# Small sum sets and the Faber gap condition 

ROBERT E. DRESSLER and LOUIS PIGNO*)

Our purpose in this paper is to analyze sets satisfying a small sum set condition in terms of the classical Faber gap condition and to prove a "shape" result for sets of positive upper Banach density

For simplicity's sake we will take all sequences (before Theorem 4) to be increasing sequences of non-negative integers. As usual, $\mathbf{Z}^{+}$stands for the set of positive integers.

Definition 1 (The Faber gap condition of order $p$ ). If $S=\left\{s_{j}\right\}_{j=1}^{\infty}$ and $p \in \mathbf{Z}^{+}$, then $S$ is said to be an $F_{p}$ set if $s_{n+p}-s_{n} \rightarrow \infty$.

Definition 2 (Lacunarity condition $L_{n}$ ). A set $S$ is said to satisfy condition $L_{1}$ if for every infinite sequence $\left\{n_{j}\right\}_{j=1}^{\infty}$, $\emptyset \lim \left(S-n_{j}\right) \mid$ is finite. Proceeding inductively, we say that $S$ satisfies condition $L_{n}$ if for every sequence $\left\{n_{j}\right\}_{j=1}^{\infty}$ the set $\varliminf_{m}\left(S-n_{j}^{\prime}\right)$ satisfies condition $L_{n-i}$ :

Definition 3 (Generalized Faber gap condition $F_{p}^{(n)}$ ). If. $S$ is an $L_{n}$ set that is not $L_{n-1}$ and for some fixed $p$ every $n$ fold iterated $\lim$ inf has no more than $p$ elements, we say $S$ has property $F_{p}^{(n)}$.

Definition 4. If $n \geqq 2$, then a set $S$ is said to be a $\varrho_{n}$ set if

$$
\sup \left\{\min \left(\left|A_{1}\right|,\left|A_{2}\right|, \ldots,\left|A_{n}\right|\right): A_{1}+A_{2}+\ldots+A_{n} \subset S\right\}<\infty
$$

Examples of $\varrho_{n}$ sets are constructed in [4] and [5]; see also [3]. Notice that any $\varrho_{n}$ set ( $n \geqq 2$ ) is an $L_{n-1}$ set.

Our first theorem shows that conditions $F_{p}$ and $F_{p}^{(1)}$ coincide for all $p$.
Theorem 1. $S$ is an $F_{p}$ set if and only if $S$ is an $F_{p}^{(1)}$ set.
Proof, Assume only for the sake of notation that $p \geqq 2$. We will show that $S=\left\{s_{j}\right\}_{j=1}^{\infty}$ is an $F_{p}$ set but not an $F_{p-1}$ set if and only if $\sup \left\lfloor\right.$ im $\left(S-s_{j_{i}}\right) \mid=p$, where the sup is taken over all subsequences $\left\{s_{j_{i}}\right\}_{i=1}^{\infty} \subset S$.

Received October 6, 1982 and in revised form March 10, 1983.
*) The second author was supported by NSF grant MCS-8102061.

First, suppose $S$ is an $F_{p}$ set, but not an $F_{p-1}$ set. Then by the pigeon hole principle there is a subsequence $\left\{s_{j_{i}}\right\}_{i=1}^{\infty}$ such that for each $t$ with $1 \leqq t \leqq p-1, s_{j_{i}+t}-s_{j_{i}}$ is constant for all $i$. It follows that

$$
\left\{0, s_{j_{1}+1}-s_{j_{1}}, s_{j_{1}+2}-s_{j_{1}}, \ldots, s_{j_{1}+p-1}-s_{j_{1}}\right\}+\left\{s_{j_{i}}\right\}_{i=1}^{\infty} \subset S
$$

which implies that $\left|\underline{\lim }\left(S-s_{j_{i}}\right)\right| \geqq p$. On the other hand, if $\left\lfloor\right.$ ㅆm $\left(S-s_{j_{i}}\right) \mid>p$ for some $\left\{s_{j_{i}}\right\} \subset S$, then there exist $x_{1}<x_{2}<\ldots<x_{p+1}$ such that, for some $N \in \mathbf{Z}^{+}$ and each $t$ with $1 \leqq t \leqq p+1, x_{t}+s_{j_{t}} \in S$ for all $i \geqq N$. Clearly then $S$ is not an $F_{p}$ set.

