المان المالية والمحالية المحالية المحالية والآل ومحالية والآل ومحالية والمحالية والمحالية والمحالية والمحالية الأرب المحالية المحسنة المحالية المحالية المحالية ومحالية والمحالية والمحالية والمحالية والمحالية والمحالية والم وحالية المحالية المحالية المحالية

the second states of the secon

Small sum sets and the Faber gap condition ROBERT E. DRESSLER and LOUIS PIGNO*)

化乙酸化化物 法法律法律法 化化物化物

Our purpose in this paper is to analyze sets satisfying a small sum set condition in terms of the classical Faber gap condition and to prove a "shape" result for sets of positive upper Banach density.

For simplicity's sake we will take all sequences (before Theorem 4) to be increasing sequences of non-negative integers. As usual, Z^+ stands for the set of positive integers.

Definition 1 (The Faber gap condition of order p). If $S = \{s_j\}_{j=1}^{\infty}$ and $p \in \mathbb{Z}^+$, then S is said to be an E_p set if $s_{n+p} - s_n \to \infty$.

Definition 2 (Lacunarity condition L_n). A set S is said to satisfy condition L_1 if for every infinite sequence $\{n_j\}_{j=1}^{\infty}$, $|\underline{\lim} (S-n_j)|$ is finite. Proceeding inductively, we say that S satisfies condition L_n if for every sequence $\{n_j\}_{j=1}^{\infty}$ the set $\underline{\lim} (S-n_j)$ satisfies condition L_{n-1} .

Definition 3 (Generalized Faber gap condition $F_p^{(n)}$). If S is an L_n set that is not L_{n-1} and for some fixed p every n fold iterated lim inf has no more than p elements, we say S has property $F_p^{(n)}$.

Definition 4. If $n \ge 2$, then a set S is said to be a ϱ_n set if

 $\sup \{\min(|A_1|, |A_2|, ..., |A_n|): A_1 + A_2 + ... + A_n \subset S\} < \infty.$

Examples of ϱ_n sets are constructed in [4] and [5]; see also [3]. Notice that any ϱ_n set $(n \ge 2)$ is an L_{n-1} set.

Our first theorem shows that conditions F_p and $F_p^{(1)}$ coincide for all p.

Theorem 1. S is an F_p set if and only if S is an $F_p^{(1)}$ set.

Proof. Assume only for the sake of notation that $p \ge 2$. We will show that $S = \{s_j\}_{j=1}^{\infty}$ is an F_p set but not an F_{p-1} set if and only if $\sup |\underline{\lim} (S-s_{j_i})| = p$, where the sup is taken over all subsequences $\{s_i\}_{i=1}^{\infty} \subset S$.

Received October 6, 1982 and in revised form March 10, 1983.

^{*)} The second author was supported by NSF grant MCS-8102061.

First, suppose S is an F_p set, but not an F_{p-1} set. Then by the pigeon hole principle there is a subsequence $\{s_{j_i}\}_{i=1}^{\infty}$ such that for each t with $1 \le t \le p-1$, $s_{j_i+t}-s_{j_i}$ is constant for all *i*. It follows that

$$\{0, s_{j_1+1} - s_{j_1}, s_{j_1+2} - s_{j_1}, \dots, s_{j_1+p-1} - s_{j_1}\} + \{s_{j_i}\}_{i=1}^{\infty} \subset S$$

which implies that $|\underline{\lim} (S-s_{j_i})| \ge p$. On the other hand, if $|\underline{\lim} (S-s_{j_i})| > p$ for some $\{s_{j_i}\} \subset S$, then there exist $x_1 < x_2 < \ldots < x_{p+1}$ such that, for some $N \in \mathbb{Z}^+$ and each t with $1 \le t \le p+1$, $x_t + s_{j_i} \in S$ for all $i \ge N$. Clearly then S is not an F_p set.

Now suppose sup $|\underline{\lim} (S-s_{j_i})|=p$. If S were not an F_p set, then there would be $N \in \mathbb{Z}^+$ and a subsequence $\{s_{j_i}\}_{i=1}^{\infty} \subset S$ such that $s_{j_i+p}-s_{j_i} < N$ for all *i*. An argument similar to one we used above shows that $|\underline{\lim} (S-s_{j_i})| \ge p+1$ which is a contradiction. In addition, if $\{s_{j_i}\}_{i=1}^{\infty} \subset S$ and $x_1 < x_2 < \ldots < x_p$ are such that for each *t* with $1 \le t \le p$, $x_t + s_{j_i} \in S$ for all sufficiently large *i*, then S is not an F_{p-1} set.

The next theorem relates the ρ_2 property and the F_p property.

Theorem 2. If S is a ϱ_2 set with $\sup \{\min(|A_1|, |A_2|): A_1 + A_2 \subset S\} = p$, then S is an F_p set.

