = l . The essential underlying result for our study is the following. 
There is a function g(x, j ^ L ^ R a ) with compact support such that 

(5) T r i [ p ( X , Y), q(X,Y)] = ¿ / / \ ) g < * y ) d x d y 

for all polynomials p and q in X and Y. Moreover, 0^g(x, j>)= I a.e. on R2 . 
g=gT is called the principal function of T. It was introduced by PINCUS [11]. 
gT is a complete unitary invariant for T, that is, two completely hyponormal 
operators T and f with rank one self-commutators are unitarily equivalent if 
and only if their principal functions gT and gT coincide (considered as elements 
of L^Ra)). Moreover, for each function g£L\R 2 ) with compact support satisfying 
O ^ g ^ l there exists a completely hyponormal operator T with principal function 
g such that dim M([X, 7]) = 1. 

We now return to the class 9 l v Let {A, B} and {A, B) be pairs of the class 
in Hilbert spaces № and {A,B} is called unitarily equivalent to {A, B} 

if there is an isometry U of J f onto Jf such that A=U*AU and B = U*BU. 
In that case we clearly have U£#(A, B)=@(A, B). As in Section 1, we assume that 
a£RJXCC^) and /?£R{ \a(B) . It is easy to see that (A, B} is unitarily equivalent to 
{1,B} if and only if <x.io(A),p$o(B) and 
is unitarily equivalent to T:=X+i¥=(A-<t)-1+i(B-ff)-1. Moreover, {A, B) 
is irreducible if and only if T is irreducible. 

Suppose now in addition that d(A,B)=1. Then the self-adjoint operator 
D:=[T*,T] has rank one and therefore either D^O or D s 0 . Obviously, sign D 
is a unitary invariant for {A, By changing the role of A and B incase 
Z)S0, we can restrict ourselves to pairs {A, 5)691]. for which D=[T*, 0, 
that is, T is hyponormal. Since D has rank one, {A, is irreducible (or 
equivalently, T is irreducible) if and only if T is completely hyponormal. There-
fore, under the above assumptions (i.e., d(A, B)=l, /?£Ri\<7(Z?) 
and [IT*, T ] s 0 ) , gT is a complete unitary invariant for irreducible {A, 
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To proceed in the converse direction, it still remains to decide when a given 
completely hyponormal operator with rank one self-commutator leads to an (ir-
reducible) pair {A, £} in 9V The answer is contained in 

Theorem 1. Suppose that T is a completely hyponormal operator in the Hilbert 
space with rank one self-commutator. Let g be the principal function of 
T, Z = R e T and 7 = I m T. Let Then the inverses A:=(X-x0)-1 

and B-.—iY—y^Y1 exist. {A^K^ if and only if f fg(x, y)(x-x0)~2 dxdy= 
= f f g ( x , y)(y-y0)~2dxdy = + oo. 

2.2. In the proof of Theorem we use the following easy 

Lemma 2. Let N be a bounded operator in JC and let (p, Let 
{z„, /igN} be a zero sequence of complex numbers such that zn$o(N) for all nd N. 

(i) If lim(AT—z„)_1i/' = (?>, then N(p=\j/. n 
(ii) Suppose that N is normal and that J f ( N ) = {0}. Suppose that 

c := sup |z„|(dist(z„, ff(iV)))-1 

„€ N 

If N(p=il/, then lim(A/—z„)_1i/f n 
Proof, (i) ip=N(N—zn)~1iJ/—zn(N—z„)~1tl/-*N(p—Q(p as n — i . e . , N(p=\j/~ 
(ii) Letting N=JzdG(z) be the spectral decomposition for N, we have 

| |(/-G({0}))zn(J\r-zn)->|J2= / |zn |2 |z-zn |-V||G(z)<p||2s J c2i/||G(z)<p||2<°°. 
<r(N)'\{0} 

The dominated Lebesgue theorem yields lim(/—G({0}))z„(iV—zn)~1cp=0. Since 
J^(iV)={0}, we have G({0})=0 and therefore limzn{N-zn)-1(p=0. Therefore,. n 
(N—z„)~1il/=zn(N—z„)~1(p+(p—0+(p as n — w h i c h completes the proof. 

Proof of Theorem 1. Since T is hyponormal and dim !%([T*, T])=1 ^ 
there is a vector £ ¿ 0 in such that [T*, T]=2i[X, 7]=£<g>£. Since T is 
completely hyponormal, the operators X and Y are absolutely continuous ([12],. 
Theorem 2.2.4 or [3], Theorem 3.2). In particular, ¿V(X-x0)=Jr(Y-y0) = {0}. 
Hence the inverses A and B exist and are self-adjoint operators in JF. 

