On commuting unbounded self-adjoint operators. I

KONRAD SCHMÜDGEN

Dedicated to Professor B. Szökefalvi-Nagy on the occasion of his 70th birthday

Let A and B be unbounded self-adjoint operators in a Hilbert space \mathscr{H} which are both essentially self-adjoint on a common dense domain $\mathscr{D}\subseteq \mathscr{D}(AB)\cap \mathscr{D}(BA)$ in \mathscr{H} and commute on \mathscr{D} . We then write $\{A,B\}\in \mathfrak{N}_1$. It is well known that the spectral projections of A and B may fail to commute for $\{A,B\}\in \mathfrak{N}_1$. The first counter-example was constructed by Nelson [10]; see also [6], [9], [13], [15]. In this paper we begin a study of this phenomenon in terms of commutators of bounded operators. In the present paper we restrict ourselves to the case where the spectra $\sigma(A)$ and $\sigma(B)$ are both different from the real line. A similar approach is possible in the general case if we use the Cayley transforms of A and B. But the methods of construction are somewhat different in that case (we have to deal with commutators of two unitaries).

Suppose that $\alpha \in \mathbb{R}_1 \setminus \sigma(A)$ and $\beta \in \mathbb{R}_1 \setminus \sigma(B)$. In Section 1 we characterize the couples $\{A, B\}$ in \mathfrak{R}_1 in terms of the bounded self-adjoint operators $X := (A - \alpha)^{-1}$ and $Y := (B - \beta)^{-1}$. We show that $\{A, B\} \in \mathfrak{R}_1$ if and only if $\overline{\mathscr{R}([X, Y])} \cap \mathscr{R}(X) = \overline{\mathscr{R}([X, Y])} \cap \mathscr{R}(Y) = \{0\}$. Probably the simplest example of this kind for which $[X, Y] \neq 0$ is given by $X = \operatorname{Re} S$, $Y = \operatorname{Im} S$, where S is the unilateral shift. Therefore, $\{A := (\operatorname{Re} S)^{-1}, B := (\operatorname{Im} S)^{-1}\} \in \mathfrak{R}_1$, but A and B do not commute strongly.

In the remaining sections of the paper we establish pairs of bounded self-adjoint operators X, Y having these properties. We describe three typical situations. All irreducible pairs in \mathfrak{N}_1 for which the commutator [X,Y] has rank one are classified in Section 2. Here we use the principal function [11] of the pair X, Y and the tracial bilinear form [8]. Toeplitz operators (mainly with polynomial symbols) are considered in Section 3. In Section 4 we study pairs of the class \mathfrak{N}_1 obtained by taking real and imaginary parts of certain one-dimensional "perturbations" of normal operators.

Received November 16, 1982.

Let us fix some notation. If T is an operator in a Hilbert space \mathcal{H} , then we use $\mathcal{D}(T)$, $\mathcal{N}(T)$, $\mathcal{R}(T)$ and $\sigma(T)$ to denote the domain, the kernel, the range and the spectrum of T, respectively. For a subset \mathcal{K} of \mathcal{H} , $\overline{\mathcal{K}}$ is the closure of \mathcal{K} in the Hilbert space norm. We denote by N_0 and N the non-negative, resp., positive integers.

1. The class \mathfrak{N}_1 .

Throughout this section, let A and B denote self-adjoint operators in a Hilbert space \mathcal{H} .

- 1.1. Definition 1. We say that the couple $\{A, B\}$ is of the class \mathfrak{N}_1 if there exists a linear subspace \mathcal{D} of \mathcal{H} such that
 - (1) $\mathcal{D} \subseteq \mathcal{D}(AB) \cap \mathcal{D}(BA)$ and $AB\varphi = BA\varphi$ for all $\varphi \in \mathcal{D}$.
 - (2) \mathcal{D} is dense in \mathcal{H} .
 - (3) $A \upharpoonright \mathcal{D}$ and $B \upharpoonright \mathcal{D}$ are essentially self-adjoint*) (e.s.a.).

Remarks. 1. Suppose that $\{A, B\} \in \mathfrak{R}_1$. If A (or B) is bounded, then A and B strongly commute (that is, by definition, the spectral projections $E(\lambda)$ of A and $F(\mu)$ of B commute for all $\lambda, \mu \in \mathbf{R}_1$). We sketch the proof. Since A is bounded and $B \upharpoonright \mathcal{D}$ is e.s.a., (1) extends by continuity on $\mathcal{D}(B)$, i.e., $AB\varphi = BA\varphi$ for all $\varphi \in \mathcal{D}(B)$. Since B is self-adjoint, this gives $[A, F(\mu)] = 0$ for $\mu \in \mathbf{R}_1$ and hence $[E(\lambda), F(\mu)] = 0$ for $\lambda, \mu \in \mathbf{R}_1$.

- 2. A pair $\{A, B\}$ in \mathfrak{N}_1 is said to be *irreducible* if each decomposition $\mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$, $A = A_1 \oplus A_2$, $B = B_1 \oplus B_2$, where A_j and B_j are self-adjoint operators in the Hilbert spaces \mathscr{H}_j , j = 1, 2, is trivial, that is, $\mathscr{H}_1 = \{0\}$ or $\mathscr{H}_2 = \{0\}$. Obviously, this is the case if and only if each projection commuting with A and B is either 0 or I.
- 1.2. As mentioned above, we restrict ourselves in this paper to the case where $\sigma(A) \neq \mathbf{R}_1$ and $\sigma(B) \neq \mathbf{R}_1$. Suppose that $\alpha \in \mathbf{R}_1 \setminus \sigma(A)$ and $\beta \in \mathbf{R}_1 \setminus \sigma(B)$. We now reformulate the conditions occurring in Definition 1 in terms of the bounded self-adjoint operators $X := (A \alpha)^{-1}$ and $Y := (B \beta)^{-1}$.

For let P denote the orthogonal projection of \mathscr{H} on $\overline{\mathscr{R}([X,Y])}$ and let $\mathscr{D}(A,B):=XY(I-P)\mathscr{H}$.

Definition 2. If $\{A, B\} \in \mathfrak{N}_1$, then $d(A, B) := \dim P \mathcal{H}$ is called the defect number of the pair $\{A, B\}$.

^{*)} Recall that a symmetric operator T is called essentially selfadjoint if its closure \overline{T} is selfadjoint. Thus (3) means that $\overline{A \mid \mathcal{D}} = A$ and $\overline{B \mid \mathcal{D}} = B$.

It is easy to check that d(A, B) does not depend on the choice of $\alpha \in \mathbb{R}_1 \setminus \sigma(A)$, $\beta \in \mathbb{R}_1 \setminus \sigma(B)$. Moreover, A and B commute strongly if and only if X and Y commute, that is, d(A, B) = 0.

Lemma 3. $\mathcal{D}(A, B)$ is the largest linear subspace of \mathcal{H} satisfying (1). Moreover, $\mathcal{D}(A, B) \equiv XY(I-P)\mathcal{H} = YX(I-P)\mathcal{H} \equiv \mathcal{D}(B, A)$.

Proof. Suppose that $\varphi \in \mathcal{D}(AB) \cap \mathcal{D}(BA)$ and $AB\varphi = BA\varphi$. Then, $\varphi = XY\xi = YX\eta$ for some $\xi, \eta \in \mathcal{H}$. $(A-\alpha)(B-\beta)\varphi = \eta$ and $(B-\beta)(A-\alpha)\varphi = \xi$ imply that $\xi = \eta$. Hence $0 = \langle (XY-YX)\xi, \psi \rangle = \langle \xi, -(XY-YX)\psi \rangle$ for all $\psi \in \mathcal{H}$, i.e. $\xi \perp P\mathcal{H}$ and thus $\varphi = XY(I-P)\xi \in \mathcal{D}(A,B)$.

Conversely, let $\varphi = XY(I-P)\xi$ for some $\xi \in \mathcal{H}$. In particular, $\langle (I-P)\xi, -(XY-YX)^2(I-P)\xi \rangle = 0 = \|(XY-YX)(I-P)\xi\|^2$. Therefore, $\varphi = XY(I-P)\xi = YX(I-P)\xi$ which gives $AB\varphi = BA\varphi$. Moreover, this shows that $XY(I-P)\mathcal{H} \subseteq YX(I-P)\mathcal{H}$. Replacing XY by YX, we get $YX(I-P)\mathcal{H} \subseteq XY(I-P)\mathcal{H}$ thus completing the proof.

Lemma 4. $\mathcal{D}(A, B)$ is dense in \mathcal{H} if and only if $\overline{\mathcal{R}([X, Y])} \cap \mathcal{R}(XY) = \{0\}$.

Proof. $\mathcal{D}(A, B) \equiv \mathcal{R}(YX(I-P))$ is dense if and only if $\mathcal{N}((YX(I-P))^*) = \mathcal{N}((I-P)XY) = \{0\}$. Obviously, $\varphi \in \mathcal{N}((I-P)XY)$ is equivalent to $XY\varphi \in \overline{\mathcal{R}([X,Y])}$. This gives the assertion, because $\mathcal{N}(X) = \mathcal{N}(Y) = \{0\}$.