Now suppose $\sup \left|\varliminf\left(S-s_{j_{i}}\right)\right|=p$. If $S$ were not an $F_{p}$ set, then there would be $N \in \mathbf{Z}^{+}$and a subsequence $\left\{s_{j_{i}}\right\}_{i=1}^{\infty} \subset S$ such that $s_{j_{i}+p_{i}-n} s_{j_{i}}<N$ for all $i$. An argument similar to one we used above shows that $\left|\underline{\varliminf}\left(S-\dot{s}_{j_{i}}\right)\right| \geqq \dot{p}+1$ which is a contradiction. In addition, if $\left\{s_{j_{i}}\right\}_{i=1}^{\infty} \subset S$ and $x_{1}<\dot{x}_{2}<\ldots<x_{p}$ are such that for each $t$ with $1 \leqq t \leqq p, x_{t}+s_{j_{i}} \in S$ for all sufficiently large $i$, then $S$ is not an $F_{p-i}$ set.

The next theorem relates the $\varrho_{2}$ property and the $F_{p}$ property.
Theorem 2. If $S$ is a $\varrho_{2}$ set with $\sup \left\{\min \left(\left|A_{1}\right|,\left|A_{2}\right|\right): A_{1}+A_{2} \subset S\right\}=p$, then $S$ is an $F_{p}$ set.

Proof. If $S$ were not an $F_{p}$ set, then there would exist $N \in \mathbf{Z}^{+}$and a subsequence $\left\{s_{j_{i}}\right\}_{i=1}^{\infty} \subset S$ such that $s_{j_{i}+p}-s_{j_{i}}<N$ for all $i$. As in the proof of Theorem 1 , there are infinitely many $i$ 's such that for each $t$ with $1 \leqq t \leqq p, s_{j_{i}+t}-s_{j_{i}}$ is constant for all such $i$ 's. Thus,

$$
\left\{0, s_{j_{i}+1}-s_{j_{i}}, s_{j_{i}+2}-s_{j_{i}}, \ldots, s_{j_{i}+p}-s_{j_{i}}\right\}+\left\{s_{j_{i}}\right\}_{i=1}^{\infty} \subset S
$$

and so $\sup \left\{\min \left(\left|A_{1}\right|,\left|A_{2}\right|\right): A_{1}+A_{2} \subset S\right\} \geqq p+1$ which is a contradiction.
Next we relate the $\varrho_{n}(n \geqq 2)$ property and the iterative property $F_{p}^{(n)}$.
Theorem 3. Let $n \geqq 3$. If $S$ is a $\varrho_{n}$ set with

$$
\sup \left\{\min \left(\left|A_{i}\right|,\left|A_{2}\right|, \ldots,\left|A_{n}\right|\right): A_{1}+A_{2}+\ldots+A_{n} \subset S\right\}=p
$$