By induction it follows that 2 i[Xn + 1 , Y]= 2>X"-JZ for n£N0. There-
j=o 

fore, Tr 2i[Xn+\ Y]=(n+l)(X"!;, Applying the tracial functional calculus in 
case p(X, Y)=Xn+1,q(X,Y) = Y, we get . 

Tr i[AT"+1, Y] = (1/2tt) f f (n+l)xng(x, y)dxdy. 
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Putting both together, we conclude that 

(6) n(p(X) L 0 = J f p(x)g(x, y) dx dy 

for each complex polynomial p( •) in X. 
Setting N:=X—x0 and zn:=2~"i for n£N, the assumptions of Lemma 2 

are fulfilled. Therefore, by Lemma 2, ^£&(X—x0) if and only if the sequence 
<p„:=(X—JC0+Z„)-1^, «£N, converges in №. We prove that 

x0) if and only if JJg(x, y)(x—x0)~2 dx dy 

For simplicity in notation, let x 0 =0. Assume that {(?„} converges. Take 
a positive number L so that suppg£[— L, LJXRi and a(X)Q[—L, L], Let 

If we approximate the continuous function |x+2~"/ |~2 by polynomials 
uniformly on [— L, L\, it follows from (6) that 

n\\<pn\\2 = n\\(X+2-"i)-Hf = / / y)\x + 2-i\-2dxdy. 

By Fatou's lemma (recall that g(x, j ) s O a.e.), we obtain 

ffg(x,y)x~2dxdy ^ lim JJgix, y)\x + 2~ni\-2 dxdy = 7rlim {\<p„\\2 

Conversely, assume that fjg(x,y)x~2dxdy<°°. Again uniform approxi-
mation by polynomials yields 

(7) n\\(p„-(pmf = ffg(x,y)\(x + 2-"i)-1-(x + 2-mi)-1fdxdy 

for n,m£N. Since | x + 2 - " / | - 1 ^ | x | _ 1 for w£N and the above integral is finite, 
Lebesgue's dominated convergence theorem (in the formulation given in [1], 
IV, § 3, 7.) applies and gives 

lim f f g(x,y)\(x+2-i)-1-x-1\*dxdy = 0. 

Because of (7), the latter implies that {<£>„} is a Cauchy sequence in ^C. Therefore, 
{<p„} converges in №. This completes the proof of (5). 

Similarly, £€@(Y-y0) if and only if f f g ( x , y)(y-y0)~2dxdy<°=. Theorem 
1.7 now gives the result. 

2.3. R e m a r k s . 1. Each hyponormal operator on a separable Hilbert space 
can be represented as a singular integral operator on a direct integral Hilbert space 
([16], [11]; see [3], 2.3). This result can be used to obtain concrete realizations for 
pairs with d(A,B)=\, and 

2. Given a function gCL^Ra) with compact support satisfying O S g ^ l 
and JJ"gx~2dxdy=Jj"gy~2dxdy=°°, there exists an (unique up to unitary equi-
valence) irreducible pair {A:=X~X, i i ^ r - 1 } ^ ! with defect number one such 
that g is the principal function of the completely hyponormal operator T=X+iY. 
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This follows from Theorem 1 and the discussion before Theorem 1. Especially, we 
see that there is a large variety of irreducible pairs of the class 91! even in the case 
D(A,B) = 1. 

3. We illustrate Theorem 1 by a well-known general example (see, for example, 
[3]). Let J be a Lebesgue measurable bounded subset of R ^ Let a, b£L°°(J~), 
where b(t)^0 a.e. on J and a{t) is real valued. Define an operator T on 
3V=L\J) by 

(230(0 = ((X+iY)f)(t) := //(/) + / [ « (0 / (0 + ^ J ^ r r d s \ • 

Then, [T*, T]=(2ln)b®b. By a result of X A DAO-XENG [ 1 6 ] , T is the most general 
completely hyponormal operator with rank one self-commutator whose real part 
has a cyclic vector. The principal function of T is the characteristic function 
of the set 

8 = {(*. jOCRs: x^S and a(x) - |Z>(*)|2 == y == a(x) + |Z>(*)|2}. 