Lemma 5. $A \mid \mathcal{D}(A, B)$ is e.s.a. if and only if

$$P\mathcal{H} \cap \mathcal{D}(B) = \overline{\mathcal{R}([X,Y])} \cap \mathcal{R}(Y) = \{0\}.$$

 $B \mid \mathcal{D}(A, B)$ is e.s.a. if and only if

$$P\mathcal{H} \cap \mathcal{D}(A) = \overline{\mathcal{R}([X,Y])} \cap \mathcal{R}(X) = \{0\}.$$

Proof. We only prove the first assertion. Since $(A-\alpha)^{-1}=X$ is a bounded self-adjoint operator, $A \upharpoonright \mathcal{D}(A, B)$ is e.s.a. if and only if $(A-\alpha)\mathcal{D}(A, B) \equiv \equiv Y(I-P)\mathcal{H} \equiv \mathcal{R}(Y(I-P))$ is dense in \mathcal{H} or equivalently if $\mathcal{N}((I-P)Y) = \{0\}$. Since $\mathcal{N}(Y) = \{0\}$, the latter is equivalent to $P\mathcal{H} \cap \mathcal{R}(Y) = \{0\}$, which completes the proof.

In case that $\mathcal{R}([X,Y])$ is closed, the next Lemma gives a characterization of the class \mathfrak{N}_1 only in terms of domains.

Lemma 6. If $\{A, B\} \in \mathfrak{N}_1$, then $\mathfrak{D}(AB) \cap \mathfrak{D}(A) = \mathfrak{D}(BA) \cap \mathfrak{D}(B) = \mathfrak{D}(AB) \cap \mathfrak{D}(BA) = \mathfrak{D}(A, B)$ (and, by definition, this domain is dense in \mathcal{H}). Conversely, suppose that $\mathfrak{R}([X,Y)]$ is closed. If $\mathfrak{D}(A,B)$ is dense in \mathcal{H} and $\mathfrak{D}(AB) \cap \mathfrak{D}(A) = \mathfrak{D}(BA) \cap \mathfrak{D}(B) = \mathfrak{D}(AB) \cap \mathfrak{D}(BA)$, then $\{A, B\} \in \mathfrak{N}_1$.

Proof. Suppose that $\{A, B\} \in \mathfrak{N}_1$. Since $XY(I-P)\mathscr{H} = YX(I-P)\mathscr{H}$ by Lemma 3, it is clear that $\mathscr{D}(AB) \cap \mathscr{D}(A) \supseteq \mathscr{D}(AB) \cap \mathscr{D}(BA) = YX\mathscr{H} \cap XY\mathscr{H} \supseteq XY(I-P)\mathscr{H} = \mathscr{D}(A, B)$. Now let $\varphi = YX\xi = X\eta \in \mathscr{D}(AB) \cap \mathscr{D}(A)$. Then, $X(\eta - Y\xi) = [X, Y](-\xi)$. Since $\{A, B\} \in \mathfrak{N}_1$, $\mathscr{R}(X) \cap \overline{\mathscr{R}([X, Y])} = \{0\}$ by Lemma 5. Hence $X(\eta - Y\xi) = 0$ and, since $\mathscr{N}(X) = \{0\}$, $\eta = Y\xi$. As in the proof of Lemma 3, $XY\xi = YX\xi$ implies that $\xi \perp \overline{\mathscr{R}([X, Y])}$. Therefore, $\xi = (I-P)\xi$ and $\varphi = YX(I-P)\xi \in \mathscr{D}(A, B)$ which proves that $\mathscr{D}(A, B) \supseteq \mathscr{D}(AB) \cap \mathscr{D}(A)$. Changing the role of A and B, we get $\mathscr{D}(BA) \cap \mathscr{D}(B) = \mathscr{D}(A, B)$.

We now prove the second assertion. Set $\mathscr{D} = \mathscr{D}(A, B)$ in Definition 1. Then (1) and (2) are satisfied by Lemma 3, resp., by assumption. We show that $\mathscr{R}([X,Y])\cap \mathscr{R}(X)=\{0\}$. Suppose that $\varphi:=[X,Y]\xi=X\eta$ for some $\xi,\eta\in\mathscr{H}$. Then $\psi:=XY\xi-X\eta=YX\xi\in\mathscr{D}(A)\cap\mathscr{D}(AB)$. By assumption, $\psi\in\mathscr{D}(BA)$, that is, $\psi=XY\zeta$ for some $\zeta\in\mathscr{H}$. Hence $X(Y\xi-\eta-Y\zeta)=0$ which gives $\eta=Y(\xi-\zeta)$. Therefore, $\eta\in\mathscr{R}(Y)$ and $\varphi\in\mathscr{R}([X,Y])\cap\mathscr{R}(XY)$. Since we assumed that $\mathscr{D}(A,B)$ is dense, Lemma 4 gives $\varphi=0$. This proves $\mathscr{R}([X,Y])\cap\mathscr{R}(X)=\{0\}$. From Lemma 5 (recall that $\mathscr{R}([X,Y])$ is closed!) we conclude that $B \upharpoonright \mathscr{D}(A,B)$ is e.s.a. Similarly, $A \upharpoonright \mathscr{D}(A,B)$ is e.s.a. Thus $\{A,B\}\in\mathfrak{N}_1$.

Remarks. 1. If we do not assume that $\mathcal{D}(A, B)$ is dense, then the equality of the domains in Lemma 6 does not ensure that $\{A, B\} \in \mathfrak{N}_1$ in general. For an example, recall that there are unbounded self-adjoint operators A and B so that $\mathcal{D}(A) \cap \mathcal{D}(B) = \{0\}$ ([17]). Then, $\mathcal{D}(AB) \cap \mathcal{D}(A) = \mathcal{D}(BA) \cap \mathcal{D}(B) = \mathcal{D}(AB) \cap \mathcal{D}(BA) = \mathcal{D}(A, B) = \{0\}$, but $\{A, B\} \notin \mathfrak{N}_1$.

- 2. The second assertion in Lemma 6 is no longer true if we replace the density of $\mathcal{D}(A, B)$ by that of $\mathcal{D}(AB) \cap \mathcal{D}(BA)$. To prove this remark, let $\mathcal{H} = L^2(1, 2)$, let X be the multiplication operator by x, and let Y = I + H/2, where H is the finite Hilbert transform in $L^2(1, 2)$. Then X and Y have bounded inverses denoted by A resp. B. Moreover, [X, Y] has rank one and $\mathcal{D}(AB) = \mathcal{D}(A) = \mathcal{D}(BA) = \mathcal{D}(B) = \mathcal{H}$, but $\{A, B\} \notin \mathfrak{N}_1$ by the first remark in 1.1.
- 3. It follows from the preceding that if $\{A, B\} \in \mathfrak{N}_1$, then we can take $\mathfrak{D} = \mathfrak{D}(A, B)$ in Definition 1.
- 1.3. Theorem 7. Suppose $\{A, B\} \in \mathfrak{R}_1$ Suppose also that $\alpha \in \mathbb{R}_1 \setminus \sigma(A)$ and $\beta \in \mathbb{R}_1 \setminus \sigma(B)$. If $X := (A \alpha)^{-1}$ and $Y := (B \beta)^{-1}$, then

$$(4) \quad \mathcal{N}(X) = \mathcal{N}(Y) = \{0\} \quad and \quad \overline{\mathcal{R}([X,Y])} \cap \mathcal{R}(X) = \overline{\mathcal{R}([X,Y])} \cap \mathcal{R}(Y) = \{0\}.$$

Conversely, if X and Y are bounded self-adjoint operators satisfying (4), then $\{A:=X^{-1}+\alpha, B:=Y^{-1}+\beta\}\in\mathfrak{N}_1$ for $\alpha,\beta\in\mathbf{R}_1$.

The proof of Theorem 7 follows immediately from the three Lemmas 3, 4 and 5 above.

2. Pairs with defect number one

In this section we classify, up to unitary equivalence, all irreducible pairs $\{A, B\} \in \mathbb{R}_1$ with defect number one for which $\sigma(A) \neq \mathbb{R}_1$ and $\sigma(B) \neq \mathbb{R}_1$.

2.1. We first collect some facts concerning bounded operators with rank one self-commutators. A very readable account of this theory is given in [3]; see also [11], [2], [8], [4].

A bounded operator T in \mathcal{H} is said to be *completely hyponormal* if T is hyponormal (that is, $[T^*, T] \ge 0$) and if T has no nontrivial reducing subspace on which it is normal. Suppose that T is completely hyponormal and that $\dim \mathcal{R}([T^*, T]) = 1$. The essential underlying result for our study is the following. There is a function $g(x, y) \in L^1(\mathbf{R}_2)$ with compact support such that

(5)
$$\operatorname{Tr} i[p(X,Y), q(X,Y)] = \frac{1}{2\pi} \iiint \left(\frac{\partial p}{\partial x} \frac{\partial q}{\partial y} - \frac{\partial p}{\partial y} \frac{\partial q}{\partial x} \right) g(x,y) \, dx \, dy$$

for all polynomials p and q in X and Y. Moreover, $0 \le g(x, y) \le 1$ a.e. on \mathbf{R}_2 . $g = g_T$ is called the *principal function of* T. It was introduced by Pincus [11]. g_T is a complete unitary invariant for T, that is, two completely hyponormal operators T and \tilde{T} with rank one self-commutators are unitarily equivalent if and only if their principal functions g_T and g_T coincide (considered as elements of $L^1(\mathbf{R}_2)$). Moreover, for each function $g \in L^1(\mathbf{R}_2)$ with compact support satisfying $0 \le g \le 1$ there exists a completely hyponormal operator T with principal function g such that $\dim \mathcal{R}([X,Y]) = 1$.

