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Amalgamated free product of lattices. 
HI. Free generating sets 

G. GRATZER* and A. P. HUHN 

1. Introduction 

In G . GRATZER and A . P . H U H N [4] it was proved that for a finite lattice Q any two 
<2-free products have a common refinement. This means that, whenever L, A0, Alt 

B0,2?! are lattices such that L=A0*aA1=B0*aB1, then 
L = (AonB0)*Q(AonB1)*Q(Air)B0)*Q(Air)B1). 

Ai = (Aif)B0)*Q(Aif)B1), I = 0,L, 
and 

BJ = (AONBJ)*Q(AINBJ), 7 = 0 , 1 . 

It is still an open question whether there is any lattice Q not having this property. 
In this paper, we shall prove a related weaker statement. 

By a free generating set of a lattice L we mean any relative sublattice freely 
generating L. The following question arises: 

Is it true, that a free generating set of an amalgamated free product always con-
tains free generating sets of the components? 

In case of an affirmative answer it would follow that, for arbitrary Q, any two 
g-free products have a common refinement, thus the above property is, indeed, 
stronger than the Common Refinement Property. In fact, assume that L—A0*QA1= 
=B0*QB1. Then B0UB1 is a free generating set of L. Hence AIC\{BA\JB1)= 
= (^ in5 0 )U(/4 jn5 1 ) is a generating set of Thus, by Section 5 of [4], AT— 
=(AIR\B0)*Q(AIR\B1), i=0, 1, whence, by the Main Theorem of [4], it follows that 
the two g-free products have a common refinement. 

We shall give a negative answer by proving the following theorem. 

Theorem 1. There exist lattices L,A0,A1,Q with L=A0*QA1 and a free 
generating set G of L such that [GC\Ai] is a proper part of At, i—0,1. 
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In fact, in our example [GC\Ai] = Q, and Q is a proper part of The generat-
ing set G will be of the form Ba\JB,, where B0, 5 , are relative sublattices of L, and 
L=B0*aB1 with Bt=[B,]. Therefore, it is natural to ask whether Theorem 1 can be 
developed into a counterexample showing that the two Q-free products A0*QA1 

and B0*QBl have no common refinement. Theorem 2 in Section 5 shows that this is 
not the case. 

2. The construction of Q, A, and G 

First we shall define a partial lattice P and relative sublattices Q, At, and Bt of 
P, which will serve as generating sets of Q, Ah and Bt, respectively. For a set X, let 
Se(X) denote the free semigroup on X with unit element e. P is defined as a subset of 
S e ({0 , l , / , r}) : 

P= Se({0, l})U{j/|igS.({0, l})}U{ir|5€S.({0, 1})}. 

The elements of P will be referred to as words, the elements 0,1 , r, I will be 
called letters. The last letter of a word s will be denoted by s. | j | will denote the num-
ber of letters in s. e will be considered the empty word. We shall use the convention 
that e=0. Now we start defining joins and meets in P. 

(i) For any ^ ^ ( { 0 , 1 } ) , define J = J 0 V J 1 =JIN/JO. 
(ii) For any j£Se({0, 1}), define 

' - s = srV si = slV sr, 

si = sOOVslO = slOVsOO, 

sr = sOlVsll = sllVsOl. 

(iii) For any s, Po,Pi£P with s—0, define 

c sr = sOlpoVsllpi = sll^VsOlpo, 

and, for any s, Po,Pi€P with j = 1 , define 

si = sOOp0VslOpi = slOpjVsOOpo-

Now let " 

Q = {sr\s = 0}U{sl\s=i}, 

A-x = 6 U { s | j = i, |s| is even, /, r}}, i — 0,1, 

Bi = Q U { S | J = i , | s | i s o d d , x£{e, I, r } } , ¿ = 0 , 1 . 

(iv) For a,b£P, define a^b if and only if either a=b or there exist a positive 
integer n, and elements a0, ax, ..., a„-i, an, c0, clt ..., c„Li€.P, such that a=a0, 
a„—b and the re la t ions -a^c i—a^ , ¿ = 0 , 1 , . . . , « - ! hold by (i), (ii), or (iii). 
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This relation is a partial ordering on P. If a^b, define a\Jb=b\Ja=b and 
a/\b=bha=a. 

A part of P together with all non-trivial joins (there are only trivial meets) is 
illustrated in the Figure. 

Finally, let L=F(P), the free lattice over P, let Q=[Q], and 5 , = 
i=0,1, in L, and let G=5 0 UB 1 . 

? e a a 

Fig. 1. 

3. P is a partial lattice 

This statement is of primary importance in the proof of Theorem 1 (see the 
proof of Lemma 6). In this section we shall give a proof. The following lemma will 
be used to prove that P is a weak partial lattice. 

Lemma 1. For any a,b,c£P, if a^c, b^c, and- a\/b is defined, then 
ayb^c. 