Proof. If S were not an F_p set, then there would exist $N \in \mathbb{Z}^+$ and a subsequence $\{s_{j_i}\}_{i=1}^{\infty} \subset S$ such that $s_{j_i+p} - s_{j_i} < N$ for all *i*. As in the proof of Theorem 1, there are infinitely many *i*'s such that for each *t* with $1 \le t \le p$, $s_{j_i+t} - s_{j_i}$ is constant for all such *i*'s. Thus,

$$\{0, s_{j_i+1} - s_{j_i}, s_{j_i+2} - s_{j_i}, \dots, s_{j_i+p} - s_{j_i}\} + \{s_{j_i}\}_{i=1}^{\infty} \subset S$$

and so $\sup \{\min(|A_1|, |A_2|): A_1 + A_2 \subset S\} \ge p+1$ which is a contradiction. Next we relate the ϱ_n $(n \ge 2)$ property and the iterative property $F_n^{(n)}$.

Theorem 3. Let $n \ge 3$. If S is a ϱ_n set with

 $\sup \{\min(|A_1|, |A_2|, ..., |A_n|): A_1 + A_2 + ... + A_n \subset S\} = p$

and S is not an L_{n-2} set then S is an $F_p^{(n-1)}$ set.

Proof. Suppose S is as in the hypothesis and that, in contradiction of the conclusion, the cardinality of some n-1 fold iterated lim inf of S (with respect to sequences $\{s_{j_i}^{(k)}\}_{i=1}^{\infty}$, $0 \le k \le n-2$) is greater than p. Then there are $y_1 < y_2 < ...$ $... < y_{p+1} \in \mathbb{Z}^+$ such that for each t with $1 \le t \le p+1$, $y_t + s_{j_t}^{(n-2)} \in \lim \times (... (\lim (\lim (S - s_{j_t}^{(0)}) - s_{j_t}^{(1)}) ... - s_{j_t}^{(n-3)}))$ for all sufficiently large i. Next, for each t with $1 \le t \le p+1$, $y_t + s_{j_t}^{(n-2)} \in \lim \times (... (\lim (S - s_{j_t}^{(0)}) - s_{j_t}^{(1)}) - ... - s_{j_t}^{(n-4)})$ for all sufficiently large i, etc.

Finally, we have, for each t with $1 \le t \le p+1$, $y_t + s_{j_t}^{(n-2)} + s_{j_t}^{(n-3)} + \ldots + s_{j_t}^{(1)} + s_{j_t}^{(0)} \in S$ for all sufficiently large *i*. This contradicts the hypothesis that S is ϱ_n and we are done.

Note. Theorem 3 tells us that if we have a ϱ_n set that is not L_{n-2} then whenever we take n-2 lim infs we have arrived at either an F_p set or a finite set.

The next theorem, of interest in itself, and whose proof may remind the reader of Lukomskaya's proof of van der Waerden's Theorem in [6], will help us relate density to the $F_p^{(n)}$ property. We need the following definitions.

Definition 5. If $E \subset \mathbb{Z}$, then the upper Banach density of E is defined by $\overline{Bd}(E) = \limsup (|E \cap I|)/|I|$, where I ranges over all bounded intervals in \mathbb{Z} .

Theorem 4. Let $E = \{e_i\}_{i=1}^{\infty}$. If $\overline{Bd}(E) > 0$ then for each $j \ge 0$, there exists $e_{i,j}$, M_j and k_j such that

$$\{e_{i_j}, ..., e_{i_j+M_j}\} + k_j \subset \{e_{i_{j+1}}, ..., e_{i_{j+1}+M_{j+1}}\}$$

with $0 < M_j < M_{j+1}$, and, for $j_1 \neq j_2$,

$$\{e_{i_{j_1}}, \ldots, e_{i_{j_1}+M_{j_1}}\} \cap \{e_{i_{j_2}}, \ldots, e_{i_{j_2}+M_{j_2}}\} = \emptyset.$$

In addition, there exists M > 0 such that for each j,

$$M_j+1>\left|\frac{e_{i_j+M_j}-e_{i_j}}{M}\right|.$$

Proof. Say $\overline{Bd}(E) > 1/N_0$ for some $N_0 \in \mathbb{Z}^+$. Then there exist infinitely many integers x_0 such that $|E \cap [x_0, x_0 + N_0]| > N_0/2N_0 = 1/2$. Form at most $2^{N_0+1}-1$ classes of such intervals $[x_0, x_0+N_0]$ according to the "shape" of $E \cap [x_0, x_0+N_0]$. Call such a class by the generic name C. At least one C_0 is infinite.