If (jc0,70)6R2 is in the interior of S, then the conditions in Theorem 1 are, 
of course, satisfied and thus {^4:=(AT—JC0)-1, B : = ( Y — I n that case 

~L)U(L, +oo) and a ( 5 ) i ( - o o , L)U(L, +«•) for some 0. 
If (x0, y0) is not in the closure of S, then {A, Six-

We now discuss two rather simple (but typical) examples for which (x0, y0) 
is in the boundary of S. First suppose x0 is in the interior of J and a(x0) — |fc(x0)|2= 
= >>o<a(;to)+|2>C*o)l2- Assume that a+\b\2 is continuous at x0. Assume that 
a(x) — \b\(x)\a=X\x\" for x 0 — a n d that a(x) — |fc(x)|2=/i|x|i for 
< x 0 + e with A, /i£Ri, a > 0 , /J>0 and e>0. Then, { ¿ . S } ^ if and only if 
A>0,/¿>0, a < l and /?<1. Moreover, er(A)^( — — L)U(L, +<=°) for some 
£ > 0 . 

In the second example we assume that S Q ( x 0 , + =»), (x0, for 
some e > 0 and a(x) — |ft(x)|2^0 on J. Suppose that a{x)—|fc(x)|a=A|x|°I and 
a(x)+\b(x)\2=fi\x\l> for x i ( x 0 , x 0 + s ) with A>0, / i>0, <x>0 and j?>0. Then 
{^,5)691! if and only if fi^l^a. (Note that incase a=j?, since b(x)^Q 
a.e. on J.) In this example A and B are positive operators. 

3. Toeplitz operators 

3.1. Let. L2=L\T) be the L2-space on the unit circle T with normalized 
Lebesgue measure. Let H2 be the usual Hardy space on T and let P+ denote 
the orthogonal projection on H2. If <p£L~(T), then the Toeplitz operator Tv 

oa 
is defined by Tt?f=P^.q>f for fdH2. Let <p= <Pne„ be the Fourier expansion 



Commuting unbounded self-adjoint operators. I 139 

of (p, where e„:=eint for Z. The matrix (d„k)nkeNo of the self-commutator 
D=[T*, Ty] with respect to the orthonormal base (e„)n£N of H2 is given by 

(8) dnk = (Dek, e„) = 2 <Pj-k(Pj-n~<Pn-j<Pk-j-
o 

As usual, we identify H2 and /2(N0) via Fourier expansion. If <p£H°°, then 
(pn=0 for all 0 and (8) yields 

(9) dnk = ((S*)n+1(p, (S*)k+1<p) for all k, n£N0. 

Here S* is the backward shift in /2(N0) which is defined by S*(ip0, i¡/1, i]/2, ...) = 

T h e o r e m 1. Let p(z)=-2ajz' be a non-constant complex polynomial of 
degree n. Let Z = R e T„, F = I m Tp, A=X~1 and B=Y~1. Then {A,B}^ 
if and only if each z£Cx, z^O, satisfying 

(10) (p(z) +p(z)) (p(z) -p(z)) = 0 

lies on T, where p{z)\= 2^jz~J • If this is true, then d(A, B) = n. 

Proof . Let Ji^:=Lin {ey. J=0, ..., n—l). First we check that 8&{[X, F]) = 
=0t([T*, Tp])=®(D)=Jir

n. From (9) it is obvious that DH2Qjf„. Since a„^0, 
it follows that the n vectors (S*)"p=(an, 0, . . .) , (5 ,*)n-1j3=(an_i, a„, 0, . . .) , . . . 
..., S*p—(a1, ..., a„, 0, ...) are linearly independent. That is, the Gram deter-
minant det (dnk)„ 4=0,... B - i is non-zero. Therefore, the map D: 
one-to-one and k([X, Y])=®(D)=Xn. 

Clearly, 2X=T~+P and 2Y=TI(P_P). It is well-known that each nonzero 
bounded self-adjoint Toeplitz operator has trivial kernel ([7], Ex. 198). Hence 
JV(X)=JV(Y)={0} and the operators A\=X~~X and B:=Y~1 exist. 