and $S$ is not an $L_{n-2}$ set then $S$ is an $F_{p}^{(n-1)}$ set.
Proof. Suppose $S$ is as in the hypothesis and that, in contradiction of the conclusion, the cardinality of some $n-1$ fold iterated $\lim \inf$ of $S$ (with respect to sequences $\left.\left\{s_{j_{i}}^{(k)}\right\}_{i=1}^{\infty}, 0 \leqq k \leqq n-2\right)$ is greater than $p$. Then there are $y_{1}<y_{2}<\ldots$ $\ldots<y_{p+1} \in \mathbb{Z}^{+}$such that for each $t$ with $1 \leqq t \leqq p+1, \quad y_{t}+s_{j_{i}}^{(n-2)} € \varliminf>$ $\times\left(\ldots\left(\lim \left(\lim \left(S-s_{j_{i}}^{(0)}\right)-s_{j_{i}}^{(1)}\right) \ldots-s_{j_{i}}^{(n-3)}\right)\right)$ for all sufficiently large $i$ : Next, for each $t \quad$ with $\quad 1 \leqq t \leqq p+1, \quad y_{t}+s_{j_{i}}^{(n-2)}+s_{j_{i}}^{(n-3)} \in \lim \left(\ldots\left(\lim \left(S-s_{j_{i}}^{(0)}\right)-s_{j_{i}}^{(1)}\right)-\ldots-s_{j_{i}}^{(n-4)}\right)$ for all sufficiently large $i$, etc.

Finally, we have, for each $t$ with $1 \leqq t \leqq p+1, y_{t}+s_{j_{i}}^{(n-2)}+s_{j_{i}}^{(n-3)}+\ldots+s_{j_{i}}^{(1)}+$ $+s_{j_{i}}^{(0)} \in S$ for all sufficiently large $i$. This contradicts the hypothesis that $S$ is $\varrho_{n}$ and we are done.

Note. Theorem 3 tells us that if we have a $\varrho_{n}$ set that is not $L_{n-2}$ then whenever we take $n-2$ lim infs we have arrived at either an $F_{p}$ set or a finite set.

The next theorem, of interest in itself, and whose proof may remind the reader of Lukomskaya's proof of van der Waerden's Theorem in [6], will help us relate density to the $F_{p}^{(n)}$ property. We need the following definitions.

Definition 5. If $E \subset \mathbf{Z}$, then the upper Banach density of $E$ is defined by $\overline{B d}(E)=\limsup _{|I| \rightarrow \infty}(|E \cap I|) /|I|$, where $I$ ranges over all bounded intervals in $\mathbf{Z}$.

Theorem 4. Let $E=\left\{e_{i}\right\}_{i=1}^{\infty}$. If $\overline{B d}(E)>0$ then for each $j \geqq 0$, there exists $e_{i j}, M_{j}$ and $k_{j}$ such that

$$
\left\{e_{i_{j}}, \ldots, e_{i_{j}+M}\right\}+k_{j} \subset\left\{e_{i_{j+1}}, \ldots, e_{i_{j+1}+M_{j+1}}\right\}
$$

with $0<M_{j}<M_{j+1}$, and, for $j_{1} \neq j_{2}$,

$$
\left\{e_{i_{j_{1}}} ; \ldots, e_{i_{j_{1}}+M_{j_{1}}}\right\} \cap\left\{e_{i_{j_{2}}}, \ldots, e_{i_{j_{\underline{\underline{j}}}}+M_{j_{2}}}\right\}=\emptyset
$$

In addition, there exists $M>0$ such that for each $j$,

$$
M_{j}+1>\left|\frac{e_{i_{j}+M}-e_{i_{j}}}{M}\right|
$$

Proof. Say $\overline{\operatorname{Bd}}(E)>1 / N_{0}$ for some $N_{0} \in \mathbf{Z}^{+}$. Then there exist infinitely many integers $x_{0}$ such that $\left|E \cap\left[x_{0}, x_{0}+N_{0}\right]\right|>N_{0} / 2 N_{0}=1 / 2$. Form at most $2^{N_{0}+1}-1$ classes of such intervals $\left[x_{0}, x_{0}+N_{0}\right]$ according to the "shape" of $E \cap\left[x_{0}, x_{0}+N_{0}\right]$. Call such a class by the generic name $C$. At least one $C_{0}$ is infinite.

