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Steckin-type estimates for locally divisible multipliers 
in Banach spaces 

W. DICKMEIS, R. J. NESSEL, and E. VAN WICKEREN1) 

1. Introduction 

Let X2n be one of the Banach spaces C2lt or of 2jt-periodic 
functions, continuous or Lebesgue measurable on the real axis R with finite norm 

it -»i/p 
/ l /(")lpdu\ , 

— It 

respectively. Let C denote the complex plane and 

( 1 . 1 ) I7„ { P „ € C 2 L T ; Pn(u) : = 2 ckeik", C*ec} 
l k=-n > 

the set of trigonometric polynomials of degree at most w£N (:=set of natural 
numbers). For f£X 2 „ the error of best approximation by elements of ft„ is de-
noted by 

(1.2) E(J, n) := E(X2n; / , n) := inf { ¡ / - / »J* , , ; p^n„}. 

Let the rth modulus of continuity of f^X2 K be given by (r£N) 

(1.3) a>r(X2n; f , t) :— sup 
IMs« ¿ ( - i ) * (£ ) / («+**) X2n 

In these terms, STECKIN [15] proved in 1 9 5 1 the following (weak-type, cf. [5 ] ) ine-
quality (f<£Xu ,neN) 

(1.4) (or(X2„\ / , N"1) Arn~r 2 (k + iy-'ECX^-, f , k) 
k=0 
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which immediately furnishes the classical Bernstein inverse approximation theorem 
(cf. [ 19 , p. 3 3 1 if.]). Ten years later, STECKIN [ 1 6 ] considered the Fejér means 

(Fn.Mu) := 1 (1 - \k\/n)f~(k)eik" 
k=-n 

of the Fourier series of f£X2„ where for k£ Z (:= set of integers) the kth Fourier 
n 

coefficient is given by 27r/~(&):= J f(u)e~ik"du. Corresponding to (1.4) he established 
— JT 

the inequality ( /€ X2„, N) 

(1.5) I I F „ ^ f - f h . n ^ An-1 "Z E(X2„, / , k). 
k=0 

In both cases, Steckin essentially used the same technique, namely Bernstein's 
classical telescope argument, employing the (unique) polynomial of best approxima-
tion in 1951 and the delayed means of de La Vallée Poussin in 1961, respectively. 
Moreover, in [16, p. 271] he pointed out that it would be interesting to obtain esti-
mates, analogous to (1.5), for other methods of summation of Fourier series. 

It is the purpose of this paper to derive inequalities of type (1.4, 5) for quite 
a general class of processes within the abstract framework of Banach spaces, ad-
missible with respect to some Riesz-bounded spectral measure (see also the general 
approach given in [la]). 

To this end, multipliers are defined in Section 2 for Banach spaces which are 
generated via closure by some orthonormal structure given in terms of a spectral 
measure in a Hilbert space. If the spectral measure is Riesz-bounded, then a uniform 
bound can be derived for families of radial multipliers of Hardy-type (cf. Theorem 
2.1). This enables one in Section 3 to introduce polynomials, potential spaces, and 
de La Vallée Poussin means, a basic tool. In fact, Sections 2 and 3 represent a brief 
outline of a general framework within which one may successfully treat a number 
of classical problems of approximation theory and numerical analysis (for details 
see [4], [12], [21] and the literature cited there). 

To derive Steckin-type estimates, the concept of locally (globally) divisible 
multipliers is introduced in Section 4. Here we are heavily influenced by work of 
H. S . SHAPIRO [ 14] concerned with local divisibility within the Wiener ring of Fourier— 
Stieltjes transforms (see [14] and the literature cited there). In fact, whereas the 
present approach is finally based upon some Hilbert space structure (e.g., L2), one 
may consult [1] for a different type of extension which deals with the local divisibility 
of Gelfand transforms in commutative Banach algebras (e.g., L1). In any case, 
a first application of the present concepts leads to the Jackson-type inequality 
(4.2) and thus to the global Jackson-type theorem given in (4.3). The actual Steckin-
type estimates are derived in Section 5. It is interesting to note that the Bernstein— 
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Steckin telescoping technique indeed extends to the present abstract situation. 
In this connection, let us mention that similar arguments in the setting of Besov 
spaces may also be found in [2], [10J, 13], [23]. 

The sharpness of the classical estimates (1.4, 5) was already discussed by Steckin 
(cf. [16]) via concrete methods. But this kind of problems can also be dealt with in 
the present abstract setting. To this end, Section 6 first recalls a general theorem, 
established in [6], [7], which in fact does not need any orthogonal structure. Based 
upon some rather mild conditions upon the spectral measure and the locally divisible 
family of multipliers, Corollary 6.2 then shows that the assumptions of the theorem 
are indeed satisfied in the present context. 

Finally, Section 7 is devoted to some first illustrating applications, emphasizing 
the unifying approach to the subject. 