Next, choose $N_1 \in \mathbb{Z}^+$ such that N_0 divides N_1 and $N_1/2N_0 > N_0 + 1$. Now there exist infinitely many integers x_1 such that $E \cap [x_1, x_1 + N_1] > N_1/2N_0$. We take such intervals that contain a member of some class C_0 . Notice that by breaking up intervals of length N_1 into consecutive intervals of length N_0 , we see that, except for finitely many intervals, each interval of length N_1 which has at least $N_1/2N_0$ members of E must contain at least one member of one class C_0 (for if not, all but finitely many such intervals of length N_1 would have fewer than $(N_1/N_0)(N_0/2N_0) = N_1/2N_0$ members). Since there exist infinitely many intervals of length N_1 which contain a member of some C_1 we must have infinitely many such intervals containing infinitely many members of the same class C_0 . In addition, if we classify these intervals $[x_1, x_1 + N_1]$ according to the "shape" of $E \cap [x_1, x_1 + N_1]$ we see that at least one such class of intervals is infinite. Call such classes of intervals of length N_1 by the generic name C_1 . Notice that since $N_1/2N_0 > N_0 + 1$, we see that the intersection of E with any member of any C_0 .

Now choose $N_2 \in \mathbb{Z}^+$ such that N_1 divides N_2 and $N_2/2N_0 > N_1 + 1$. We repeat the construction to obtain at least one infinite class C_2 of intervals of the form

 $[x_2, x_2+N_2]$ all of whose members have the same "shape" when intersected with E and, for some class C_1 , each of whose members contains a member of C_1 . Continue in this manner. Notice that at the *j*th stage, starting with j=0, only finitely many of the intervals $[x_j, x_j+N_j]$ which contain at least a proportion $1/2N_j$ of elements of E do not belong to some C_j . Also, no two classes C_j need be disjoint.

We thus may obtain, for each $j \ge 0$, an interval $[x_j, x_j + N_j] \in C_j$ such that the intervals are pairwise disjoint and such that for each $j \ge 0$ there is a $k_j \in \mathbb{Z}$ with

$$(E \cap [x_j, x_j + N_j]) + k_j \subset (E \cap [x_{j+1}, x_{j+1} + N_{j+1}])$$

where since $N_{j+1}/2N_0 > N_j + 1$,

 $|E \cap [x_j, x_j + N_j]| < |E \cap [x_{j+1}, x_{j+1} + N_{j+1}]|.$

If we write $\{e_{i_j}, \ldots, e_{i_j+M_j}\} = E \cap [x_j, x_j+N_j]$, the proof is complete.

Corollary. If E is an L_n set for some n then $\overline{Bd}(E)=0$.

Proof. If $\overline{Bd}(E) > 0$, then if e_0 is the smallest element of $E \cap [x_0, x_0 + N_0]$ and $\{n_i\}_{i=0}^{\infty} = \{e_0, e_0 + k_0, e_0 + k_0 + k_1, ...\}$ then $\underline{\lim}(E - n_j)$ contains the set

$$B_{1} = \{0, e_{2} - e_{1}, e_{3} - e_{1}, \dots, e_{r_{0}} - e_{1}, e_{r+1}' - e_{1}', \dots \\ \dots, e_{r_{1}}' - e_{1}', e_{r+1}^{(2)} - e_{1}^{(2)}, \dots, e_{r_{2}}^{(2)} - e_{1}^{(2)}, \dots \}$$
$$E \cap [x_{0}, x_{0} + N_{0}] = \{e_{1}, \dots, e_{r_{0}}\},$$
$$E \cap [x_{1}, x_{1} + N_{1}] = \{e_{1}', \dots, e_{r_{1}}'\},$$
$$\vdots$$
$$E \cap [x_{j}, x_{j} + N_{j}] = \{e_{1}^{(j)}, \dots, e_{r_{j}}^{(j)}\},$$

where

By construction $\overline{Bd}(B_1) > 0$ because for each j, $\{e_1^{(j)}, \dots, e_{r_j}^{(j)}\}$ contains at least a proportion $1/2N_0$ of the interval $[x_j, x_j + N_j]$.

Now, perform the construction another n-1 times to obtain a set B_n with $\overline{Bd}(B_n) > 0$. Clearly then E is not an L_n set.

Definition 6. Let $N \in \mathbb{Z}^+$; a subset P of Z is a parallelepiped of dimension N if P has exactly 2^N elements and can be represented as a sum $P_1 + ... + P_N$ of N two-element subsets.