Next, choose $N_{1} \in \mathbf{Z}^{+}$such that $N_{0}$ divides $N_{1}$ and $N_{1} / 2 N_{0}>N_{0}+1$. Now there exist infinitely many integers $x_{1}$ such that $E \cap\left[x_{1}, x_{1}+N_{1}\right]>N_{1} / 2 N_{0}$. We take such intervals that contain a member of some class $C_{0}$. Notice that by breaking up intervals of length $N_{1}$ into consecutive intervals of length $N_{0}$, we see that, except for finitely many intervals, each interval of length $N_{1}$ which has at least $N_{1} / 2 N_{0}$ members of $E$ must contain at least one member of one class $C_{0}$ (for if not, all but finitely many such intervals of length $N_{1}$ would have fewer than $\left(N_{1} / N_{0}\right)\left(N_{0} / 2 N_{0}\right)=N_{1} / 2 N_{0}$ members). Since there exist infinitely many intervals of length $N_{\mathrm{I}}$ which contain a member of some $C_{1}$ we must have infinitely many such intervals containing infinitely many members of the same class $C_{0}$. In addition, if we classify these intervals [ $x_{1}, x_{1}+N_{1}$ ] according to the "shape" of $E \cap\left[x_{1}, x_{1}+N_{1}\right]$ we see that at least one such class of intervals is infinite. Call such classes of intervals of length $N_{1}$ by the generic name $C_{1}$. Notice that since $N_{1} / 2 N_{0}>N_{0}+1$, we see that the intersection of $E$ with any member of any $C_{1}$ has more elements than the intersection of $E$ with any member of any $C_{0}$.

Now choose $N_{2} \in Z^{+}$such that $N_{1}$ divides $N_{2}$ and $\cdot N_{2} / 2 N_{0}>N_{1}+1$. We repeat the construction to obtain at least one infinite class $C_{2}$ of intervals of the form
$\left[x_{2}, x_{2}+N_{\dot{2}}\right]$ all of whose members have the same "shape" when intersected with $E$ and, for some class $C_{1}$, each of whose members contains a member of $C_{1}$. Continue in this manner. Notice that at the $j^{\text {th }}$ stage, starting with $j=0$, only finitely many of the.intervals $\left[x_{j}, x_{j}+N_{j}\right]$ which contain at least a proportion $1 / 2 N_{j}$ of elements of $E$ do not belong to some $C_{j}$. Also, no two classes $C_{j}$ need be disjoint.

We thus may obtain, for each $j \geqq 0$, an interval $\left[x_{j}, x_{j}+N_{j}\right] \in C_{j}$ such that the intervals are pairwise disjoint and such that for each $j \geqq 0$ there is a $k_{j} \in \mathbf{Z}$ with

$$
\left(E \cap\left[x_{j}, x_{j}+N_{j}\right]\right)+k_{j} \subset\left(E \cap\left[x_{j+1}, x_{j+1}+N_{j+1}\right]\right)
$$

where since $\dot{N}_{j+1} / 2 N_{0}>N_{j}+1$,

$$
\left|E \cap\left[x_{j}, x_{j}+N_{j}\right]\right|<\left|E \cap\left[x_{j+1}, x_{j+1}+N_{j+1}\right]\right| .
$$

If we write $\left\{e_{i_{j}}, \ldots, e_{i_{j}+M}\right\}=E \cap\left[x_{j}, x_{j}+N_{j}\right]$, the proof is complete.
Corollary. If $E$ is an $L_{n}$ set for some $n$ then $\overline{B d}(E)=0$.
Proof. If $\overline{B d}(E)=0$, then if $e_{0}$ is the smallest element of $E \cap\left[x_{0}, x_{0}+N_{0}\right]$ and $\left\{n_{j}\right\}_{j=0}^{\infty}=\left\{e_{0}, e_{0}+k_{0}, e_{0}+k_{0}+k_{1}, \ldots\right\}$ then $\underline{\lim \left(E-n_{j}\right)}$ contains the set