2. Multipliers 

For a complex Hilbert space H let £ be a (countably additive, selfadjoint, 
bounded, linear) spectral measure in RA, the Euclidean iV-space (N€N) with 

N 
inner product xy:= 2 x j y j a r ,d norm \x\:=(xx)112. Thus, E maps the family 

j'=i 
I of all Borel measurable sets in Rw into the set of all self-adjoint, bounded, linear 
projections of H such that (B, Bjdl, 0 being the void set, I the identity mapping) 

(i) E(B1HB2) = EIBJEIBJ, 

(2.1) (ii) E(0) = 0, E(RN) = I, 

(hi) £•( U BJ\ = 2 E(BJ) (BT C\BJ — 9 for I ^ J ) . 
\j=i ) i 

Let L°°(RN, E) be the space of complex-valued, is-essentially bounded functions 
t with norm 
(2.2) ||r|U.E inf {sup |T(K)| ; 1, E(B) = /}. 

uiB 

For each x£L°°(RN, E) the integral Tx:= Jz{u)dE{u) is a bounded, linear operator 

of H into itself (for basic properties and further details see [8, pp. 900, 1930, 2186]). 
For a given orthonormal structure (H, E) let X be a complex Banach space 

with norm || • || such that H and X are continuously embedded in some linear 
Hausdorff space (this hypothesis should be added in [4], see [23, p. 116]) and 
such that 
(2.3) , 7 /nT I M 1 « = H, flfll11'11 = X, 
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i.e., Hf)X is dense in H and X. Then (cf. [4]) T£L°°(Rn, E) is called a multiplier 
on X if for each f£HC\X 

(2.4) TTf:= f ?(u) dE(u)f £ HDX, \\rf\\^A\\f\\.. 

In view of (2.3,4), the closure of Tx (represented by the same symbol) belongs 
to [A'], the space of bounded, linear operators of X into itself. The set of all 
multipliers t on X is denoted by M =M(X)=M(X, H, E), the corresponding 
set of multiplier operators Tx by [.Y]M. Setting 

(2.5) ||T||M := | m U ] := sup { | | r / | | ; f £ H ^ X , ||/ | | ^ 1), 

M is a commutative Banach algebra with unit under the natural vector operations 
and pointwise multiplication, isometrically isomorphic to the subspace [ A ^ c f Z ] , 

Let D w , j € N, be the set of real-valued, continuous, strictly increasing func-
tions i/i on [0, o°) with \p(0)=0 and limip(t) = a=, which are O '+l ) times dif-
ferentiate on (0, with 

(2.6) (i) tk\ip<k+1>(t)\ s Kip'(t) ( O s i s j . o O ) , 

(ii) lim tip' (t) = 0. 

For / = 0 set Dm:=Dm. In view of (2.6) one has 

(2.7) t f (0 s / W(«) + u\r(u)\] du^(K+l)iP(t), 
o 

tkip<k>(t) s Ktip'(t) == K(K+ l)\p(t) (Osis j+1). 

Thus ip satisfies 
(2.8) N M s O ) , 
since (2.7) implies 

<K0 J <M") / " 

Note that ip(t) = t7, y>0, and ip(t)=\og (1 + /) are admissible choices but not 

Let <P(Q) be a real-valued, positive function on an index set J . For ip^D^ 
and a function a, defined on [0, the family {<r^e)}c€J( with o*(e)(x):= 
:=o((p(Q)ip(\x\)) is said to be of Hardy-type (<p, ip) if <r£(c) belongs to M, uni-
formly for g f / (cf. [21] and the literature cited there). 

To formulate a criterion for multipliers of this type, assume that for a Banach 
space X, satisfying (2.3), the spectral measure E is Riesz-(Z?, ̂ -bounded for 
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some y'£P ( := set of non-negative integers), i.e., 

_ J O - M / e y fo r 
for 

belongs to M and \\rjte\\M^Cj, uniformly for all (?>0. 

T h e o r e m 2.1. For some jdP let E be a (R, j)-bounded spectral measure 
for X. Let il/£D(j) and let (p(g) be a positive function on J. If o£BVJ+1, the 
class of (sufficiently smooth) functions satisfying 

M U - , , , := / + KOI 
•'• o 

then the family {e*(e)}e<:s is of Hardy-type {<p, \fi). In fact, 11^,11« 
where A is independent of a and Q^J- . 

Note that for il/(t)=t, (P(Q) = 1/Q, and J—(0, 00) Theorem 2.1 covers the 
multipliers of Fejér-type. For further details, including the fractional extension of 
the class BVj+1, however, see [4], [21], [22] and the literature cited there. 

3. Polynomials, de La Vallée Poussin means, potential spaces 

For some j£P let E be (# , / -bounded for a Banach space X. Let {fiB}e>0 

be a family of real-valued, infinitely differentiate functions on [0, satisfying 

=S / g l+e /2 , 

It follows from Theorem 2.1 that the family {Tc e}, 

Tt,e:=T»c,, ^e(x) := pe(\x\lQ) ' («, 8 > 0), 

is well-defined in The set of polynomials in X (of radial degree Q>0) 
is then defined by (cf. [11], [12]) 

II := U ne, Tla := {f£X- TCief = f for all s > 0}. 
e=-o 

In the following we shall call a Banach space A' admissible (with respect to (H,E)) 
if X satisfies (2.3), E is (R, / -bounded for some 76P, and if the polynomials 
are dense in X, i.e., /7"'" =X. Obviously, the latter condition is equivalent 
to (5 - ° ° ) 

E ( f , Q) := E(x- f Q) := inf { | | ^ - / | | ; pille} = o(l), 
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where the error of best approximation E ( f , g) (cf. (1.2)) is a decreasing function 
in 0. 