It is easy to see that if E does not contain parallelepipeds of arbitrarily large dimension, then E is an L_n set for some n. Thus, an easy consequence of our corollary is that if $\overline{Bd}(E)>0$, then E contains parallelepipeds of arbitrarily large dimension; this fact for natural density was first pointed out in [1]. It is also proved in [1] that if E is a p-Sidon set, a $\Lambda(1)$ set, or a UC-set, then there is a $N \in \mathbb{Z}^+$ for which E contains no parallelepiped of dimension N; see [1] and [4] for some definitions. It is also known that such an analytically defined E cannot contain arithmetic progressions of arbitrary length, hence, it also follows from the work of E. SZEMERÉDI [7] that such sets have natural density zero. On the other hand, it is quite easy to construct an L_n set containing arbitrarily long arithmetic progressions.

We conclude our paper with two examples which delineate the scope of Theorem 3.

Example 1. Let $A_1 = \{3^{3^n} + 3^{2^1}: n \in \mathbb{Z}^+\}, A_2 = \{3^{5^n} + 3^{2^2}: n \in \mathbb{Z}^+\} \cup \{3^{5^n} + 3^{2^2}: n \in \mathbb{Z}^+\}, \dots, A_t = \{3^{p_t^n} + 3^{2^{t'}}: n \in \mathbb{Z}^+\} \cup \dots \cup \{3^{p_t^n} + 3^{2^{t'+t-1}}: n \in \mathbb{Z}^+\} \text{ where } p_t \text{ is the } t^{\text{th}}$ prime and $t' = 1 + \sum_{i=1}^{t-1} i$. Let $S = \bigcup_{i=1}^{\infty} A_i$. Then S is clearly not ϱ_2 but since $S \subset \{3^{3^n}: n \in \mathbb{Z}^+\} + \{3^{2^n}: n \in \mathbb{Z}^+\}, S \text{ is a } \varrho_3 \text{ set.}$

In addition, it follows from [2, p. 76] that S is an L_1 set that is not F_p for any p. An appeal to Theorem 1 now confirms the following assertion: Given any natural number p there is a sequence $\{n_i\}_{i=1}^{\infty}$ such that $\infty > |\lim_{n \to \infty} (S-n_i)| > p$.

Example 2. Fix $q \in \mathbb{Z}^+$. Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be pairwise disjoint increasing sequences of positive integers. Let $A_1^1 = \{3^{b_1}\}$ and $A_2^1 = \{3^{c_1}\}$. Let $A_1^2 = \{3^{b_2}, 3^{b_3}\}$ and $A_2^2 = \{3^{c_2}, 3^{c_3}\}$. Let $A_1^3 = \{3^{b_4}, 3^{b_5}, 3^{b_6}\}$ and $A_2^3 = \{3^{c_4}, 3^{c_5}, 3^{c_6}\}$, etc. Finally, let

$$S = \bigcup_{n=1}^{\infty} \left[\left(\{ 3^{a_1}, 3^{a_2}, \dots, 3^{a_q} \} \cup A_1^n \right) + A_2^n \right].$$

By construction, S is L_1 (indeed it is F_{q+1}). Also if $\{d_n\}$ is any sequence such that $d_n \in A_2^n$ for each n, then $\{3^{a_1}, 3^{a_2}, ..., 3^{a_q}\} \subset \underline{\lim} (S-d_n)$. It follows from say [4] that

$$\sup \{\min(|A_1|, |A_2|, |A_3|): A_1 + A_2 + A_3 \subset S\}$$

is bounded above for all q. Clearly q could have been chosen greater than this bound; thus sup {min ($|A_1|$, $|A_2|$, $|A_3|$): $A_1 + A_2 + A_3 \subset S$ } < sup $|\underline{\lim} (S - n_j)| = q + 1$, for q sufficiently large.

Examples 1 and 2 show that the hypothesis in Theorem 3 that S not be an L_{n-2} set cannot be relaxed.

References

- J. J. F. FOURNIER and L. PIGNO, Analytic and arithmetic properties of thin sets, *Pacific J. Math.*, 105 (1983), 115-141.
- [2] R. E. DRESSLER and L. PIGNO, Some lacunarity conditions for Fourier-Stieltjes transforms, Ark. Math., 13 (1975), 73-77.
- [3] R. E. DRESSLER, On sets which contain sum sets, Acta Sci. Math., 42 (1980), 233-235.
- [4] R. E. EDWARDS and K. A. Ross, p-Sidon sets, J. Funct. Anal., 15 (1974), 404-427.
- [5] G. W. JOHNSON and G. S. WOODWARD, On p-Sidon sets, Indiana J. Math., 24 (1974), 161-168.
- [6] A. Y. KHINCHIN, Three pearls of number theory, Graylock Press (Rochester, N. Y., 1952).
- [7] E. SZEMERÉDI, On sets of integers containing no k elements in arithmetic progression, Acta Arith., 27 (1975), 199-245.

DEPARTMENT OF MATHEMATICS Kansas State University Manhattan, Kansas 66 506, U.S.A.