$$
\begin{gathered}
B_{1}=\left\{0, e_{2}-e_{1}, e_{3}-e_{1}, \ldots, e_{r_{0}}-e_{1}, e_{r+1}^{\prime}-e_{1}^{\prime}, \ldots\right. \\
\left.\ldots, e_{r_{1}}^{\prime}-e_{1}^{\prime}, e_{r+1}^{(2)}-e_{1}^{(2)}, \ldots, e_{r_{2}}^{(2)}-e_{1}^{(2)}, \ldots\right\}
\end{gathered}
$$

where

$$
\begin{aligned}
E \cap\left[x_{0}, x_{0}+N_{0}\right] & =\left\{e_{1}, \ldots, e_{r_{r}}\right\} \\
E \cap\left[x_{1}, x_{1}+N_{1}\right] & =\left\{e_{1}^{\prime}, \ldots, e_{r_{1}}^{\prime}\right\} \\
& \vdots \\
E \cap\left[x_{j}, x_{j}+N_{j}\right] & =\left\{e_{1}^{(j)}, \ldots, e_{r_{j}}^{(j)}\right\},
\end{aligned}
$$

By construction $\overline{B d}\left(B_{1}\right)>0$ because for each $j,\left\{e_{1}^{(j)}, \ldots, e_{r_{j}}^{(j)}\right\}$ contains at least a proportion $1 / 2 N_{0}$ of the interval $\left[x_{j}, x_{j}+N_{j}\right]$.

Now, perform the construction another $n-1$ times to obtain a set $B_{n}$ with $\overline{B d}\left(B_{n}\right)>0$. Clearly then $E$ is not an $L_{n}$ set.

Definition 6. Let $N \in \mathbf{Z}^{+}$; a subset $P$ of $\mathbf{Z}$ is a parallelepiped of dimension $N$ if $P$ has exactly $2^{N}$ elements and can be represented as a $\operatorname{sum} P_{1}+\ldots+P_{N}$ of $N$ two-element subsets.

It is easy to see that if $E$ does not contain parallelepipeds of arbitrarily large dimension, then $E$ is an $L_{n}$ set for some $n$. Thus, an easy consequence of our corollary is that if $\overline{B d}(E)>0$, then $E$ contains parallelepipeds of arbitrarily large dimension; this fact for natural density was first pointed out in [1]. It is also proved in [1] that if $E$ is a $p$-Sidon set, a $\Lambda(1)$ set, or a $U C$-set, then there is a $N \in \mathbf{Z}^{+}$for which $E$ con: tains no parallelepiped of dimension $N$; see [1] and [4] for some definitions. It is also known that such an analytically defined $E$ cannot contain arithmetic progressions of
arbitrary length, hence, it also follows from the work of E. Szemerédi [7] that such sets have natural density zero. On the other hand, it is quite easy to construct an $L_{n}$ set containing arbitrarily long arithmetic progressions.

We conclude our paper with two examples which delineate the scope of Theorem 3.

Example 1. Let $A_{1}=\left\{3^{3^{n}}+3^{2^{1}}: n \in \mathbf{Z}^{+}\right\}, \quad A_{2}=\left\{3^{5^{n}}+3^{2^{2}}: n \in \mathbf{Z}^{+}\right\} \cup\left\{3^{5^{n}}+3^{2^{2}}\right.$ : $\left.n \in \mathbf{Z}^{+}\right\}, \ldots, A_{t}=\left\{3^{p_{t}^{n}}+3^{2^{2^{r}}}: n \in \mathbf{Z}^{+}\right\} \cup \cdots \cup\left\{3^{p_{t}^{n}}+3^{2^{r^{r+z-1}}}: n \in \mathbf{Z}^{+}\right\}$where $p_{t}$ is the $t^{\text {th }}$ prime and $t^{\prime}=1+\sum_{i=1}^{t-1} i$. Let $S=\bigcup_{t=1}^{\infty} A_{t}$. Then $S$ is clearly not $\varrho_{2}$ but since $S \subset\left\{3^{3^{n}}: n \in \mathbf{Z}^{+}\right\}+\left\{3^{2^{n}}: n \in \mathbf{Z}^{+}\right\}, S$ is a $\varrho_{3}$ set.