Basic for the present treatment will be the family {£c}e>0 of de La Vallée 
Poussin (or delayed) means. For a real-valued, infinitely differentiable function 
A on [0, satisfying 

(3.1) 0 , 1 ( 0 . 1 , A(o = { i ; ^ L - 1 ' 

set 2e(x):=/.(|jf|/g) and Le:—T^<>. It follows from Theorem 2.1 that the operators 
Le are well-defined on each admissible space X. In fact, one has (cf. [11], [12]) 

P r o p o s i t i o n 3.1. Let X be an admissible Banach space. Then 

(3.2) \\Le\\m S A (g > 0), 

(3.3) Ljen2e (feX,g> 0), 

(3.4) Lep = p (p£ne, g > 0), 

(3.5) \\LJ-f\\ ^ CE (J, q) ( f £ X , q > 0). 

Lemma 3.2. Let X be an admissible Banach space (for jdP) and i 
Then fi(x):=tK\x\)Àt(x)€M and 

(3.6) WPÎWm ^ CiHg) ( e > 0). 

Proof . Obviously, v(t):=tA(t)£BVJ+1 so that Theorem 2.1 yields vfme)£M, 
uniformly for g>~0. In view of the identity 

g) ^ = (2<?) № ^ 
(3.6) holds true since (cf. (2.8)) W * \ \ m ^ ( 2 Q M I H 2 J m U e \ \ M ^CH6). 

Setting one may now define via B^g:=\\m B^.g the potential 
operator B* as a closed, linear operator on the domain 

(3.7) X*:= {g£X; Jim = 0 for some h£X), 

called potential space (see [12]). It follows that IlczX* and 

(3.8) B* = B*Le, flU*||m = H^IU 

In particular, X* may be equipped with the seminorm so that the 
^-functional 
(3.9) K+ (/, 0 K(X, X* ; f t) := mf { | | / -g | | +1 
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is well-defined for all f£X, /SO. It defines a seminorm on X for each t SO and 
satisfies 

/3 1Q1 k ( f i \ ^ \ m 
(3>10) K * ( f ' t ) = = h \ f \ , ^ x * ) . 

4. Locally divisible multipliers and Jackson-type inequalities 

Throughout the next sections, X is an admissible Banach space for a (fixed) 
yep. 

De f in i t i on 4.1. Let 1¡/£DU) with inverse function and let cp(g) be 
a real-valued, positive function on J*. A family of uniformly bounded multipliers 

is called locally divisible (at the origin) of order (tp, 1j/) if there exists some 
¿ > 0 and a uniformly bounded family {0e}e6Jr of multipliers such that 

(4.1) TE(*) = <p(e)>P(\x\)Oe(x) (|*| ip-^s/cpie))). 

If (4.1) holds true for all x^R", then the family {re} is said to be globally 
divisible. 

P ropos i t i on 4.2. Local divisibility implies the global one of the same order. 

Proof . Let {re} satisfy (4.1). Since l - ; . ( / ) = 0 for 0S/=§1 (see (3.1)), 
the function o(ty.={\-X(t))lt belongs to BVJ+i. Thus Ze:=<r|(e) and v c :=l | ( e ) 

with (p(e)=(2l5)(p(g) belong to M, uniformly for o^J (see Theorem 2.1). 
Moreover, for all x€R'v, 

l-ve(x) - ip{Q)^(\x\)le(x) = (2ld)<p(e)^(\x\)xe(x), 

te(x)ve(x) = <p(g)4>(\x\)8e(x)ve(x), 

re(x) = re(x)ve(x) + rLI(x){l-ve(x)) = <p.(e)t(|xj)[0Q(x)ve(x) + re(x)(2/<5)(x)]. 

Hence the assertion follows since the terms in [...] are bounded in M, uniformly for 
gdJ. 

The global and therefore also the local divisibility immediately implies that 
for any g€X*, gdJ (cf. (3.7, 8)) 

T'eg = lim TreL,g = <p(g)TB° lim Bfg = (p(g)TeeB*g. 

Thus one obtains (cf. [3], [4]) 

Theorem 4.3. Let {?e}eis be locally divisible of order (<p, \ji). Then there 
holds true the Jackson-type inequality 

(4.2) \\T^g\\ ^ Al(p(g)\g\^ (giX*,gdJ), 
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and therefore the (global) Jackson-type theorem 

( 4 . 3 ) H 7 V I I ^ AtKiif, <p(e)) (/€*,<?€</)• 

Indeed, the estimate (4.3) is an immediate consequence of the definition (3.9) 
since for any g£X*, 

I I 7 V H ^ l l ^ ( / - g ) H + | | r ^ | | s A A f - g ^ + A i < P i e W * ' 

A first application yields for the error of the best approximation 

C o r o l l a r y 4.4. Let Z>w. Then E(f Q)^CK^(f l/Ho)) ( f £ X , 0>O). 