We now return to the class \mathfrak{N}_1 . Let $\{A,B\}$ and $\{\tilde{A},\tilde{B}\}$ be pairs of the class \mathfrak{N}_1 in Hilbert spaces \mathscr{H} and $\tilde{\mathscr{H}}$. $\{A,B\}$ is called *unitarily equivalent* to $\{\tilde{A},\tilde{B}\}$ if there is an isometry U of \mathscr{H} onto $\tilde{\mathscr{H}}$ such that $A=U^*\tilde{A}U$ and $B=U^*\tilde{B}U$. In that case we clearly have $U\mathscr{D}(A,B)=\mathscr{D}(\tilde{A},\tilde{B})$. As in Section 1, we assume that $\alpha\in\mathbf{R}_1\setminus\sigma(A)$ and $\beta\in\mathbf{R}_1\setminus\sigma(B)$. It is easy to see that $\{A,B\}$ is unitarily equivalent to $\{\tilde{A},\tilde{B}\}$ if and only if $\alpha\notin\sigma(\tilde{A}),\beta\notin\sigma(\tilde{B})$ and $T:=X+iY=(A-\alpha)^{-1}+i(B-\beta)^{-1}$ is unitarily equivalent to $\tilde{T}:=\tilde{X}+i\tilde{Y}=(\tilde{A}-\alpha)^{-1}+i(\tilde{B}-\beta)^{-1}$. Moreover, $\{A,B\}$ is irreducible if and only if T is irreducible.

Suppose now in addition that d(A, B)=1. Then the self-adjoint operator $D:=[T^*, T]$ has rank one and therefore either $D\ge 0$ or $D\le 0$. Obviously, sign D is a unitary invariant for $\{A, B\}\in \mathfrak{N}_1$. By changing the role of A and B in case $D\le 0$, we can restrict ourselves to pairs $\{A, B\}\in \mathfrak{N}_1$ for which $D=[T^*, T]\ge 0$, that is, T is hyponormal. Since D has rank one, $\{A, B\}\in \mathfrak{N}_1$ is irreducible (or equivalently, T is irreducible) if and only if T is completely hyponormal. Therefore, under the above assumptions (i.e., d(A, B)=1, $\alpha\in \mathbf{R}_1\setminus \sigma(A)$, $\beta\in \mathbf{R}_1\setminus \sigma(B)$ and $[T^*, T]\ge 0$), g_T is a complete unitary invariant for irreducible $\{A, B\}\in \mathfrak{N}_1$.

To proceed in the converse direction, it still remains to decide when a given completely hyponormal operator with rank one self-commutator leads to an (irreducible) pair $\{A, B\}$ in \mathfrak{R}_1 . The answer is contained in

Theorem 1. Suppose that T is a completely hyponormal operator in the Hilbert space \mathcal{H} with rank one self-commutator. Let g be the principal function of $T, X = \operatorname{Re} T$ and $Y = \operatorname{Im} T$. Let $x_0, y_0 \in \mathbb{R}_1$. Then the inverses $A := (X - x_0)^{-1}$ and $B := (Y - y_0)^{-1}$ exist. $\{A, B\} \in \mathfrak{R}_1$ if and only if $\iint g(x, y)(x - x_0)^{-2} dx dy = \int \int g(x, y)(y - y_0)^{-2} dx dy = +\infty$.

2.2. In the proof of Theorem we use the following easy

Lemma 2. Let N be a bounded operator in \mathcal{H} and let $\phi, \psi \in \mathcal{H}$. Let $\{z_n, n \in \mathbb{N}\}$ be a zero sequence of complex numbers such that $z_n \notin \sigma(N)$ for all $n \in \mathbb{N}$.

- (i) If $\lim_{n \to \infty} (N-z_n)^{-1}\psi = \varphi$, then $N\varphi = \psi$.
- (ii) Suppose that N is normal and that $\mathcal{N}(N) = \{0\}$. Suppose that

$$c := \sup_{n \in \mathbb{N}} |z_n| (\operatorname{dist}(z_n, \sigma(N)))^{-1} < \infty.$$

If $N\varphi = \psi$, then $\lim_{n} (N - z_n)^{-1} \psi = \varphi$.

Proof. (i) $\psi = N(N-z_n)^{-1}\psi - z_n(N-z_n)^{-1}\psi \rightarrow N\varphi - 0\varphi$ as $n \rightarrow \infty$, i.e., $N\varphi = \psi$.

(ii) Letting $N = \int z dG(z)$ be the spectral decomposition for N, we have

$$||(I-G(\{0\}))z_n(N-z_n)^{-1}\varphi||^2 = \int_{\sigma(N)\setminus\{0\}} |z_n|^2|z-z_n|^{-2}d||G(z)\varphi||^2 \le \int_{\sigma(N)\setminus\{0\}} |z-z_n|^{-2}d||G(z)\varphi||^2 \le \int_{\sigma(N)\setminus\{0\}} |z-z_n|^2 \le \int_$$

The dominated Lebesgue theorem yields $\lim_{n} (I - G(\{0\})) z_n (N - z_n)^{-1} \varphi = 0$. Since $\mathcal{N}(N) = \{0\}$, we have $G(\{0\}) = 0$ and therefore $\lim_{n} z_n (N - z_n)^{-1} \varphi = 0$. Therefore, $(N - z_n)^{-1} \psi = z_n (N - z_n)^{-1} \varphi + \varphi \to 0 + \varphi$ as $n \to \infty$, which completes the proof.

Proof of Theorem 1. Since T is hyponormal and $\dim \mathcal{R}([T^*, T]) = 1$, there is a vector $\xi \neq 0$ in \mathcal{H} such that $[T^*, T] = 2i[X, Y] = \xi \otimes \xi$. Since T is completely hyponormal, the operators X and Y are absolutely continuous ([12], Theorem 2.2.4 or [3], Theorem 3.2). In particular, $\mathcal{N}(X - x_0) = \mathcal{N}(Y - y_0) = \{0\}$. Hence the inverses A and B exist and are self-adjoint operators in \mathcal{H} .

By induction it follows that $2i[X^{n+1}, Y] = \sum_{j=0}^{n} X^{j} \xi \otimes X^{n-j} \xi$ for $n \in \mathbb{N}_{0}$. Therefore, $\operatorname{Tr} 2i[X^{n+1}, Y] = (n+1)\langle X^{n} \xi, \xi \rangle$. Applying the tracial functional calculus in case $p(X, Y) = X^{n+1}$, q(X, Y) = Y, we get

Tr
$$i[X^{n+1}, Y] = (1/2\pi) \int \int (n+1)x^n g(x, y) dx dy$$
.

Putting both together, we conclude that

(6)
$$\pi \langle p(X)\xi, \xi \rangle = \iint p(x)g(x, y) \, dx \, dy$$

for each complex polynomial $p(\cdot)$ in X.

Setting $N:=X-x_0$ and $z_n:=2^{-n}i$ for $n\in\mathbb{N}$, the assumptions of Lemma 2 are fulfilled. Therefore, by Lemma 2, $\xi\in\mathcal{R}(X-x_0)$ if and only if the sequence $\varphi_n:=(X-x_0+z_n)^{-1}\xi$, $n\in\mathbb{N}$, converges in \mathscr{H} . We prove that

$$\xi \in \mathcal{R}(X-x_0)$$
 if and only if $\iint g(x,y)(x-x_0)^{-2} dx dy < \infty$.

For simplicity in notation, let $x_0=0$. Assume that $\{\varphi_n\}$ converges. Take a positive number L so that supp $g\subseteq [-L,L]\times \mathbb{R}_1$ and $\sigma(X)\subseteq [-L,L]$. Let $n\in \mathbb{N}$. If we approximate the continuous function $|x+2^{-n}i|^{-2}$ by polynomials uniformly on [-L,L], it follows from (6) that

$$\pi \|\varphi_n\|^2 = \pi \|(X+2^{-n}i)^{-1}\xi\|^2 = \iint g(x,y)|x+2^{-n}i|^{-2} dx dy.$$

By Fatou's lemma (recall that $g(x, y) \ge 0$ a.e.), we obtain

$$\iint g(x,y)x^{-2}dx\,dy \leq \lim_{n} \iint g(x,y)|x+2^{-n}i|^{-2}\,dx\,dy = \pi \lim_{n} \|\varphi_{n}\|^{2} < \infty.$$

Conversely, assume that $\iint g(x, y)x^{-2}dxdy < \infty$. Again uniform approximation by polynomials yields

(7)
$$\pi \|\varphi_n - \varphi_m\|^2 = \iint g(x, y) |(x + 2^{-n}i)^{-1} - (x + 2^{-m}i)^{-1}|^2 dx dy$$

for $n, m \in \mathbb{N}$. Since $|x+2^{-n}i|^{-1} \le |x|^{-1}$ for $n \in \mathbb{N}$ and the above integral is finite, Lebesgue's dominated convergence theorem (in the formulation given in [1], IV, § 3, 7.) applies and gives

$$\lim_{n} \iint g(x, y) |(x + 2^{-n}i)^{-1} - x^{-1}|^{2} dx dy = 0.$$

Because of (7), the latter implies that $\{\varphi_n\}$ is a Cauchy sequence in \mathcal{H} . Therefore, $\{\varphi_n\}$ converges in \mathcal{H} . This completes the proof of (5).

Similarly, $\xi \in \mathcal{R}(Y - y_0)$ if and only if $\iint g(x, y)(y - y_0)^{-2} dx dy < \infty$. Theorem 1.7 now gives the result.