The proof of this lemma proceeds via checking all the possible cases (i), (ii), 
(iii), and (iv) of how b\Jc is defined and establishing the assertion in these separate 
cases. We omit the details. 

1* 
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Lemma 2. P is a weak partial lattice. 

Proof . The following four statements and their duals are to be proved. 
(a) for any adP, ay a is-defined and aVa=a; 
(b) for any a,b£P, if aSJb is defined, then - b\Ja is defined and a\Jb—b\Ja\ 
(c) for-any a,b£P, if a\Jb, (a\/b)\/c, bye are defined, then a\j(b\Jc) is de-

fined and {a\/b)\Jc=a\i{b\/c); ' 
(d) for an a,b£P, if af\b is defined, then a\J(af\b) is defined and a\!{af\b)— 

=a. 
Of these only (c) is non-trivial. We consider the following five cases. 
First case: a\!b=b. Then a^b=b\Jc, thus the right hand side in (c) exists 

and equals bVc(=(a\Jb)\/c). 
Second case: b-^ayb, c\\b, and c\\a\/b. Observe that, under these conditions, 

the joins by c and (¿zVí>)Vc can only be defined if, for suitable elements /?0,/?i,/>2> 
s£P, one of the following four subcases holds: 

s= 0, c = sOlpo, b = s l ip! , aVft = sllp2 ; 

c = sllpo, ¿> = 501/^, ayb = s01p2; 

s= 1, c = sOOp0, b^slOpi, 'aVb = sl0p2; 

s= 1, c = slOp0, ¿> = 500^, ayb=s00p2-

In the first two subcases aV(éVc) exists and equals sr, which is also the value of 
(aVi)Vc. The last two subcases are similar, only the common value of the two sides 
is s. 

Third case: b-^aVb, b^c, and c\\a\b. This case is impossible, for (aV6)Vc 
is defined and two incomparable elements whose join is defined cannot have a com-
mon lower bound (check the definitions (i), (ii), and (iii)). 

Fourth case: 6<aV fc , b\\c, cSaV¿>. • Applying Lemma 1, we have that b^b V c S 
S.áyb. If the join aNb was defined in (i) or (ii), then byc=b, or i>Vc=aV6. 
But byc=b contradicts b\\c, thus 6Vc=aV¿. Then aV(feVc) is defined and 
aV(Wc)=aV(aVí>)=aV¿>=(aV£>)Vc. If was defined in (iv), then a ^ b , 
thus a = a y b . Hence aV(6Vc)=a=(aV¿)Vc. Finally, ifaVfo was defined in (iii), 
then we again have to consider four subcases as in the second case; we check only 
one of these: 

a = sOlpo, b = sllp!, 5=0. 

Then • ayb=s r , whence s l i p ^ b y c ^ s r . Thus either b y c = s r = a y b , which 
can be handled similarly as the cases (i) or (ii), or there is a factorization p i = p 2 p 3 

such that byc=sllp2 (<7i=e is allowed, too). But then, (iii) applies again, whence 
a\IQ>Vc)=sr=a\lb=(pVb)Slc. 

Fifth case: b<aNb and c is comparable with both b and aVfc. Then the sub-
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cases c ^ b and aVfc=c are trivial and b S c ^ a V b can be handled similarly as the 
fourth case. 

These five cases exhaust all possibilities. 

To finish the proof of the statement formulated in the heading of this section, we 
have to prove the following lemma (and its dual, but the latter is obvious). 

Lemma 3. If a,b,c£P and (a] V = ( c ] in the ideal lattice of P; then aMb=c 
in P. • 

Proo f (by R. W. Quackenbush). Suppose that (a]V(i>]=(c] and aVb is not 
defined. Let a*b=s be the largest common initial segment of a and b. Then 
(a] so. c^s. Now a, b(L {jr, si, sOp, s\q} for some p, q. 

Case I. a=sl. Then b—sOp or s\q since sNsr=s. 
1.1: b=sOp. Since s>-sl, c=s. 

Claim. ( J O ] V ( J / ] = ( J O ] U ( J / ] . 

Proof . Let d^sO and e^sl. Thus d—sOp; we assume that d\le is defined. 
Thus e^sl; so e—sOOq or jlOg. If e=s00q then dVe^sO. Thus let e=slOq. 
Then d\/e=sl. This contradicts (a]V(fe]=(.y] since a^sO and b=sl. 

1.2: b=s\q. Similar to 1.1 using ( J 1 ] V ( J / ] = ( J 1 ] U ( J / ] . 

Case 2: a=sr. By symmetry with Case l . 
Case 3: a—sOp, b=s\q. By symmetry, this is the last case. 
3.1: a=sO. Thus We compute (jO]V(jli]. Let d^sO and e^slq 

and let us assume that d\l e is defined. 
3.11: q=lq'. The only possibilities are: 

d\Je = sOlVsll = sr, d\/e = s O l / V s l l ? ' = sr. 
Thus either J / -6(JO]V(J1^] and so ( jO]V(jl?] = ( jO]V(jr]=(jO]U(j/-] or J>0]V 
V (.sl<y] ~ (.vO] U(¿1 q\. 