P roof . Let S=(0,<*>) and set ve:=A*((?), (p(g):=2/ip(g), and T e : = l - v e . 
Since 0(t):=(l-A(t))/teBVJ+1 and r/x)=(]/<P(e))HN)l29^(x)l the family 
{T }̂ is globally divisible of order (1/ip, ip). Thus Theorem 4.3 implies 

• I I / - T'efW = I I r V I I ^ CK^if 1 / ^ ( 0 ) ) . 

Since vc(;c)=0 for one has Tv°feTIe for any f£X (cf. (3.3)) so that the 
assertion follows by the definition of E(f g). 

5. Steckin-type inequalities 

First observe that in view of (3.4) one has for pQ£llQ, g>0, . 

B*pe = B*Lepe = B*pe. 

Thus Lemma 3.2 implies the following Bernstein-type inequality for polynomials 
in admissible Banach spaces (p e£ll e , {?>0) 

(5.1) = \\Btpe\\ , i i m I I P J ^ CHe)IIPJ. 

T h e o r e m 5.1. For one has the Steckin-type inequality 

(5.2) K<,(f, l/g) , (CJg) f E(f tfr-») du ( / € * , Q - 0), 

o 

thus for a locally divisible family {re} i€jr of order (cp, if/) 

i/e(e) (5.3) n r v i l ^ CMe) f E(f,iJ,-\u))du. 
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Proof . Obviously, (5.3) follows by (5.2) and Theorem 4.3. To show (5.2), 
set Pk:=L,„-ipkj-L^-.pfc-,), k£Z. By (3.5) one has 

Ш\\ ^ \\L*-K*)f-f\\ + WLt-H^-^f-fW ^ Ai4f> Ф-ЧУ-1)) ^ 
2fc.i 

^Аг2-*+2 / E ( f , ф~г(и)) du. 
2*-» 

Since t(2k) by (3.3), the Bernstein-type inequality (5.1) yields by (2.8) 
2k-i 

А^{2ф~\2*))\\РкП ^A3 f E{f,il>~\u))du. 
2fc-s 

In view of (3.8) one has (k-*- — 

» U * V W I I = | | 4 - . ( 2 k ) / | | ^ A42kЦ/11 = o(l) 

so that for m£Z 

m m 
2 B*Pkf = 2 (.B^Lt-r^f-BOLt-i^-iyf) = B*L*-Hinf. 

Jfess— OO — <» 

Therefore it follows that 

m m 2 2 / E{f,^-\u))du = к= — со k=— ~ 2k-2 

= E(f^~\u))du. 
о 

Now, let e > 0 be arbitrary and m€Z be such that 2m3=e<2m+1. Then by (3.10) 

1/e) ^ W - ^ - 4 2 - ) / . 1/0) + Кф(Ьф-Ц2ту/, 1/0) 

2m 2m -1 

A,2-^ f E ( f , ф'1 (и)) du + (AM f E ( f , ф-1 («)) du ^ 
2m -1 0 

e г™-1 

^4(AJQ) f E[f, ф~г(и)) du + (A3IQ) f E ( f , ф~\и)) du. . 
2m-l 0 

This establishes (5.2) completely. 

Let us illustrate Theorem 5.1 in connection with the multiplier criterion of 
Theorem 2.1. 

Coro l l a ry 5.2. Let a be a complex-valued function on [0, °=), locally divisible 
(of order ^1(0=0 in BVJ+1, i.e., there exists an element x£BVj+1 satisfying 

12 
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•/ft) —\ for 0 ^t^S and some < 5 > 0 such that 

(5.4) e(t)-.= a ( t ) t ~ ^ m B V j + 1 . 

Suppose that {&%(<,)}<; a j is of Hardy-type (<p, ip). Then is globally divisible 
(in M) of order (cp, \j/). Moreover, there hold true the Jackson- and Steckin-type 
inequalities ( f £ X , (?£./) . 

i/p(e) 
(5.5) \\T<^f\\ =§ C.K^f, cp(Q)) =S CMe) f E ( f , ^~\u))du. 

o 

P r o o f . In view of Theorem 4.3 and 5.1 it is sufficient to prove the local divisi-
bility of {<7^} (in M) of order (q>,\p). By (5.4) and Theorem 2.1 the family 

belongs to M, uniformly for Moreover, 

°UC)(x) = <p(e)<l>(\x\)e*w(x) ((p(e)xp(\x\)^ 5) 

since a(t) = t6(t) for Hence the assertion follows in view of (4.1). 

6. Sharpness of Steckin-type inequalities 

Let X* be the class of bounded, ¿«Minear functional on the Banach space X, 
endowed with the usual operator norm j| • JĴ *. Let co denote an abstract modulus 
of continuity, thus a function, continuous on [0, such that 

(6.1) 0 = <u(0) < ©(0 S ( ü ( í + / ) S co(j) + ©(/) (s, t > 0). 

Additionally, we assume that co(t)?¿0(t), i.e., 

(6.2) lim co(t)lt =oo. 

Moreover, let J be an unbounded subset of (0, «>) and q> a positive, monotoni-
cally decreasing function on J satisfying 

(6.3) lim cp(e) — 0. 

In these terms one has the following result (see [6], [7]). 

Theorem 6.1. Let cp satisfy (6.3). Suppose that for Ue, Ve£X* there exist 
constants C and elements he£X with (r, • 

(6.4) WáClt 

(6.5 ) rc||x. C2, 

(6.6) " \vehr\ =» cmq)I<p(t), 

(6.7) .. 