Set q(z)=zn(p(z)+p(z)). Let fdH2. Obviously, Xf£X„ is equivalent to 
0 = ( X f e n + k ) for all K£N0. Since p+p is real on T, this is equivalent to 
° = (TP+pf> en+k) = (P+(P+P)f> en+k)=(f> (P+P)en+k) = ( f , Sk(p+p)en) = ( f , Skq) for 
K£N0. Combined with jV(X) = {0), this shows that ®(X)DJF„={0} if and only 
if q(z) is a cyclic vector for the shift operator, that is, if q(z) is an outer function 
in H2. But a polynomial is an outer function in H2 if and only if it does not vanish 
in the set {z€ Cx: |z |< 1}. Since &([X, Y])=JF„ as we have seen above, it follows 
that M(X) (1 ® ([*, 7 ] ) = ® ( X ) n Jf„={0} if and only if q(z) has no zeros in 
{z^C^ |z|< 1}. Obviously, q(z)=0 for a complex number z^O implies that 
q(z~1)=0. Moreovei, q(0)^0, since a„^0. Therefore, M(X)r)$#([X,Y])={0} 
if and only if each solution z€ C l 5 z^O, of p(z)+p(z)=0 lies on the unit circle. 
Similarly, 3t(Y) fl @({X, 7]) = {0} if and only if p(z) -p(z)=0 for some z<ECr, z ^ 0 , 
implies |z| = l. 



140 K. Schmûdgen 

Now the assertion follows immediately from Theorem 1.7. 

Co ro l l a ry 2. If all zeros of p(z) are in {z^C^ |z | s l} , then { ^ . B } ^ . 

P roof . Let bi, ..., ¿n be the zeros of p(z). Assume the contrary, that is, 
{ v i , ^ } ^ ! . Then, by Theorem 1, there is a non-zero z £ C u | z | ^ l , satisfying (10). 
Hence \p(z)\ = \p(z)\. Since |/>(z-1)| = |p(z -1)|, we can assume that | z |< l . From 

«n n ^ - b j ) = \№\ = \p(z)\ = "•>£{7-4 
we obtain \z\" f f \(bj— z)(l — Z?yz)_1| = l. Since 1 by assumption and | z |< l , 

j=1 
it follows that \(bj— z)(l — bjzy^sl and |z|"< 1, and we have our contradiction. 

Examples . 1. Applying Corollary in case p(z)=z, we see that the shift 
operator S = T, gives a pair {v4=(Re S) - 1 , i?=(Im 1S)"1}€9i1 with defect number 
one. This could be verified directly or obtained from Section 2 as well. 

2. Let Pi(z)=2(z-f2) and let p2(z)=(1 + /)/>! (z)/2=(1 + 0 0 - J^)- Let 
Xj=ReTpj and Yj=\mTp, for j = 1,2. Then Xx=X2+Y2 and Y1=Y2-X2. 
Incase p2(z) the solutions of (10) are given by z x =z 2 =( l+ / ) / j /2 , z 3 =z 4 =( l — i)/tf2. 
Since they are all of modulus one, {X^1, y " 1 } ^ ^ by Theorem 1. Since the zero 
of Px(z) is not contained in {|z|^ 1}, we see that the condition given in Corollary 2 
is sufficient, but not necessary. On the other hand, z0=/2+l is a solution of (10) 
for j?i(z). Consequently, {X~\ y i ; 1 )={U' 2 +y 2 ) - 1 , (Y^X^)-1} does not belong 
to the class This also follows from the fact that X~x is bounded, because 
o{X2) = [-2-2i2,2-2i2\ 

3.2. A further study of the function (p£L~ for which X=ReT<i> and F = I m Tv 

satisfy the conditions of Theorem 1.7 seems to be of some interest. As a result in 
the opposite direction we mention 

P r o p o s i t i o n 3. Suppose that <p£H°° is a cyclic vector for the backward 
shift operator. If the sequence (||(5*)>||)„€N is in /2(N), then St([T*, 7^]) is 
dense in H2 (and the conditions (4) in Theorem 1.7 are certainly not fulfilled). 

Proof . Since D=[T*, T^] is self-adjoint, it suffices to show that D has 

trivial kernel. Suppose that Df=[T*, T9]f—0 for some function / = j ? fjefiH2. 
j-0 

From (||(S*)>||)e/2 and (/„)€/2 it follows that the series 2 fk(S*)k+1<p converges 
k = 0 

in the Hilbert space H2 and thus defines a function h£H2. 

Df= 0 implies that J <(S*) n +V (S*)*+V)/* = <(S*)"+V h) = 
k = 0 k = 0 

= ((S*)"(p, Sh)=0 for all n€N0. Because cp is cyclic for S*, this yields Sh=0 
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and hence h =0. This gives 0 = <<?„, h)= 2 ftfik+^=(Sf, (S%) for mEN0. 
k = 0 

Again by the cyclicity of <p for S* it follows that Sf=0 and / = 0 thus completing 
the proof. 