- 2.3. Remarks. 1. Each hyponormal operator on a separable Hilbert space can be represented as a singular integral operator on a direct integral Hilbert space ([16], [11]; see [3], 2.3). This result can be used to obtain concrete realizations for pairs $\{A, B\} \in \mathfrak{R}_1$ with d(A, B) = 1, $\sigma(A) \neq \mathbf{R}_1$ and $\sigma(B) \neq \mathbf{R}_1$.
- 2. Given a function $g \in L^1(\mathbf{R}_2)$ with compact support satisfying $0 \le g \le 1$ and $\iint gx^{-2}dxdy = \iint gy^{-2}dxdy = \infty$, there exists an (unique up to unitary equivalence) irreducible pair $\{A:=X^{-1},B:=Y^{-1}\}\in \mathfrak{N}_1$ with defect number one such that g is the principal function of the completely hyponormal operator T=X+iY.

This follows from Theorem 1 and the discussion before Theorem 1. Especially, we see that there is a large variety of irreducible pairs of the class \mathfrak{N}_1 even in the case d(A, B) = 1.

3. We illustrate Theorem 1 by a well-known general example (see, for example, [3]). Let $\mathscr I$ be a Lebesgue measurable bounded subset of R_1 . Let $a, b \in L^{\infty}(\mathscr I)$, where $b(t) \neq 0$ a.e. on $\mathscr I$ and a(t) is real valued. Define an operator T on $\mathscr H = L^2(\mathscr I)$ by

$$(Tf)(t) \equiv \left((X+iY)f \right)(t) := tf(t) + i \left[a(t)f(t) + \frac{b(t)}{\pi i} \int \frac{b(s)f(s)}{t-s} \, ds \right].$$

Then, $[T^*, T] = (2/\pi)b \otimes b$. By a result of XA DAO-XENG [16], T is the most general completely hyponormal operator with rank one self-commutator whose real part has a cyclic vector. The principal function of T is the characteristic function of the set

$$\mathscr{E} = \{(x, y) \in \mathbb{R}_2 : x \in \mathscr{I} \text{ and } a(x) - |b(x)|^2 \le y \le a(x) + |b(x)|^2\}.$$

If $(x_0, y_0) \in \mathbb{R}_2$ is in the interior of \mathscr{E} , then the conditions in Theorem 1 are, of course, satisfied and thus $\{A := (X - x_0)^{-1}, B := (Y - y_0)^{-1}\} \in \mathfrak{N}_1$. In that case $\sigma(A) \supseteq (-\infty, -L) \cup (L, +\infty)$ and $\sigma(B) \supseteq (-\infty, L) \cup (L, +\infty)$ for some L > 0. If (x_0, y_0) is not in the closure of \mathscr{E} , then $\{A, B\} \notin \mathfrak{N}_1$.

We now discuss two rather simple (but typical) examples for which (x_0, y_0) is in the boundary of $\mathscr E$. First suppose x_0 is in the interior of $\mathscr F$ and $a(x_0) - |b(x_0)|^2 = y_0 < a(x_0) + |b(x_0)|^2$. Assume that $a + |b|^2$ is continuous at x_0 . Assume that $a(x) - |b|(x)|^2 = \lambda |x|^{\alpha}$ for $x_0 - \varepsilon < x < x_0$ and that $a(x) - |b(x)|^2 = \mu |x|^{\beta}$ for $x_0 < x < x_0 + \varepsilon$ with $\lambda, \mu \in \mathbb{R}_1, \alpha > 0, \beta > 0$ and $\varepsilon > 0$. Then, $\{A, B\} \in \mathfrak{N}_1$ if and only if $\lambda > 0, \mu > 0, \alpha < 1$ and $\beta < 1$. Moreover, $\sigma(A) \supseteq (-\infty, -L) \cup (L, +\infty)$ for some L > 0.

In the second example we assume that $\mathscr{I}\subseteq (x_0, +\infty)$, $(x_0, x_0+\varepsilon)\subseteq \mathscr{I}$ for some $\varepsilon>0$ and $a(x)-|b(x)|^2\geq 0$ on \mathscr{I} . Suppose that $a(x)-|b(x)|^2=\lambda|x|^\alpha$ and $a(x)+|b(x)|^2=\mu|x|^\beta$ for $x\in (x_0,x_0+\varepsilon)$ with $\lambda>0$, $\mu>0$, $\alpha>0$ and $\beta>0$. Then $\{A,B\}\in \mathfrak{R}_1$ if and only if $\beta\leq 1\leq \alpha$. (Note that $\lambda<\mu$ in case $\alpha=\beta$, since $b(x)\neq 0$ a.e. on \mathscr{I} .) In this example A and B are positive operators.

3. Toeplitz operators

3.1. Let $L^2=L^2(\mathbf{T})$ be the L^2 -space on the unit circle \mathbf{T} with normalized Lebesgue measure. Let H^2 be the usual Hardy space on \mathbf{T} and let P_+ denote the orthogonal projection on H^2 . If $\varphi \in L^{\infty}(\mathbf{T})$, then the Toeplitz operator T_{φ} is defined by $T_{\varphi}f = P_+\varphi f$ for $f \in H^2$. Let $\varphi = \sum_{n=-\infty}^{\infty} \varphi_n e_n$ be the Fourier expansion

of φ , where $e_n := e^{int}$ for $n \in \mathbb{Z}$. The matrix $(d_{nk})_{n,k \in \mathbb{N}_0}$ of the self-commutator $D = [T_{\varphi}^*, T_{\varphi}]$ with respect to the orthonormal base $(e_n)_{n \in \mathbb{N}_0}$ of H^2 is given by

(8)
$$d_{nk} = \langle De_k, e_n \rangle = \sum_{j=0}^{\infty} \varphi_{j-k} \overline{\varphi_{j-n}} - \varphi_{n-j} \overline{\varphi_{k-j}}.$$

As usual, we identify H^2 and $l_2(N_0)$ via Fourier expansion. If $\varphi \in H^{\infty}$, then $\varphi_n = 0$ for all n < 0 and (8) yields

(9)
$$d_{nk} = \langle (S^*)^{n+1} \varphi, (S^*)^{k+1} \varphi \rangle \text{ for all } k, n \in \mathbb{N}_0.$$

Here S^* is the backward shift in $l_2(N_0)$ which is defined by $S^*(\psi_0, \psi_1, \psi_2, ...) = = (\psi_1, \psi_2, ...)$.

Theorem 1. Let $p(z) = \sum a_j z^j$ be a non-constant complex polynomial of degree n. Let $X = \operatorname{Re} T_p$, $Y = \operatorname{Im} T_p$, $A = X^{-1}$ and $B = Y^{-1}$. Then $\{A, B\} \in \mathfrak{N}_1$ if and only if each $z \in \mathbb{C}_1$, $z \neq 0$, satisfying

(10)
$$(\bar{p}(z)+p(z))(\bar{p}(z)-p(z)) = 0$$

lies on T, where $\bar{p}(z) := \sum \bar{a}_i z^{-j}$. If this is true, then d(A, B) = n.

Proof. Let $\mathcal{K}_n := \text{Lin } \{e_j : j = 0, ..., n-1\}$. First we check that $\mathcal{R}([X, Y]) \equiv \mathcal{R}([T_p^*, T_p]) \equiv \mathcal{R}(D) = \mathcal{K}_n$. From (9) it is obvious that $DH^2 \subseteq \mathcal{K}_n$. Since $a_n \neq 0$, it follows that the n vectors $(S^*)^n p = (a_n, 0, ...)$, $(S^*)^{n-1} p = (a_{n-1}, a_n, 0, ...)$,, $S^* p = (a_1, ..., a_n, 0, ...)$ are linearly independent. That is, the Gram determinant $\det(d_{nk})_{n,k=0,...,n-1}$ is non-zero. Therefore, the map $D: \mathcal{K}_n \to \mathcal{K}_n$ is one-to-one and $\mathcal{R}([X, Y]) \equiv \mathcal{R}(D) = \mathcal{K}_n$.

Clearly, $2X = T_{\bar{p}+p}$ and $2Y = T_{i(\bar{p}-p)}$. It is well-known that each nonzero bounded self-adjoint Toeplitz operator has trivial kernel ([7], Ex. 198). Hence $\mathcal{N}(X) = \mathcal{N}(Y) = \{0\}$ and the operators $A := X^{-1}$ and $B := Y^{-1}$ exist.

Set $q(z)=z^n(\bar{p}(z)+p(z))$. Let $f\in H^2$. Obviously, $Xf\in \mathcal{K}_n$ is equivalent to $0=\langle Xf,e_{n+k}\rangle$ for all $k\in \mathbb{N}_0$. Since $\bar{p}+p$ is real on \mathbb{T} , this is equivalent to $0=\langle T_{\bar{p}+p}f,e_{n+k}\rangle=\langle P_+(\bar{p}+p)f,e_{n+k}\rangle=\langle f,(\bar{p}+p)e_{n+k}\rangle=\langle f,S^k(\bar{p}+p)e_n\rangle=\langle f,S^kq\rangle$ for $k\in \mathbb{N}_0$. Combined with $\mathcal{N}(X)=\{0\}$, this shows that $\mathcal{R}(X)\cap \mathcal{K}_n=\{0\}$ if and only if q(z) is a cyclic vector for the shift operator, that is, if q(z) is an outer function in H^2 . But a polynomial is an outer function in H^2 if and only if it does not vanish in the set $\{z\in \mathbb{C}_1\colon |z|<1\}$. Since $\mathcal{R}([X,Y])=\mathcal{K}_n$ as we have seen above, it follows that $\mathcal{R}(X)\cap \overline{\mathcal{R}([X,Y])}=\mathcal{R}(X)\cap \mathcal{K}_n=\{0\}$ if and only if q(z) has no zeros in $\{z\in \mathbb{C}_1\colon |z|<1\}$. Obviously, q(z)=0 for a complex number $z\neq 0$ implies that $q(\bar{z}^{-1})=0$. Moreover, $q(0)\neq 0$, since $a_n\neq 0$. Therefore, $\mathcal{R}(X)\cap \overline{\mathcal{R}([X,Y])}=\{0\}$ if and only if each solution $z\in \mathbb{C}_1$, $z\neq 0$, of $\bar{p}(z)+p(z)=0$ lies on the unit circle. Similarly, $\mathcal{R}(Y)\cap \overline{\mathcal{R}([X,Y])}=\{0\}$ if and only if $\bar{p}(z)-p(z)=0$ for some $z\in \mathbb{C}_1$, $z\neq 0$, implies |z|=1.