(6.8) . . . . liminf jC/jAel g C 5 > 0. 
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Then for each modulus со satisfying (6.1,2) there exists a counterexample fadX 
such that (g — oo) 

\VM = 0(co(cp(Q))), \Uefa\ * o(a>(<p(e))). 

Suppose that the embedding M(Z)cL°°(Rw , E), as assumed by the defini-
tion, is in fact continuous, i.e., 

(6-9) ' M - . * s C | | t | | m (t€AO-

Coro l l a ry 6.2. Let cp satisfy (6.3). Consider a locally divisible family 
{ t ( } 1 ( i c M of order (q>, ф) for which there exist constants К and Borel sets 
{ в Х ^ 1 w i t h 

(6.10) E(Be)^o (e€S), 

(6.11) vWQxDsKt (x€Be,ees), . 

(6.12) |те(х)| S Кг > 0 (xeBe,Q£S). 

Then for each modulus (6.1,2) there exists a counterexample fmdX such that (e— 

чКв) 
He) f E ( f c <p~\u))du = 0((o(<p(Q))), lirVJI * o(co(<p(Q))). 

о 

Proof . Let a(ey-=^~HKJ<pie)). For any Bel with E(B)=I one has by 
(2.1) (i), (6.10) that Е(ВПВв)=E(B)E(Be)—E(BC) * 0, thus ВГ)Ве^0 by (2.1) (ii). 
Since Ae(e)(x)=l for xd.Be (cf. (3.1), (6.11)), it follows by (6.12) that 

sup|Te(x)Ae(i)(x)| s sup |тв(х)Ла(в)(х)| = sup |тв(х)| s inf |тв(х)| s K2. х€В х£ВПВв х£ВПВв
 х^ва 

In view of (2.2) this implies I I r e I I _ £ S a n d hence ¡¡твАа(в}||^=АГз>0 by 
(6.9). Therefore, by the definition of the operator norm (see (2.5)) there exists 
Л € Х , | | / е И 1 , such that 

(6.13) ' l\T'*La(e)fe\\ = | |7^<»,/в | | 

In order to apply Theorem 6.1 set 

l/«Ke) 
К = La(e)fe, Vef=<p(e) f E{f,*~\u))du, Uef=\\TUf\\. 

о 

Then №й\\тйК6 by (3.2) so that (6.4) is fulfilled. Moreover, (6.5) follows with 
C a = l , and (6.8) coincides with (6.13). It remains to show (6.6) since then (6.7) 

12» 
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would also follow by Theorem 5.1 with Cir=Kj(p(r). But E(hr,\jf-\u))=0 
for wi=^(2a(r)) since h r £ l l ^ r ) . Thus by (2.8) 

№W) 
Vehr He) f E(h„ ^-\u))du s t(2a(r))<p(e)\M ^ KMe)l<p(.r). 

0 

7. Applications 

In this section some applications to the previous abstract results are given by 
studying concrete examples of spaces H, X, spectral measures E, and processes 
{xe}. In Section 7.1 we consider spaces of 27r-periodic functions in connection with 
one-dimensional trigonometric expansions. It is shown how the present approach 
covers, in a unified way, those classical results of S. B. Steckin mentioned in Section 1 
as well as related material of R. Taberski and M. F. Timan on Abel—Poisson and 
typical means. In fact, the treatment of this example of a discrete expansion may 
easily be transferred to other discrete orthogonal systems (Jacobi, Hermite, Laguerre, 
etc.; for some details see [la], [4], [8a], [12], [21] and the literature cited there). In 
Section 7.2 we consider the Abel—Cartwright means in connection with the conti-
nuous Fourier spectral measure on the Euclidean iV-space, subsuming e.g. results of 
B. I. Golubov. Finally, Section 7.3 is concerned with a semidiscrete difference scheme 
for the numerical solution of the heat equation, the results being related to work 
of G. W. Hedstrom, J. Lôfstrôm, J. Peetre, V. Thomée, and others. 

7.1. Classical results in spaces of periodic functions. Concerning the spaces 
X2v, set N — l, fk(x):=eikx, and for L\„ 

E(B)F= 2 R(K)FK. 
*6fl nz 

Then E is a spectral measure for the Hilbert space H=L\N. Obviously, E(B)T±0 
iff BOZ^IS, so that L°°(R, E) may be identified with the set of bounded 
sequences {r(A:)}i€Zc:C. Moreover, LLKF)X27T is dense in Zj* as well as in XZK, 
and the definition (2.4) of a multiplier r={t(A:)} t€ZcM(A'2J coincides with the 
classical one, i.e., for each fdX2n there exists P£X2k such that x(k)f(k) = ( f ) " (k) 
for every k£ Z. Since 

iMU.E = sup |T(/C)| = sup IIA'II^ S ||T||M(Xin), 
fc€Z lt€Z ... 

M(X2K) is continuously embedded in f°. By Fejer's theorem, E is (/?,y')-bounded 
on any X2N for 7 = 1 (at least). Moreover, i l e coincides with (1.1), and i7 is 
dense in X2„ so that all the Banach spaces Z2s are admissible (for détails cf. 
[11], [12]). : : 
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Concerning the rth modulus (1.3) of continuity (r£N even), Theorem 5.1 
delivers Steckin's result (1.4). 