R e m a r k . Examples of functions <p as in Proposition 3 are easily obtained by 
taking lacunary series. Let (n k ) k i N be a sequence of positive integers such that 
nk+1^hik for some 1. If (ak)keN is an /2-sequenee such that ak^0 for all 

/c£N, then cp:= 2aken£H2 is cyclic for S* ([5]), Theorem 2.5.5). The assumption 
fc=i k 

(||(1S'*)VII)i/2 can be fulfilled by choosing ak sufficiently small for large k. 

4. Perturbations of normal operators 
4.1. Suppose that {A,B}£'Si1. As in Section 1, we assume that a g R ^ o ^ ) 

and /?6Ri\<T(#) and we set X=(A-a)-x and Y=(B-p)~1. It is easy to check 
that A and B commute strongly if and only if the bounded operator T = X+ /'¥ 
is normal. Another method to construct couples of the class (with non-zero 
defect numbers!) is the following. We "perturb" the normality of T by adding 
an appropriate operator, say R, and we then take the inverses of the real and imagi-
nary parts of T+R. We will discuss this method in the case R = —NE, where E is 
a rank one projection. 

We denote by Ur(x,y) the closed disk of radius r centered at (x, J>)£®2. 
and by Kr the circle of radius r centered at the origin. 

T h e o r e m 1. Let N be a bounded normal operator with spectral resolution 
N=fzdG(z). Let X = R E N and Y=LMN. Suppose that JV(X)=JV(Y)={0}. 
Let ||£|| = 1. Let X:=ReN(I-Et) and Y:=ImN(I-ES), where 
If £, can be chosen such that ft and Y satisfy the condition (4) in Theorem 1.7 
andif diA-.^X^B-.^f-1)^0, then either d(A, B)=2 or d(A,B)=3. 

(i) There is a CdJif such that d(A, B) = 3 if and only if the (self-adjoint) 
operators (X-aXX-fyY-1 and (Y-~a)(Y-fyX'1 are unbounded for all a, be Rj.. 

(ii) There exists a such that d(A,B)=2 if and only if there is an r>0 
such that the (self-adjoint) operators (X—a)Y~1 \ and (Y—a)X~1 (• are 
unbounded for all a£ R t (or equivalently, the points (0, r), (0, —r), (r, 0) and (— r, 0) 
are in the spectrum of N\ where J^r:=G(Kr)J^. 

4.2. P roof . We will denote by J f the linear span of the vectors and 
N*N£ in J f . 

Suppose that .'^•Jf, ||£|| = 1, is chosen such that X and Y satisfy (4). Suppose 
that d(A = X-\B=Y~1)?±0. By the normality of N, we have 2i[X, ?] = 
^[(Nil-E^Nil-E^il-E^Nil-EJ-Nil-EsWH-Ntm + Wm)® 
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<8>li—£®N*N<i+NZ<g>N!;. From this formula we see that £ cannot be an eigen-
vector of N, because in this case [X, P ] = 0 and thus d(A,B)—0. Moreover, 

We begin with the case d(A, B)=3. Since 0t(\X, we then have 
3t([X, and dim JiT=3. We show that (Y-d){Y-b)Z$®{X) for all 
a,b£Rj. Assume the contrary, that is, (Y—a)(Y—b)E,=Xr\ for some tjZJjf. Then, 
N*m+(a+b)iNQ+abZ=(Y-a)(Y-b)Z+XH+(a+b)iXZ=XiJ/ with 

•A :=n+(a+b)%+XZ 
and 

j f y = X<P~(\/2)(ip,N0c~(ll2)(ip, q)Ni = (•••)c + (...)Nc}+N*N£. 

Since dim X—3, c, NQ and N"NQ are linearly independent and hence XIP ̂ 0 . 
On the other hand, ?]). This contradicts (4). 
Therefore, (Y-a)(Y-b)£<l0l(X) which implies that (Y-d)(Y-fyX'1 is un-
bounded for all a,b£ Ri. The proof for (X—a)(X—b)Y~1 is similar. 

Now assume that 0 < d ( A , B)^3. If the vectors -7V*./V£ + ||iV£||2<;, - Q and 
Nc, would be linearly independent, then we could choose vectors (p£Jif orthogonal 
to two of these vectors, but not orthogonal to the third. This would imply that 
dim 8t{[X, Y]) = d(A, B)=3 which contradicts our assumption d(A, B)<3. There-
fore, the vectors N*N£, c, and Nc, are linearly dependent. That is, there is a non-
trivial relation ?.N*N£+¡.iNc + =0. If /1=0, then c is an eigenvector for N. 
Because d(A, B)^0, this is not possible. Thus we can assume without loss of 
generality that A = l. From the spectral theorem (recall that N is normal) we 
conclude that <£G(«f), where S\={Z£C1:\Z\2+HZ + Q = 0}. 