Now the assertion follows immediately from Theorem 1.7.

Corollary 2. If all zeros of p(z) are in $\{z \in C_1: |z| \le 1\}$, then $\{A, B\} \in \mathfrak{N}_1$.

Proof. Let $b_1, ..., b_n$ be the zeros of p(z). Assume the contrary, that is, $\{A, B\} \notin \mathfrak{N}_1$. Then, by Theorem 1, there is a non-zero $z \in \mathbb{C}_1$, $|z| \neq 1$, satisfying (10). Hence $|p(z)| = |\bar{p}(z)|$. Since $|p(\bar{z}^{-1})| = |\bar{p}(\bar{z}^{-1})|$, we can assume that |z| < 1. From

$$\left|a_n \prod_{j=1}^n (z-b_j)\right| = |\underline{p}(z)| = |\overline{p}(z)| = \left|\overline{a_n} \prod_{j=1}^n \left(\frac{1}{z} - \overline{b_j}\right)\right|$$

we obtain $|z|^n \prod_{j=1}^n |(b_j-z)(1-b_jz)^{-1}|=1$. Since $|b_j| \le 1$ by assumption and |z| < 1, it follows that $|(b_j-z)(1-b_jz)^{-1}| \le 1$ and $|z|^n < 1$, and we have our contradiction.

Examples. 1. Applying Corollary in case $p(z) \equiv z$, we see that the shift operator $S = T_z$ gives a pair $\{A = (\text{Re } S)^{-1}, B = (\text{Im } S)^{-1}\} \in \mathfrak{N}_1$ with defect number one. This could be verified directly or obtained from Section 2 as well.

- 2. Let $p_1(z)=2(z-\sqrt{2})$ and let $p_2(z)=(1+i)p_1(z)/2=(1+i)(z-\sqrt{2})$. Let $X_j=\operatorname{Re} T_{p_j}$ and $Y_j=\operatorname{Im} T_{p_j}$ for j=1,2. Then $X_1=X_2+Y_2$ and $Y_1=Y_2-X_2$. In case $p_2(z)$ the solutions of (10) are given by $z_1=z_2=(1+i)/\sqrt{2}, z_3=z_4=(1-i)/\sqrt{2}$. Since they are all of modulus one, $\{X_2^{-1}, Y_2^{-1}\} \in \mathfrak{N}_1$ by Theorem 1. Since the zero of $p_1(z)$ is not contained in $\{|z| \le 1\}$, we see that the condition given in Corollary 2 is sufficient, but not necessary. On the other hand, $z_0=\sqrt{2}+1$ is a solution of (10) for $p_1(z)$. Consequently, $\{X_1^{-1}, Y_1^{-1}\} \equiv \{(X_2+Y_2)^{-1}, (Y_2-X_2)^{-1}\}$ does not belong to the class \mathfrak{N}_1 . This also follows from the fact that X_1^{-1} is bounded, because $\sigma(X_2)=\lceil -2-2\sqrt{2}, 2-2\sqrt{2} \rceil$.
- 3.2. A further study of the function $\varphi \in L^{\infty}$ for which $X = \text{Re } T_{\varphi}$ and $Y = \text{Im } T_{\varphi}$ satisfy the conditions of Theorem 1.7 seems to be of some interest. As a result in the opposite direction we mention

Proposition 3. Suppose that $\varphi \in H^{\infty}$ is a cyclic vector for the backward shift operator. If the sequence $(\|(S^*)^n \varphi\|)_{n \in \mathbb{N}}$ is in $l_2(\mathbb{N})$, then $\mathcal{R}([T_{\varphi}^*, T_{\varphi}])$ is dense in H^2 (and the conditions (4) in Theorem 1.7 are certainly not fulfilled).

Proof. Since $D=[T_{\varphi}^*,T_{\varphi}]$ is self-adjoint, it suffices to show that D has trivial kernel. Suppose that $Df=[T_{\varphi}^*,T_{\varphi}]f=0$ for some function $f=\sum_{j=0}^{\infty}f_je_j\in H^2$. From $(\|(S^*)^n\varphi\|)\in l_2$ and $(f_n)\in l_2$ it follows that the series $\sum_{k=0}^{\infty}f_k(S^*)^{k+1}\varphi$ converges in the Hilbert space H^2 and thus defines a function $h\in H^2$.

Df = 0 implies that $\sum_{k=0}^{\infty} d_{nk} f_k = \sum_{k=0}^{\infty} \langle (S^*)^{n+1} \varphi, (S^*)^{k+1} \varphi \rangle f_k = \langle (S^*)^{n+1} \varphi, h \rangle =$ = $\langle (S^*)^n \varphi, Sh \rangle = 0$ for all $n \in \mathbb{N}_0$. Because φ is cyclic for S^* , this yields Sh = 0 and hence h=0. This gives $0=\langle e_n,h\rangle=\sum_{k=0}^\infty f_k\overline{\varphi_{k+n+1}}=\langle Sf,(S^*)_\varphi^n\rangle$ for $n\in\mathbb{N}_0$. Again by the cyclicity of φ for S^* it follows that Sf=0 and f=0 thus completing the proof.

Remark. Examples of functions φ as in Proposition 3 are easily obtained by taking lacunary series. Let $(n_k)_{k \in \mathbb{N}}$ be a sequence of positive integers such that $n_{k+1} \ge \lambda n_k$ for some $\lambda > 1$. If $(a_k)_{k \in \mathbb{N}}$ is an l_2 -sequence such that $a_k \ne 0$ for all $k \in \mathbb{N}$, then $\varphi := \sum_{k=1}^{\infty} a_k e_{n_k} \in H^2$ is cyclic for S^* ([5]), Theorem 2.5.5). The assumption $(\|(S^*)^n \varphi\|) \in I_2$ can be fulfilled by choosing a_k sufficiently small for large k.

4. Perturbations of normal operators

4.1. Suppose that $\{A, B\} \in \mathfrak{N}_1$. As in Section 1, we assume that $\alpha \in \mathbb{R}_1 \setminus \sigma(A)$ and $\beta \in \mathbb{R}_1 \setminus \sigma(B)$ and we set $X = (A - \alpha)^{-1}$ and $Y = (B - \beta)^{-1}$. It is easy to check that A and B commute strongly if and only if the bounded operator T = X + iY is normal. Another method to construct couples of the class \mathfrak{N}_1 (with non-zero defect numbers!) is the following. We "perturb" the normality of T by adding an appropriate operator, say R, and we then take the inverses of the real and imaginary parts of T + R. We will discuss this method in the case R = -NE, where E is a rank one projection.

We denote by $U_r(x, y)$ the closed disk of radius r centered at $(x, y) \in \mathbb{R}_2$, and by K_r the circle of radius r centered at the origin.

Theorem 1. Let N be a bounded normal operator with spectral resolution $N = \int z dG(z)$. Let $X = \operatorname{Re} N$ and $Y = \operatorname{Im} N$. Suppose that $\mathcal{N}(X) = \mathcal{N}(Y) = \{0\}$. Let $\xi \in \mathcal{H}$, $\|\xi\| = 1$. Let $\tilde{X} := \operatorname{Re} N(I - E_{\xi})$ and $\tilde{Y} := \operatorname{Im} N(I - E_{\xi})$, where $E_{\xi} := \xi \otimes \xi$. If ξ can be chosen such that \tilde{X} and \tilde{Y} satisfy the condition (4) in Theorem 1.7 and if $d(\tilde{A} := \tilde{X}^{-1}, \tilde{B} := \tilde{Y}^{-1}) \neq 0$, then either $d(\tilde{A}, \tilde{B}) = 2$ or $d(\tilde{A}, \tilde{B}) = 3$.

- (i) There is a $\xi \in \mathcal{H}$ such that $d(\tilde{A}, \tilde{B}) = 3$ if and only if the (self-adjoint) operators $(X-a)(X-b)Y^{-1}$ and $(Y-a)(Y-b)X^{-1}$ are unbounded for all $a, b \in \mathbb{R}_1$.
- (ii) There exists a $\xi \in \mathcal{H}$ such that $d(\widetilde{A}, \widetilde{B}) = 2$ if and only if there is an r > 0 such that the (self-adjoint) operators $(X-a)Y^{-1} \upharpoonright \mathcal{H}_r$ and $(Y-a)X^{-1} \upharpoonright \mathcal{H}_r$ are unbounded for all $a \in \mathbf{R}_1$ (or equivalently, the points (0, r), (0, -r), (r, 0) and (-r, 0) are in the spectrum of $N \upharpoonright \mathcal{H}_r$), where $\mathcal{H}_r := G(K_r)\mathcal{H}$.
- 4.2. Proof. We will denote by $\mathscr K$ the linear span of the vectors ξ , $N\xi$ and $N^*N\xi$ in $\mathscr H$.