Coro l la ry 7.1. Let r£N be even. Then there holds true the inequality 
( f € X u , n t N) 

nr 

fflrftji / , 1/«) ^ f , "1/r) du ^ 
0 

(7.1) 

Ctn" "2 (j+iy-'EiX^, f j ) . 
j=o 

Proof . Let J=N and tr„(k):=(\ -eikt")'. Since or(t)=(l~eu)r/tr is infinitely 
differentiable on R, the multipliers Q„ (k) :=ar(k/n)k„(k) belong to M(X2rt), uni-
formly for «6N. Now Tr

n(k)=(k/n)r0n(k) for \k\^n, so that {t^} is locally 
divisible of order (<pr, ipr) with ipr(u)=ur, q>r(n)=n~r. Then the first inequality 
of (7.1) is a consequence of (5.3), whereas the second one follows by substituting 
w1/r=t and using the monotonicity of E ( f t ) . 

Note that Theorem 5.1 is not applicable for odd r£ N since the corresponding 
potential multiplier (ik)r is not radial. 

To reproduce Steckin's second result on Fejér sums, let us introduce a more 
general class of operators, the typical means 

Coro l l a ry 7.2. For r£N, «€P, and f£X2j[ 

(n+ir 
IIZrJ-fhín ^ C, (n +1)-' f E(X2n; f u^) du 

o 
(7-2) 

s ca(»+1)-' Z O ' + i r 1 ^ « , ; fJ)-
J = 0 

On the other hand, for each modulus (6.1,2) there exists an element fm€Xin such 
that (/ ->- 0+, n-f •») 

nt 
(7.3) t f E(Xin; fa, u1/r) du = 0(ai(t)), 

o 

(7-4) \\ZZfa-fJXl„ * 0(W((«+])-))• 

Proof . For an application of Corollary 5.2, set . / = P , and e(t)= 1 —(1 —/)+, 
il/{t) = f , <p(n)=(n+l)~r. Then the multiplier of Hardy-type (cp, >p) cor-
responds to the remainder I—Zr

n. Since 0(t):=cr(t)X(t)/teBV2, condition (5.4) 
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is fulfilled so that (7.2) follows by (5.5). Concerning the sharpness of (7.2), apply 
Corollary 6.2 with £„={«+1}. Since (6.10—12) follow with K ^ K 2 = \ , one 
obtains (7.3, 4) at once. 

Obviously, (7.2) for r— 1. regains Steckin's result (1.5) on the Fejér means 
whereas for r > l inequality (7.2) was established in [20]. Concerning the sharpness, 
it was shown in [6], [7] that even 

lim sup ||F„fm -L\\xJE(XiK\ fa, n) = °o 
n— oo 

for some element fm satisfying (7.3, 4). 
Concerning the Abel—Poisson means, given by (r£(0, l)=S,f£Xi„) 

PJ-= 2 r"ir(*)A; k = - ~ 

consider the multiplier : = / - , f c ! | f c | ' losr ' of Hardy-type (jp, \p) with ij/(u)=u, 
<p(r)=|log r\. Since (1 —e-'), (1 -e-')X(t)/t£BV2, Corollary 5.2 delivers (cf. 
[18], [20]) 

C o r o l l a r y 7.3. For the Abel—Poisson means Pr one has the Steckin-type 
inequality (f£X2n, 0 < r < 1) 

l/|logr 

\\Prf-f\\x,n S C|logr| 7 E(X2n; / , u)du ^ C ^ - 2 E(X2v; f j ) . 
0 •

 r

 O S J S l i ( l - r ) 

7.2. Abel—Cartwright means in L"(RN). Let LP = L"(RN), 1 ==/>=2°°, N£N, 
be the space of Lebesgue measurable functions on R* for which the norm 

11/11,:= 
{(2;0-" /2 / |/(")lp duf (1 S p < co) 

ess sup \ f (u) \ (p = oo), 

respectively, is finite. For f£L- let S'f :=/~ be the Fourier—Plancherel transform 
of / : 

lim ||(27r)_iV/2 f f(u)e-lmdu-f"(v)||2 = 0, 
O —OO J 

l«Ne 

and the inverse operator. For B£S let ^ be the multiplication projection: 

* / : = x , / f * . ( « ) : = { £ H I 

Then E(B):=!F~i0>
B!F is a spectral measure for the Hilbert space H—L2, and 

L°°(RW, E)=LT (cf. [8, p. 1989]). Furthermore, X=L" satisfies (2.3) for 1 
and (2.4) coincides with the classical definition of Fourier multipliers, i.e., T£M p \= 
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-.=M(LP) iff r f - . = * - W ) Z L > , \ \ r f \ \ p ^ A \ \ f \ \ p for any f t L * № (cf. [17, 
p. 94]). Moreover, Mpc.L°° continuously. Note that E is (/?,/-bounded for 
LP if, e.g., y>(JV—l)|l/p —1/2| (cf. [17, p. 114]), and that the polynomials are 
dense in LP, where ile=77e p is the set of entire functions on CN of (radial) 
exponential type Q the restriction to R" of which belongs to LP. Thus, the spaces 
LP are admissible for 

Let \{/£DU) for some j >(N-l)\l/p-l/2\ and cp(t)>0 for />0 . Consider 
the (generalized) Abel—Cartwright means , corresponding to, the: multiplier 
wt(t)> w(u)=e~", of Hardy-type (<p, <p). Since w£BVJ+1 for every y'£P, the 
approximation process is well-defined in [Lp], uniformly bounded for 
t>0. In particular, ij/(u) = q>(u)=if, a > 0 , yields the standard Abel—Cartwright 
means Wa{t) which subsume for a = l the Abel—Poisson and for a = 2 the Gauss— 
Weierstrass means. 