In addition, it follows from [2, p. 76] that $S$ is an $L_{1}$ set that is not $F_{p}$ for any $p$. An appeal to Theorem 1 now confirms the following assertion: Given any natural number $p$ there is a sequence $\left\{n_{j}\right\}_{j=1}^{\infty}$ such that $\infty>\left|\underline{\lim }\left(S-n_{j}\right)\right|>p$.

Example 2. Fix $q \in \mathbf{Z}^{+}$. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ be pairwise disjoint increasing sequences of positive integers. Let $A_{1}^{1}=\left\{3^{b_{1}}\right\}$ and $A_{2}^{1}=\left\{3^{c_{1}}\right\}$. Let $A_{1}^{2}=\left\{3^{b_{2}}, 3^{b_{3}}\right\}$ and $A_{2}^{2}=\left\{3^{c_{2}}, 3^{c_{3}}\right\}$. Let $A_{1}^{3}=\left\{3^{b_{4}}, 3^{b_{5}}, 3^{b_{6}}\right\}$ and $A_{2}^{3}=\left\{3^{c_{4}}, 3^{c_{5}}, 3^{c_{6}}\right\}$, etc. Finally, let

$$
S=\bigcup_{n=1}^{\infty}\left[\left(\left\{3^{a_{1}}, 3^{a_{2}}, \ldots, 3^{a_{a}}\right\} \cup A_{1}^{n}\right)+A_{2}^{n}\right] .
$$

By construction, $S$ is $L_{1}$ (indeed it is $F_{q+1}$ ). Also if $\left\{d_{n}\right\}$ is any sequence such that $d_{n} \in A_{2}^{n}$ for each $n$, then $\left\{3^{a_{1}}, 3^{a_{2}}, \ldots, 3^{a_{a}}\right\} \subset \underline{\lim }\left(S-d_{n}\right)$. It follows from say [4] that

$$
\sup \left\{\min \left(\left|A_{1}\right|,\left|A_{2}\right|,\left|A_{3}\right|\right): A_{1}+A_{2}+A_{3} \subset S\right\}
$$

is bounded above for all $q$. Clearly $q$ could have been chosen greater than this bound; thus $\sup \left\{\min \left(\left|A_{1}\right|,\left|A_{2}\right|,\left|A_{3}\right|\right): A_{1}+A_{2}+A_{3} \subset S\right\}<\sup \left\lfloor\varliminf_{m}\left(S-n_{j}\right) \mid=q+1\right.$, for $q$ sufficiently large.

Examples 1 and 2 show that the hypothesis in Theorem 3 that $S$ not be an $L_{n-2}$ set cannot be relaxed.

## References

[1] J. J. F. Fournier and L. Pigno, Analytic and arithmetic properties of thin sets, Pacific J. Math., 105 (1983), $115-141$.
[2] R. E. Dressler and L. Pigno, Some lacunarity conditions for Fourier-Stieltjes transforms, Ark. Math., 13 (1975), 73-77.
[3] R. E. Dressler, On sets which contain sum sets, Acta Sci. Math., 42 (1980), 233-235.
[4] R. E. Edwards and K. A. Ross, p-Sidon sets, J. Funct. Anal., 15 (1974), 404-427.
[5] G. W. Johnson and G. S. Woodward, On p-Sidon sets, Indiana J. Math., 24 (1974), 161--168.
[6] A. Y. Khinchin, Three pearls of number theory, Graylock Press (Rochester, N. Y., 1952).
[7] E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith., 27 (1975), 199-245.