The next step is to show that / t=0. Assume the contrary, that is, /¿^0. Then 
$ is the intersection of a circle and a straight line. Hence 8 consists of at most 
two points. Therefore, £ = where N ^ — z ^ and N^2=z2q2 with ¿ ^ ^ 
and z1,z2dC1. Since Q is not an eigenvector as noted above, it follows that 
¿2^0 and z 1^z 2 . From this we conclude that ^¡f—L'm 7Vc}=Lin ¿;2} 
and dim JC—2. Since Ci and <?2 are eigenvectors of X=Re N as well, X— 
=X-(l/2)NZ<g>Z-(l/2)Z®NZ leaves j f invariant. Since J/~(X)={0) by as-
sumption, 2 maps X onto Therefore, ?]) and 3k(X)C\ 
(1&([X, 7])?i {0}. Because of (4), this is the desired contradiction. This proves 
that /1=0. 

By the preceding, S — { Z £ C,: \Z\2=-Q}. Since 8 contains more than one 
point (otherwise £=0 or t, is an eigenvector for N), it follows that —Q is positive. 
Let Let =G(Kr)^. Since 2i[X, ?] = + 
+N£®NQ . From this we easily see that the case d(A,B)=1 is not possible. 
Indeed, d(A, 5 ) = dim ? ] ) = 1 implies that q is an eigenvector for N. 
But this leads to d(A, B)=0. 
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We show that (Y-a)£$&(X) for all agRi- Otherwise, ( Y - a ) ^ = X t ] for 
some rtdJC. Then Nq-aiQ=i(Y-a)^+X^=Xtp with \j/:=/»i + f and = 
= X\j/—(i/2)(}j/, NOZ-(V w* t)m=( i - o / 2 ) ( i p , Q))m-(ai+(i/2)(^, 
Because dim Since Y])QX andwearein the case d(A, B)=2, 
we obtain Since ?]) = {0} and = by (4), 
it follows that ity = 0 and hence ij/=0. Putting this in the above formula for 
jfij/, we get %4r=0=N£,—aiii=0 which contradicts d(A, This proves 
that ( Y - a ) £ $ @ ( X ) . Obviously, J f r reduces both X and Y. Because 
(Y-a)X~1 \ 2/fr must be unbounded for all fl€Ri- The proof for (X-d)Y~1 \ 
is almost the same. 

We now turn to the proof of the opposite directions. We begin with (i). 
Assume that the operators (X-a^X-^Y'1 and (Y-a)(Y-b)X~l are 

unbounded for all a, b£ Rx. Suppose for a moment we have proved the existence 
of a vector ££ ̂ C of norm one such that 

(11) (X-zXX-w)Z$M(Y) and ( 7 - z ) ( 7 - ® ( X ) for all z, W6Q. ' 

Since X and Y are bounded and XY = YX, this implies that 

(12) (Z1X2 + Z2X+Z3)£$&(7) and (z^Y2 + z2Y+Z3)C* ®(X) 

f o r a l l Z 1 , Z 2 , Z 3 € C J , (zy, z 2 , z 3 ) ^ 0 . 

We check that X=ReN(I-Ei) and 7=Im N(/-Ej satisfy condition (4). 
Recall that @([X, Y])QJiT. Suppose that X<p<iJf, that is, 

X<p = X(p — (l/2)((p, N$Z-(№(<p, = V + nN+eN*N)S 
for some A, fi, g € Cj . 

Then X(<p—((l/2)((p, 0 + ^ ) ^ - e ^ ) = (A + (l/2)(<p, m))q+^ + (\/2)(q>, f » r £ + 
+ QY By (12), i/> = 0. Again by (12), the vectors C, 7c and Y2Q are linearly 
independent. Hence (l/2)<^>, £) + n = g=0 which gives X<p=0. Since J>r(X) = {0} 
by assumption, <p=0. This proves 7])={0}. The same argument 
shows that 7]) = {0} and J T 0 t ) = J r { ? ) = {0}. By Theorem 1.7, 
{A-^%-1, B-^f-1}^!. It remains to prove that d(A, B)=3. As noted in 
the proof of the necessity part, it suffices to show that c, N£ and N*N£ are linearly 
independent. If XZ+itNZ + eN*Nt=0 for <?€ C l f then X(n£ + gX£) = 
= -XQ-niYi-gY2^mX). By (12), this leads to X=n = g=0. 