C o r o l l a r y 7.4. Let, and y > ( j V - l ) | l / p - l / 2 | . Suppose that xj/^D^, 
and let (p(t) be a positive function, tending monotonically to zero for /—0+ (cf. 
(6.3)). Then (feLp(RN) , i>0) 

1M0 
(7.5) \W„%f-f\\p ti C.K^f, <p(t)) ^ C2<p(t) f E ( L f , $-\u)) du. 

0 

On the other hand, for each modulus (6.1, 2) there exists a counterexample f m dL p 

such that (/-—0+) 
l/«-(0 

(7.6) q>{t) J E(L"; f a , ^ ( u ) ) du = O(o)(<p{t)% 

(7.7) W i v f » - f X * o{co{<p(t))\ 

Proof . Obviously, (7.5) follows by Corollary 5.2 since (1 -e-u)/u£BVj+1 

for every j£P. Concerning the sharpness of (7.5), set Q = l/t, Be = {x€ ; 
and xe = \-<(1/e). Then (6.10—12) follow with Kx=2, 

K2=l-e~1 so that Corollary 6.2 delivers (7.6, 7). 

Let us consider the rate of convergence of the standard Abel—Cartwright 
means Wx(t)f for elements f£LP belonging to the (radial (cf. (1.3))) Lipschitz 
classes (k£N, 0<)Ss2k) 

Lip2 t( i7(R"); fS) {/6L"(R'V); (o2k(L"(RN); f , t) = OH"), t - 0 + }. 

Since one has (ij/2k(u)=u2k; cf. [24]) 

(7.8) K ^ J f , r-k) := K(L", (TJf*x; f , tik) s Cka>2k(L"(RN); f t), 

Corollary 7.4 delivers (cf. [9]) -

C o r o l l a r y 7.5. Let 0 < a , P^2k , and /€Lip2fc (Lp; fi). 
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(i) If 0<a<2/fc, then ( / - 0 + ) 
0(t»), 0 < p < a, 

(7.9) \\K<j)f-f\\P = 0(t* |log t\), f} = a, 

(ii) For a = 2k one has 
( 7 . 1 0 ) \WJt)f-f\\p = 0 ( f ) . 

Proof . Obviously, (7.10) follows by (7.5, 8). Concerning (7.9), Corollary 7.4 
implies (cf. [19a] for a =1) 

( 7 . 1 1 ) W.Wf-fW, = O (/* f E(LP; f , u1'*) du). 

a 

By Corollary 4.4 and (7.8) the assumption yields (w—oo) 

E ( f , u^) = 0{K^k{f, u-w*)) = f ir1'*)) = 0(u~"% 

and the assertion follows by (7.11). 
7.3. A semidiscrete difference scheme for the heat equation. In the frame of 

Section 7.2, let TV = 1 and 1 In order to approximate the exact solution 
of the heat equation (x€R, />0) 

d/dt u(x, t) = dVdx* u(x, t), u(x, 0) = f(x)£L", 

given by the Gauss—Weierstrass means 
go 

W2(t1/Z)f(x) := (47r/)~1/2 / f(x-u)e-»2,i< du, 

consider the initial value problem for h>0 

d/dtuh(x, t) = h-2[u„(x + h, t)-2uh(x, t) + u„(x-h, t)], uh(x, 0) =f(x). 

This leads to the semidiscrete difference scheme (cf. [2]) 

u„(•, t) := Dh(t)f := Tdx,'f, dKl(x) := 

Thus the multipher rA , of the remainder Dh(t) —lV2(t112) has the representation 

( 7 . 1 2 ) T A J ( ( X ) : = gt/A*h), Sr(u) •= e ^ - ^ - e ^ " ' . 

Lemma 7.6. The family {gr},>0 is globally divisible of order (<px, ij/2) with 
<p1(r)=r, \p2(u) — u2 and satisfies the (local) condition 

( 7 . 1 3 ) gr(u) = ru*e-°"*Or(u) ( | « | , S) 

for a—ljn2, d — n/l, where the family {9r}(zMp is uniformly bounded for r>0 . More-
over, there exists a constant c>0 such that 

(7.14) g,(u) s c (r(u-2n)2 s 1, (2Kfr S 9). 
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Proo f . Since e ru £Mp, uniformly in r > 0 (cf. Theorem 2.1), and 