Suppose that $\xi \in \mathcal{H}$, $\|\xi\| = 1$, is chosen such that \widetilde{X} and \widetilde{Y} satisfy (4). Suppose that $d(\widetilde{A} = \widetilde{X}^{-1}, \widetilde{B} = \widetilde{Y}^{-1}) \neq 0$. By the normality of N, we have $2i[\widetilde{X}, \widetilde{Y}] = = [(N(I - E_{\xi}))^*, N(I - E_{\xi})] = (I - E_{\xi})N^*N(I - E_{\xi}) - N(I - E_{\xi})N^* = (-N^*N\xi + \|N\xi\|^2 \xi) \otimes 1$

 $\otimes \xi - \xi \otimes N^*N\xi + N\xi \otimes N\xi$. From this formula we see that ξ cannot be an eigenvector of N, because in this case $[\tilde{X}, \tilde{Y}] = 0$ and thus $d(\tilde{A}, \tilde{B}) = 0$. Moreover, $\mathcal{R}([\tilde{X}, \tilde{Y}]) \subseteq \mathcal{K}$.

We begin with the case $d(\tilde{A}, \tilde{B})=3$. Since $\mathcal{R}([\tilde{X}, \tilde{Y}])\subseteq \mathcal{K}$, we then have $\mathcal{R}([\tilde{X}, \tilde{Y}])=\mathcal{K}$ and dim $\mathcal{K}=3$. We show that $(Y-a)(Y-b)\xi \in \mathcal{R}(X)$ for all $a, b \in \mathbb{R}_1$. Assume the contrary, that is, $(Y-a)(Y-b)\xi = X\eta$ for some $\eta \in \mathcal{H}$. Then, $N^*N\xi + (a+b)iN\xi + ab\xi = (Y-a)(Y-b)\xi + X^2\xi + (a+b)iX\xi = X\psi$ with

$$\psi := \eta + (a+b)i\xi + X\xi$$

and

$$\widetilde{X}\psi = X\psi - (1/2)\langle\psi, N\xi\rangle\,\xi - (1/2)\langle\psi, \xi\rangle N\xi = (...)\xi + (...)N\xi + N^*N\xi.$$

Since dim $\mathcal{K}=3$, ξ , $N\xi$ and $N^*N\xi$ are linearly independent and hence $\widetilde{X}\psi\neq 0$. On the other hand, $\widetilde{X}\psi\in\mathcal{R}(\widetilde{X})\cap\mathcal{K}=\mathcal{R}(\widetilde{X})\cap\mathcal{R}([\widetilde{X},\widetilde{Y}])$. This contradicts (4). Therefore, $(Y-a)(Y-b)\xi\in\mathcal{R}(X)$ which implies that $(Y-a)(Y-b)X^{-1}$ is unbounded for all $a,b\in\mathbf{R}_1$. The proof for $(X-a)(X-b)Y^{-1}$ is similar.

Now assume that $0 < d(\tilde{A}, \tilde{B}) < 3$. If the vectors $-N^*N\xi + ||N\xi||^2\xi$, $-\xi$ and $N\xi$ would be linearly independent, then we could choose vectors $\varphi \in \mathcal{H}$ orthogonal to two of these vectors, but not orthogonal to the third. This would imply that $\dim \mathcal{R}([\tilde{X}, \tilde{Y}]) = d(\tilde{A}, \tilde{B}) = 3$ which contradicts our assumption $d(\tilde{A}, \tilde{B}) < 3$. Therefore, the vectors $N^*N\xi$, ξ and $N\xi$ are linearly dependent. That is, there is a nontrivial relation $\lambda N^*N\xi + \mu N\xi + \varrho\xi = 0$. If $\lambda = 0$, then ξ is an eigenvector for N. Because $d(\tilde{A}, \tilde{B}) \neq 0$, this is not possible. Thus we can assume without loss of generality that $\lambda = 1$. From the spectral theorem (recall that N is normal) we conclude that $\xi \in G(\mathcal{E})$, where $\mathcal{E} := \{z \in \mathbf{C}_1 : |z|^2 + \mu z + \varrho = 0\}$.

The next step is to show that $\mu=0$. Assume the contrary, that is, $\mu\neq 0$. Then $\mathscr E$ is the intersection of a circle and a straight line. Hence $\mathscr E$ consists of at most two points. Therefore, $\xi=\xi_1+\xi_2$, where $N\xi_1=z_1\xi_1$ and $N\xi_2=z_2\xi_2$ with $\xi_1,\xi_2\in\mathscr H$ and $z_1,z_2\in C_1$. Since ξ is not an eigenvector as noted above, it follows that $\xi_1\neq 0$, $\xi_2\neq 0$ and $z_1\neq z_2$. From this we conclude that $\mathscr K=\mathrm{Lin}\ \{\xi,N\xi\}=\mathrm{Lin}\ \{\xi_1,\xi_2\}$ and $\dim\mathscr K=2$. Since ξ_1 and ξ_2 are eigenvectors of $X=\mathrm{Re}\ N$ as well, $\widetilde X=X-(1/2)N\xi\otimes\xi-(1/2)\xi\otimes N\xi$ leaves $\mathscr K$ invariant. Since $\mathscr N(X)=\{0\}$ by assumption, $\widetilde X$ maps $\mathscr K$ onto $\mathscr K$. Therefore, $\mathscr R(\widetilde X)\supseteq\mathscr K\supseteq\mathscr R([\widetilde X,\widetilde Y])$ and $\mathscr R(\widetilde X)\cap \mathscr R([\widetilde X,\widetilde Y])\neq\{0\}$. Because of (4), this is the desired contradiction. This proves that $\mu=0$.

By the preceding, $\mathscr{E}=\{z\in C_1\colon |z|^2=-\varrho\}$. Since \mathscr{E} contains more than one point (otherwise $\xi=0$ or ξ is an eigenvector for N), it follows that $-\varrho$ is positive. Let $r:=\sqrt{-\varrho}$. Let $\mathscr{H}_r=G(\mathscr{E})\mathscr{H}\equiv G(K_r)\mathscr{H}$. Since $\xi\in\mathscr{H}_r$, $2i[\tilde{X},\tilde{Y}]=-\varrho\xi\otimes\xi+N\xi\otimes N\xi$. From this we easily see that the case $d(\tilde{A},\tilde{B})=1$ is not possible. Indeed, $d(\tilde{A},\tilde{B})=\dim \mathscr{R}([\tilde{X},\tilde{Y}])=1$ implies that ξ is an eigenvector for N. But this leads to $d(\tilde{A},\tilde{B})=0$.

We show that $(Y-a)\xi \notin \mathcal{R}(X)$ for all $a \in \mathbf{R}_1$. Otherwise, $(Y-a)\xi = X\eta$ for some $\eta \in \mathcal{H}$. Then $N\xi - ai\xi = i(Y-a)\xi + X\xi = X\psi$ with $\psi := i\eta + \xi$ and $\widetilde{X}\psi = X\psi - (1/2)\langle \psi, N\xi \rangle \xi - (1/2)\langle \psi, \xi \rangle N\xi = (1-(1/2)\langle \psi, \xi \rangle)N\xi - (ai+(1/2)\langle \psi, N\xi \rangle)\xi \in \mathcal{H}$. Because $\xi \in \mathcal{H}_r$, dim $\mathcal{H} \leq 2$. Since $\mathcal{R}([\widetilde{X}, \widetilde{Y}]) \subseteq \mathcal{H}$ and we are in the case $d(\widetilde{A}, \widetilde{B}) = 2$, we obtain $\mathcal{H} = \mathcal{R}([\widetilde{X}, \widetilde{Y}])$. Since $\mathcal{R}([\widetilde{X}, \widetilde{Y}]) = \{0\}$ and $\mathcal{N}(\widetilde{X}) = \{0\}$ by (4), it follows that $\widetilde{X}\psi = 0$ and hence $\psi = 0$. Putting this in the above formula for $\widetilde{X}\psi$, we get $\widetilde{X}\psi = 0 = N\xi - ai\xi = 0$ which contradicts $d(\widetilde{A}, \widetilde{B}) \neq 0$. This proves that $(Y-a)\xi \in \mathcal{R}(X)$. Obviously, \mathcal{H}_r reduces both X and Y. Because $\xi \in \mathcal{H}_r$, $(Y-a)X^{-1} \vdash \mathcal{H}_r$ must be unbounded for all $a \in \mathbf{R}_1$. The proof for $(X-a)Y^{-1} \vdash \mathcal{H}_r$ is almost the same.

We now turn to the proof of the opposite directions. We begin with (i).

Assume that the operators $(X-a)(X-b)Y^{-1}$ and $(Y-a)(Y-b)X^{-1}$ are unbounded for all $a, b \in \mathbb{R}_1$. Suppose for a moment we have proved the existence of a vector $\xi \in \mathcal{H}$ of norm one such that

(11)
$$(X-z)(X-w)\xi \in \mathcal{R}(Y)$$
 and $(Y-z)(Y-w)\xi \in \mathcal{R}(X)$ for all $z, w \in \mathbb{C}_1$.
Since X and Y are bounded and $XY = YX$, this implies that

(12)
$$(z_1X^2 + z_2X + z_3)\xi \notin \mathcal{R}(Y)$$
 and $(z_1Y^2 + z_2Y + z_3)\xi \notin \mathcal{R}(X)$

Recall that $\mathcal{R}([\tilde{X}, \tilde{Y}]) \subseteq \mathcal{K}$. Suppose that $\tilde{X}\varphi \in \mathcal{K}$, that is,

for all $z_1, z_2, z_3 \in \mathbb{C}_1$, $(z_1, z_2, z_3) \neq 0$. We check that $\widetilde{X} = \operatorname{Re} N(I - E_{\xi})$ and $\widetilde{Y} = \operatorname{Im} N(I - E_{\xi})$ satisfy condition (4).

$$\tilde{X}\varphi = X\varphi - (1/2)\langle \varphi, N\xi \rangle \xi - (1/2)\langle \varphi, \xi \rangle N\xi = (\lambda + \mu N + \varrho N^* N) \xi$$
for some $\lambda, \mu, \rho \in \mathbb{C}_1$.