To complete the proof of (i), we have to prove the existence of a unit vector 
satisfying (11). We let SC and QJ denote the x-axis, resp., j-axis. The follow-

ing preparatory construction will be needed below. Let s be one of the numbers 
0,1,2. Let y€Ki, and let £>0. Suppose that (0 ,y)£o(N). Since JRR(X)= 
=^K(7) = {0}, there exists a sequence (xn, y„)£o(N), such that lim (xn, yn) = 

n 

=(0.y) and x„^0 and y„^0 for all M€N. Let us assume in addition that 
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l i m k - y f k l - 1 ^ . Let J % : = U Ue(xn,yn), where 0<2fi„^min {|x„|, \ya\} " nmk " 
and k is chosen so large that \yn—y\s>2\x„\ for and ^yQUe(0, y). Then 
¿^f"W={(0, y)}. First we consider the case where y ^ O or s^O. Since (Y—yyx*1 

is obviously unbounded on there is a vector <pydG(^y) such that 
(py$@((Y—yYX*1), that is, (Y-yy<py$3i(X). Now let y = 0 and i = 0 . Since 

by construction and the funct ion/(x, j ) = m i n {l/|xl, l/\y\) 
is not essentially bounded on w.r.t. the spectral measure (?(•), we can find 
a vectoi (p0£G(^0) such that q>^iS)(f(X, / ) ) . By the spectral theorem this implies 
Y(p0i>%(X) and Xcp0<t<%(Y). 

In order to construct c we consider three cases. 

Case 1: aJJC\a(N) contains at least three different points (0, yi). (0, y2), (0, y3). 
We apply the preceding construction to each ys in case J = 0 , 0 < 3 e < 

<min { |y J -y 1 | ; . /Vl} and we obtain vectors (pVl, <PVt, <Pyi- Set Zi=<Pyi + <Pyi + <Pyt-

Case 2: HfC\ o(N) consists of two different points (0, yj), (0, y2). 
Since ( r - n X r - y o ) ^ - 1 is unbounded and J^(X)=jV(Y)={0}, there is 

a sequence (x„, y„)e<r(N) such that lim \(yn-y1)(y„-y2)x~1\ = °° and xn^0, yn^0 
for all w£N. By passing to a subsequence if necessary (recall that (>>„) is bounded, 
since Y is bounded) we can assume that lim^„=:y exists. Since (0, y ) ^ f\a{N), 
we must have y=y± or y=y2 . Say y = yi. Since yiTiy2 and Y is bounded, we 
have limx„ = 0. Let 0<3e<|yx—y2 |. Setting ¿ = 1 incase yt and s=0 in case n 
y2, the above construction yields vectors <jo and <pŷ . Put £,i = (py+<py^. 

Case 3: <&C\o(N) contains only one point (0, y). 
Because (Y—y)2!'-1 is unbounded, we can find a sequence (x„, y„)(Lo(N) 

such that l im |0 ' n —y) 2 ^" 1 ^^ and x„^0, j ' , ,^0 for n£N. As in Case 2 we can n assume without loss of generality that limy„=y and limx„=0. We apply the above ft fl 
construction in case s=2, £=1 and we set £1=cpy. 

Since X~1 must be unbounded, <Wi)cT(N)^Q. That is, we have discussed 
all possible cases. 

It is not difficult to see that in each case (Y-z)(Y-w)^^g(X) for all z, iwGCj. 
We check this in Case 2. Recall that, by the spectral theorem, ( Y — z ^ Y — w ) ^ ^ ^ ) 
is equivalent to JJ\(y—z)(y—w)x~1\2d\\G(x,y)£1\\2 = 'x>. First let z ^ y 2 and 
w^y2. Since ^ n ^ = { ( 0 , y 2 ) } , we then have (Y-z)(Y-w)(pyi§@(X). Because 
U^O,y1)nUt(O,y2)=0, (Y-z)(Y-w)^i^(X). Now let z=y 2 . ' i t is plane from 
the construction of cpyi that (Y-w)(pn§.0l(X) for all u ' ^ Q . Again by Uc(0, yx)fl 
fl U£(0, y2) = 0, this gives (Y-z)(Y-w)(py^^(X) and (Y-z){Y 

We now change the role of X and Y and we repeat the same procedure. The 
corresponding vectors will be denoted by ips a p d £2. If (0, 0)£(j(N) and if the 