(7.15) ¡i^-^i-cos«),! - s e -2r £ * |]2a-cos u\fM =s 1, 

the family {gr} is uniformly bounded in Mp for r > 0 . To show (4.1), the Fejér-
kernel <7(h):=2«~2(1 — cos u) belongs to Mp as well as %(«):= (1 — o(u))/u2 (cf. 
Theorem 2.1). Consider the identity 

i 
(7.16) gr(u) = ru2(l-o(u)) f e-O-^e-^a-cosu)^ 

0 

Since the integral is uniformly bounded in Mp (cf. (7.15)), one has global divisibility 
of {gr} of order {(pi, i{/2). Concerning (7.13), set <?/*) := exp \r{ax2—2(1 —cosx))]. 
Since 1— cos x^ax2 for \x\^25, one has for |;t|^2<5: 

\e'r(*)| Cjr|1e~a r*\ (x)\ ^ C 2r( l + rx*)e~arx\ 

In view of (3.1) it follows that 
2 S 

I M i l l f x[\er(x)AZ(x)\ + 2\e-r(x)?:0(x)\ + K(x)Aa(x)|]dx s 
o 

2 i 2d 

3? f x |/J(x)| dx + 2C, sup (JC)| / rxe~arxidx + 
0 * S 0 0 

23 
+ C2 f rx( 1 + rx2)edx^C3-< 

o 

Thus erXs£Mp, uniformly for /•>0 (cf. Theorem 2.1). Therefore one obtains by 
(7.16) that for |H|=§<5 

1 
g,(u) = m*x(u)e-aru* f e-r^-s^-°^esr(u)).s(u)ds. 

o 
Hence (7.13) follows since 

\\fe-r'1-snl-tt^esr(u)Xi(f)ds\\M ^ sup I M J B y 2 . 

Finally, let (2n)2r^9 and (u-2n)2^ l/r. Then u2^4/r and 

gr(Ü) =
 e

- M l - c o s («-2lt)) _
e
- r « 2 ^ e-r(u-2n)i_ e-4 g c > 0 . 

C o r o l l a r y 7.7. For f£Lp(K), 1 and h,t>0 
A - 2 

(7.17) ¡ i a , « / - ^2(í1/2)/IIp s CXK(LP, (Lp)**; f , H2) ^ C2h2 J E(V>; / , i/1'2) 
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On the other hand, for each (fixed) / > 0 and each modulus (6.1,2) there exists a 
counterexample fm£Lp such that (/i—0+) 

h2 f E(LP; fm, a1'2)du = 0(co(h% \\Dh(t)fm-W2^2)fJp * o(co(h% 
o 

Proof . Set ¿={{h, t); h, />0} and (p(h,t)=h2. Since Mp is dilation-
invariant, i.e., |IX(^)IIM — MAD the uniform boundedness of {gr} implies that 
of {Tm} (cf. (7.12)). In view of (7.13) one has 

= S-lh<xh) = h'x-tx'e-^O./Axh) (\xh\ S <5), 

\\tx*e-°>**etlh*(xh)\\Mp ^ \\tx2e-«**\\Mp\\etlht\\Mt, ^ K 
(cf. Theorem 2.1). This implies the local divisibility of order (q>, tp2), and thus 
(7.17) by Theorems 4.3, 5.1. 

In order to apply Corollary 6.2, set Q=l/h, <P(Q)=1/Q2, and B0 = {x€R; 
t(x-2nQ)2^l}. Then (6.10, 11) follow at once, and (6.12) by (7-14) for g^3/2iit112. 

In view of (7.8, 17) one has 

I I A , ( 0 / - Ws«l,s)f\\p C O ) 2 ( L " ( R ) ; f h); 
uniformly for t>0. This estimate can be improved to the following one which 
reflects the behaviour for e.g. /—0+ more precisely. 

C o r o l l a r y 7.8. For f£Lp(R) and h, / > 0 

(7.,8) I p m - W A ^ l C ^ f ^ + W A t P » . 

Proof . Apply Theorem 4.3 to a,(x)=a2t2xie~'"x2 which belongs to Mp, 
uniformly for />0 , since w4 exp (—u2)£BV2.. Obviously, it is globally divisible 
of order (<p2, i/r4) so that Theorem 4.3 and (7.8) imply 

(7.19) l | 7 V | | , ^ A1K<,i(f,t2)sA2coi(L»-,f,t"2). 

In view of (7.13) one has for all *£R 

= Th.,(x)As/2h(x) + rhi,(x)(l -/¿/2h(x)) = 

= (h2lt)cJx)[a-2Qm*(xh)k6l2Jx)] + Thit(x)(\ -Ai/2„(x)). 

Hence the first inequality follows by (3.5) and (7.19). 
Since {gr} is globally divisible of order (cp1, ij/2) (cf. Lemma 7.6), there exists 

{v r } r > 0 cA f p , uniformly bounded for /•>0, such that gr(u)=ru2vr(u). Hence 
*h,t(x)=g,lhz(xh) = tx2vt/ht (xh) so that the second part of (7.18) follows by Theorem 
4.3 and (7.8). 
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In Chapter IV of [2] (see also the literature cited there), the fundamental tele-
scoping technique was also used for a parallel treatment of the present example in 
order to obtain error bounds on Besov spaces. The approach of this paper, however, 
uses the same technique only in the abstract setting in order to derive the estimates 
of Theorem 5.1. Consequently, for the concrete example one only needs to verify 
the basic divisibility assumptions. This procedure in fact delivers a comparison of 
the processes on the whole space. 
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