Then $X(\varphi-((1/2)\langle\varphi,\xi\rangle+\mu)\xi-\varrho X\xi)=(\lambda+(1/2)\langle\varphi,N\xi\rangle)\xi+(\mu+(1/2)\langle\varphi,\xi\rangle)iY\xi++\varrho Y^2\xi=:\psi.$ By (12), $\psi=0$. Again by (12), the vectors $\xi,Y\xi$ and $Y^2\xi$ are linearly independent. Hence $(1/2)\langle\varphi,\xi\rangle+\mu=\varrho=0$ which gives $X\varphi=0$. Since $\mathcal{N}(X)=\{0\}$ by assumption, $\varphi=0$. This proves $\mathcal{R}(\widetilde{X})\cap\overline{\mathcal{R}([\widetilde{X},\widetilde{Y}])}=\{0\}$. The same argument shows that $\mathcal{R}(\widetilde{Y})\cap\overline{\mathcal{R}([\widetilde{X},\widetilde{Y}])}=\{0\}$ and $\mathcal{N}(\widetilde{X})=\mathcal{N}(\widetilde{Y})=\{0\}$. By Theorem 1.7, $\{\widetilde{A}:=\widetilde{X}^{-1},\widetilde{B}:=\widetilde{Y}^{-1}\}\in\mathfrak{N}_1$. It remains to prove that $d(\widetilde{A},\widetilde{B})=3$. As noted in the proof of the necessity part, it suffices to show that $\xi,N\xi$ and $N^*N\xi$ are linearly independent. If $\lambda\xi+\mu N\xi+\varrho N^*N\xi=0$ for $\lambda,\mu,\varrho\in\mathbf{C}_1$, then $X(\mu\xi+\varrho X\xi)=-\lambda\xi-\mu iY\xi-\varrho Y^2\xi\in\mathcal{R}(X)$. By (12), this leads to $\lambda=\mu=\varrho=0$.

To complete the proof of (i), we have to prove the existence of a unit vector $\xi \in \mathcal{H}$ satisfying (11). We let \mathcal{X} and \mathcal{Y} denote the x-axis, resp., y-axis. The following preparatory construction will be needed below. Let s be one of the numbers 0, 1, 2. Let $\gamma \in \mathbb{R}_1$, and let $\varepsilon > 0$. Suppose that $(0, \gamma) \in \sigma(N)$. Since $\mathcal{N}(X) = \mathcal{N}(Y) = \{0\}$, there exists a sequence $(x_n, y_n) \in \sigma(N)$, $n \in \mathbb{N}$, such that $\lim_n (x_n, y_n) = (0, \gamma)$ and $x_n \neq 0$ and $y_n \neq 0$ for all $n \in \mathbb{N}$. Let us assume in addition that

 $\lim_{n} |y_n - \gamma|^s |x_n|^{-1} = \infty$. Let $\mathscr{F}_{\gamma} := \bigcup_{n \ge k} U_{\varepsilon_n}(x_n, y_n)$, where $0 < 2\varepsilon_n < \min \{|x_n|, |y_n|\}$ and k is chosen so large that $|y_n - \gamma|^s > 2|x_n|$ for $n \ge k$ and $\mathscr{F}_{\gamma} \subseteq U_{\varepsilon}(0, \gamma)$. Then $\overline{\mathscr{F}}_{\gamma} \cap \mathscr{Y} = \{(0, \gamma)\}$. First we consider the case where $\gamma \ne 0$ or $s \ne 0$. Since $(Y - \gamma)^s X^{-1}$ is obviously unbounded on $G(\mathscr{F}_{\gamma})$, there is a vector $\varphi_{\gamma} \in G(\mathscr{F}_{\gamma})$ such that $\varphi_{\gamma} \notin \mathscr{D}((Y - \gamma)^s X^{-1})$, that is, $(Y - \gamma)^s \varphi_{\gamma} \notin \mathscr{R}(X)$. Now let $\gamma = 0$ and s = 0. Since $\overline{\mathscr{F}}_{0} \cap \mathscr{X} = \overline{\mathscr{F}}_{0} \cap \mathscr{Y} = \{(0, 0)\}$ by construction and the function $f(x, y) = \min \{1/|x|, 1/|y|\}$ is not essentially bounded on \mathscr{F}_{0} w.r.t. the spectral measure $G(\cdot)$, we can find a vector $\varphi_{0} \in G(\mathscr{F}_{0})$ such that $\varphi_{0} \notin \mathscr{D}(f(X, Y))$. By the spectral theorem this implies $Y \varphi_{0} \notin \mathscr{R}(X)$ and $X \varphi_{0} \notin \mathscr{R}(Y)$.

In order to construct ξ we consider three cases.

Case 1: $\mathcal{Y} \cap \sigma(N)$ contains at least three different points $(0, \gamma_1), (0, \gamma_2), (0, \gamma_3)$. We apply the preceding construction to each γ_j in case $s=0, 0<3\varepsilon<-\min\{|\gamma_j-\gamma_1|; j\neq 1\}$ and we obtain vectors $\varphi_{\gamma_1}, \varphi_{\gamma_2}, \varphi_{\gamma_3}$. Set $\xi_1=\varphi_{\gamma_1}+\varphi_{\gamma_2}+\varphi_{\gamma_3}$.

Case 2: $\mathcal{Y} \cap \sigma(N)$ consists of two different points $(0, \gamma_1), (0, \gamma_2)$.

Since $(Y-\gamma_1)(Y-\gamma_2)X^{-1}$ is unbounded and $\mathcal{N}(X)=\mathcal{N}(Y)=\{0\}$, there is a sequence $(x_n, y_n)\in\sigma(N)$ such that $\lim_n |(y_n-\gamma_1)(y_n-\gamma_2)x_n^{-1}|=\infty$ and $x_n\neq 0, y_n\neq 0$ for all $n\in\mathbb{N}$. By passing to a subsequence if necessary (recall that (y_n) is bounded, since Y is bounded) we can assume that $\lim_n y_n=:\gamma$ exists. Since $(0, \gamma)\in\mathcal{V}\cap\sigma(N)$, we must have $\gamma=\gamma_1$ or $\gamma=\gamma_2$. Say $\gamma=\gamma_1$. Since $\gamma_1\neq\gamma_2$ and Y is bounded, we have $\lim_n x_n=0$. Let $0<3\varepsilon<|\gamma_1-\gamma_2|$. Setting s=1 in case γ_1 and s=0 in case γ_2 , the above construction yields vectors φ_{γ_1} and φ_{γ_2} . Put $\xi_1=\varphi_{\gamma_1}+\varphi_{\gamma_2}$.

Case 3: $\mathcal{Y} \cap \sigma(N)$ contains only one point $(0, \gamma)$.

Because $(Y-\gamma)^2X^{-1}$ is unbounded, we can find a sequence $(x_n, y_n) \in \sigma(N)$ such that $\lim_n |(y_n-\gamma)^2x_n^{-1}| = \infty$ and $x_n \neq 0$, $y_n \neq 0$ for $n \in \mathbb{N}$. As in Case 2 we can assume without loss of generality that $\lim_n y_n = \gamma$ and $\lim_n x_n = 0$. We apply the above construction in case s=2, $\varepsilon=1$ and we set $\xi_1 = \varphi_{\gamma}$.

Since X^{-1} must be unbounded, $\mathcal{Y} \cap \sigma(N) \neq \emptyset$. That is, we have discussed all possible cases.

It is not difficult to see that in each case $(Y-z)(Y-w)\xi_1 \notin \mathcal{R}(X)$ for all $z, w \in \mathbb{C}_1$. We check this in Case 2. Recall that, by the spectral theorem, $(Y-z)(Y-w)\xi_1 \notin \mathcal{R}(X)$ is equivalent to $\int \int |(y-z)(y-w)x^{-1}|^2 d\|G(x,y)\xi_1\|^2 = \infty$. First let $z \neq \gamma_2$ and $w \neq \gamma_2$. Since $\overline{\mathscr{F}_{\gamma_2}} \cap \mathscr{Y} = \{(0,\gamma_2)\}$, we then have $(Y-z)(Y-w)\varphi_{\gamma_2} \notin \mathcal{R}(X)$. Because $U_{\varepsilon}(0,\gamma_1) \cap U_{\varepsilon}(0,\gamma_2) = \emptyset$, $(Y-z)(Y-w)\xi_1 \notin \mathcal{R}(X)$. Now let $z = \gamma_2$. It is plane from the construction of φ_{γ_1} that $(Y-w)\varphi_{\gamma_1} \notin \mathcal{R}(X)$ for all $w \in \mathbb{C}_1$. Again by $U_{\varepsilon}(0,\gamma_1) \cap U_{\varepsilon}(0,\gamma_2) = \emptyset$, this gives $(Y-z)(Y-w)\varphi_{\gamma_1} \notin \mathcal{R}(X)$ and $(Y-z)(Y-w)\xi_1 \notin \mathcal{R}(X)$.