Commuting unbounded self-adjoint operators. I 145 

case j = 0 , y=c>=0 occurs in the first and in the second procedure, then we set 
^0=^0- As in the first part, we have (X-z)(X—w)£2$i%(Y) for all z,w£Cx. 
If we take the radii of the circles around (0, y}), resp., (§1, 0) small enough, then 
except from the possible case 4/o=(Po we have just mentioned the vectors cpyj and 
i¡/St have disjoint support w.r.t. the spectral measure G( •). Therefore, q:= 

has the desired properties. Now the proof of (i) is complete. 
We only sketch the proof of the sufficiency part of (ii). Assume that the op-

erators (X—a)Y~1 f and (Y-a)X~1 f are unbounded for all a€Ri- Since 
ffr=G(Kr)yf reduces X and Y, we can assume for simplicity in notation that 

Then <r(N)QKr. Since (X-r)Y-1 is unbounded, there are points 
(x„, y„)£cr(N), n£N, so that lim | ( x„—r)^" 1 ^^ . By taking a subsequence if /1 
necessary, we can assume that limA-„=:}> exists. Since x l + y l = r for «€N, it n 
follows that y = —r, l im j„=0 and (-r, 0)£a(N). Using that (X+r)Y-\ IT 
(Y—r)X~x and (Y+rfX'1 are unbounded, the same argument shows that 
(r, 0), (0, - / ' ) , (0, r)£<j(N). Hence we can take vectors c3 and in jf(=3fr) 
supported in the neighbourhood of (—r, 0), (r, 0), (0, — r), resp., (0, r) w.r.t. 
(?(•) such that and ^ ^ ( X ) . Setting £ = 

we then have that (XY+fi)Z$®(X) and (XX+№ i®(Y) for 
all X,n£Ci, (X, n)?i0. As in part (i) we can show that X and Y fulfil condition 
(4) in Theorem 1.7 and d(A, B)=2. 

Now the proof of Theorem 1 is complete. 

4.2. Remarks . 1. There are many examples of operators N satisfying the 
assumptions of Theorem 1. We mention only two of them. 

Example 1. Let N be a normal operator such that yT(Re Ar)=yT(Im N)= 
= {0}. If a(N) intersects both the x-axis and the j-axis in at least three points, 
then (as we have seen in the preceding proof) the assumptions of part (i) are fulfilled. 
Hence, by Theorem 1, f can be chosen such that the corresponding pair {A, B} 
is in and has defect number three. 

E x a m p l e 2. Let R be an unbounded self-adjoint operator, and let N= 
=(R—/)(/?+/)_1 be its Cayley transfoim. N is unitary. Suppose that JV(R)= 
=JR(R+I)=JR(R-I) = {0}. Obviously, this is equivalent to ^ ( R e N)= 
=JV(LM N)= {0}. If the points 0 , - 1 and 1 are in A(R), then the assumptions 
of part (ii) are satisfied (in case r— 1) and Theorem 1 (ii), yields a pair {A, i ? } ^ ! 
with d(A, B)=2. In this case N(I—ES) is a partial isometry with corank one and 
defect one. 

2. We want to interpret the method used in this section from another point of 
view. Again let N=X+iY be normal and assume that Jr(X)=Jr(Y) = {0}. 
Of course, {¿:=.X'-1 , i? :=l r-1}e9t1 and d(A,B)=0. Suppose that {1=X~\ 

10 
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£ = y - 1 } is a pair of the class constructed as in Theorem 1 (i) or (ii). Then 
X=X-(l/2)NÇ®ç-(\/2)Ç®Nç and ? = F - ( 1 /2)iNç ® £+( 1 ¡2)iç <g> Nç. We de-
note by F the orthogonal projection on ^ : = L i n {ç, XÇ, Yç, NXç, NYÇ}. Modify-
ing some arguments of the proof of Theorem 1, it can be shown that â?(XY)i]J^= 
= {0}. This implies that %\=XY(I-F)ZV is dense in tf. Since the vectors £ and 
M are orthogonal on (I-F)J^, X(I-F)3t and Y(I-F)Jf by construction, 
it is easily seen that A I %=Ä \ B \ %=B \ % and A \ B%=Ä \ B%, 
B i AS>0=B \ A&ti- In other words, the pair {Ä, .B}€9ti can be considered as an 
extension of the restriction to the dense domain %Q$>(AB) fl@(BA) fl2>{ÄB) f l 
n@(BÄ) of the strongly commuting pair {A,B}£9i 

The author would like to thank Kevin Clancey for valuable discussions during 
the eighth conference on operator theory in Romania, 1982. 
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