We now change the role of X and Y and we repeat the same procedure. The corresponding vectors will be denoted by ψ_{δ_1} and ξ_2 . If $(0,0)\in\sigma(N)$ and if the

case s=0, $\gamma=\delta=0$ occurs in the first and in the second procedure, then we set $\psi_0=\varphi_0$. As in the first part, we have $(X-z)(X-w)\xi_2\notin \mathcal{R}(Y)$ for all $z,w\in C_1$. If we take the radii of the circles around $(0,\gamma_j)$, resp., $(\delta_1,0)$ small enough, then except from the possible case $\psi_0=\varphi_0$ we have just mentioned the vectors φ_{γ_j} and ψ_{δ_l} have disjoint support w.r.t. the spectral measure $G(\cdot)$. Therefore, $\xi:=(\xi_1+\xi_2)/\|\xi_1+\xi_2\|$ has the desired properties. Now the proof of (i) is complete.

We only sketch the proof of the sufficiency part of (ii). Assume that the operators $(X-a)Y^{-1}
mathcal{h} \mathcal{H}_r$ and $(Y-a)X^{-1}
mathcal{h} \mathcal{H}_r$ are unbounded for all $a
mathcal{h} \in \mathbb{R}_1$. Since $\mathcal{H}_r = G(K_r)\mathcal{H}$ reduces X and Y, we can assume for simplicity in notation that $\mathcal{H} = \mathcal{H}_r$. Then $\sigma(N) \subseteq K_r$. Since $(X-r)Y^{-1}$ is unbounded, there are points $(x_n, y_n) \in \sigma(N)$, $n \in \mathbb{N}$, so that $\lim_n |(x_n - r)y_n^{-1}| = \infty$. By taking a subsequence if necessary, we can assume that $\lim_n x_n = : \gamma$ exists. Since $x_n^2 + y_n^2 = r$ for $n \in \mathbb{N}$, it follows that $\gamma = -r$, $\lim_n y_n = 0$ and $(-r, 0) \in \sigma(N)$. Using that $(X+r)Y^{-1}$, $(Y-r)X^{-1}$ and $(Y+r)X^{-1}$ are unbounded, the same argument shows that $(r, 0), (0, -r), (0, r) \in \sigma(N)$. Hence we can take vectors ξ_1, ξ_2, ξ_3 and ξ_4 in $\mathcal{H}(=\mathcal{H}_r)$ supported in the neighbourhood of (-r, 0), (r, 0), (0, -r), resp., (0, r) w.r.t. $G(\cdot)$ such that $\xi_1 \notin \mathcal{H}(Y), \xi_2 \notin \mathcal{H}(Y)$ and $\xi_3 \notin \mathcal{H}(X), \xi_4 \notin \mathcal{H}(X)$. Setting $\xi = \xi_1 + \xi_2 + \xi_3 + \xi_4$, we then have that $(\lambda Y + \mu) \xi \notin \mathcal{H}(X)$ and $(\lambda X + \mu) \xi \notin \mathcal{H}(Y)$ for all $\lambda, \mu \in \mathbb{C}_1$, $(\lambda, \mu) \neq 0$. As in part (i) we can show that X and Y fulfil condition (4) in Theorem 1.7 and $d(\tilde{A}, \tilde{B}) = 2$.

Now the proof of Theorem 1 is complete.

4.2. Remarks. 1. There are many examples of operators N satisfying the assumptions of Theorem 1. We mention only two of them.

Example 1. Let N be a normal operator such that $\mathcal{N}(\operatorname{Re} N) = \mathcal{N}(\operatorname{Im} N) = \{0\}$. If $\sigma(N)$ intersects both the x-axis and the y-axis in at least three points, then (as we have seen in the preceding proof) the assumptions of part (i) are fulfilled. Hence, by Theorem 1, ξ can be chosen such that the corresponding pair $\{\tilde{A}, \tilde{B}\}$ is in \mathfrak{R}_1 and has defect number three.

Example 2. Let R be an unbounded self-adjoint operator, and let $N==(R-i)(R+i)^{-1}$ be its Cayley transform. N is unitary. Suppose that $\mathcal{N}(R)==\mathcal{N}(R+I)=\mathcal{N}(R-I)=\{0\}$. Obviously, this is equivalent to $\mathcal{N}(Re\ N)==\mathcal{N}(\operatorname{Im} N)=\{0\}$. If the points 0,-1 and 1 are in $\sigma(R)$, then the assumptions of part (ii) are satisfied (in case r=1) and Theorem 1 (ii), yields a pair $\{\tilde{A}, \tilde{B}\} \in \mathfrak{N}_1$ with $d(\tilde{A}, \tilde{B})=2$. In this case $N(I-E_{\xi})$ is a partial isometry with corank one and defect one.

2. We want to interpret the method used in this section from another point of view. Again let N = X + iY be normal and assume that $\mathcal{N}(X) = \mathcal{N}(Y) = \{0\}$. Of course, $\{A := X^{-1}, B := Y^{-1}\} \in \mathfrak{N}_1$ and d(A, B) = 0. Suppose that $\{\tilde{A} = \tilde{X}^{-1}, d(A, B) = 0\}$.

 $\tilde{B} = \tilde{Y}^{-1}$ is a pair of the class \mathfrak{N}_1 constructed as in Theorem 1 (i) or (ii). Then $\tilde{X} = X - (1/2)N\xi \otimes \xi - (1/2)\xi \otimes N\xi$ and $\tilde{Y} = Y - (1/2)iN\xi \otimes \xi + (1/2)i\xi \otimes N\xi$. We denote by F the orthogonal projection on $\mathscr{H}_{\xi} := \text{Lin } \{\xi, X\xi, Y\xi, NX\xi, NY\xi\}$. Modifying some arguments of the proof of Theorem 1, it can be shown that $\mathscr{R}(XY) \cap \mathscr{H}_{\xi} = \{0\}$. This implies that $\mathscr{D}_0 := XY(I - F)\mathscr{H}$ is dense in \mathscr{H} . Since the vectors ξ and $N\xi$ are orthogonal on $(I - F)\mathscr{H}$, $X(I - F)\mathscr{H}$ and $Y(I - F)\mathscr{H}$ by construction, it is easily seen that $A \upharpoonright \mathscr{D}_0 = \widetilde{A} \upharpoonright \mathscr{D}_0$, $B \upharpoonright \mathscr{D}_0 = \widetilde{B} \upharpoonright \mathscr{D}_0$ and $A \upharpoonright B\mathscr{D}_0 = \widetilde{A} \upharpoonright B\mathscr{D}_0$, $B \upharpoonright A\mathscr{D}_0 = \widetilde{B} \upharpoonright A\mathscr{D}_0$. In other words, the pair $\{\widetilde{A}, \widetilde{B}\} \in \mathfrak{N}_1$ can be considered as an extension of the restriction to the dense domain $\mathscr{D}_0 \subseteq \mathscr{D}(AB) \cap \mathscr{D}(BA) \cap \mathscr{D}(\widetilde{A}\widetilde{B}) \cap \mathscr{D}(\widetilde{B}\widetilde{A})$ of the strongly commuting pair $\{A, B\} \in \mathfrak{N}_1$.

The author would like to thank Kevin Clancey for valuable discussions during the eighth conference on operator theory in Romania, 1982.

References

- [1] N. BOURBAKI, Intégration, Hermann (Paris, 1967).
- [2] R. CAREY and J. D. PINCUS, Construction of seminormal operators with prescribed mosaic, Indiana Univ. Math. J., 23 (1974), 1155—1165.
- [3] K. CLANCEY, Seminormal operators, Lecture Notes in Mathematics 742, Springer-Verlag (Berlin, 1979).
- [4] K. CLANCEY, Toeplitz models for operators with one dimensional self-commutators, in: Proceedings of the 8th conference on operator theory in Timisoara and Herculane, 1982, OT 11, Birkhäuser (Basel, 1983).
- [5] R. G. DOUGLAS, H. S. SHAPIRO and A. L. SHIELDS, Cyclic vectors and invariant subspaces of the backward shift operator, *Ann. Inst. Fourier*, 20 (1970), 37—76.
- [6] B. FUGLEDE, On the relation PQ-QP=-iI, Math. Scand., 20 (1967), 79—88.
- [7] P. R. HALMOS, A Hilbert space problem book, D. Van Nostrand Co. (Princeton, New Jersey, 1967).
- [8] J. W. Helton and R. Howe, Integral operators, commutator traces, index and homology, Lecture Notes in Mathematics 345, Springer-Verlag (Berlin, 1973).
- [9] P. E. T. JØRGENSEN and R. T. Moore, Derivation on modules of unbounded operators with applications to partial differential operators on Riemann surfaces, Preprint No. 27, Aarhus University, 1980/81.
- [10] E. Nelson, Analytic vectors, Ann. Math., 70 (1959), 572-615.
- [11] J. D. Pincus, Commutators and systems of integral equations. I, Acta Math., 121 (1968), 219—249
- [12] C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Springer-Verlag (Berlin, 1967).
- [13] R. T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys., 21 (1971), 85—124.
- [14] F. Riesz und B. Sz.-Nagy, Vorlesungen über Funktionalanalysis, DVW (Berlin, 1956).
- [15] K. Schmüdgen, Unpublished manuscript, Leipzig, 1979.
- [16] XA DAO-XENG, On non-normal operators, Chinese Math., 3 (1963), 232-246.
- [17] J. von Neumann, Zur Theorie der unbeschränkten Matrizen, J. Reine Angew. Math., 161 (1929), 208—236.

SEKTION MATHEMATIK KARL-MARX-UNIVERSITÄT LEIPZIG KARL-MARX PLATZ 7010 LEIPZIG, GERMAN DEMOCRATIC REPUBLIC