3.12: q=0q'. Then similarly to 1.11, ( I O ] = or ( J O ] U ( J / ] . 

3.2: b=s\. So p — Q. By symmetry with 1.1. 
3.3: a=s00p', b=sllq'. If drsa and e^b, then d=sOdp",. e=s\\q" and 

dVe is not defined. Thus (a]V(ft]=(a]U(fcj. " 
3.4: a=sO\p', b=s\0cf. Similar to 3.3. . * 
3.5: a=s00p', b=slOq'. Let d^a and e^b. Since aWb is not defined we 

must have p'^0 or q'^Q. and we must have 5=0. But then dNe is not defined, 
since d=s00p", e=s\0q". Hence (a]V(b]=(a]U(b]. 

3.6: a=sQ\p', b=s\\q'. Similar to 3.5. 

Now the above results, together with Funayama's characterization of partial 
lattices (see G. Gratzer [3]), gurantee that P is a partial lattice. ; 
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4. Proof of Theorem 1 

We shall need a description of the free lattice generated by a partial lattice. The 
description we use is due to R . A. D E A N [2] (see also H. LAKSER [5]). Let (X; Л, V) 
(or briefly X) be a partial lattice, and let F(X) denote the free lattice generated by X. 
Denote by FP{X) the algebra of polynomial symbols in the two binary operation 
symbols A and V generated by the set X. Then F(X) is the image of FP(X) under a 
homomorphism G: FP(X)--F(X) with XQ=X for x£X. For each pdFP(X), 
we define an ideal px and a dual ideal px of X as follows. 

. px = ^PQ in F(X)}, px = {xeX\pe ^ x in F(X)}. 

Now the description of F(X) is found in the following three propositions. Actu-
ally, we need here only Propositions 2 and 3; Proposition 1 will be used in Section 5. 

P ropos i t i on 1. If p, q£FP(X), then pg^qg i f f it follows by applying the fol-
lowing five rules. 

(Wc) p x n q x 

(vfV) p = p0Vpi, P0g^qg and PiQ^qg-, 

UW) p = pgApi., p0g qg or ргд =э qg; 

(Wv) q=q0\/q1, pg Ш q0g or pg q^; 

№) q=q0Aq!, pg S q0g and pg^q^g. 

If p£P(X), then px and px can be calculated as follows. 

P ropos i t i on 2. For p£X,px=(p] (in(X; Л, 4)) and px=[p). For p=p0Wp1, 

Px = (Po)xV(Pi)x, Px = (Po)XA(p1)x, 

and, for p=p0hp1, 

Px = (Po)x4Pi)x, PX = (Po)XV(Pif 

where the V and A on the right hand sides are to be formed in the lattice of all ideals 
(respectively, dual ideals) of {X\ A, V). 

By a binary tree we mean a finite poset T with greatest element such that every 
element of T is either minimal or has exactly two lower covers. Now the join and 
meet of a set of ideals of (X; A, V) can be formed as follows. The operations on the 
dual ideals are analogous. 

P ropos i t i on 3. Let Ij,j€J be ideals of (X\ A, V). Then x£ V (Ij\j£J) i f f 
there is a binary tree T and there exist elements x,£X, t£ T such that 

(1) 
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(2) if t is a minimal element in T, then xtd Ij for some j£J; 
(3) if u and v are different lower covers of t, then xuVx„ is defined in <X; A, V), 

and x,^xu\/xv. 
A (Ij\jdJ) is the intersection of {Ij\j£J}-

The proof of Theorem 1 will be completed by the following three lemmas. 

Lemma 4. L is freely generated by AQU^ as well as by B0UB1. 

Proo f . It is enough to show that all the elements of P can be expressed by ele-
ments of A.UA,, and these expressions obey all the relations (i) to (iv) in F(AAUA1), 
that is, (i) to (iv) can be derived from the relations valid in A^UA^. (The statement 
concerning B0{JB1 can be proved analogously.) In fact, let S£P, S^AQUAX. Then 
an expression of s by elements of A0LMi is 

(4) s = sOVsl if s£ {0,1}, 

(5) s = s'OOOVs'OOlVs'lOOVs'lOl if s = s'l, 

(6) s = s'OlOVs'OllVs'llOVs'lll if s = s'r. 

It is straightforward to check the relations (i) to (iv). Let us consider only one example: 
J = J 0 V J 1 , jeAoUAj. In fact, applying (ii) within AQKJAX and (4) we have 

s = S/Vsr = (sOOVslO)V(sOlVsll) = (500Vs01)V(sl0Vsll) = sOVsl. 

L e m m a 5. L=A0*QA1=B0#QB1. 

Proof . Let AQUQAX be the weakest partial lattice defined on the set A0UAx 
having A0 and AX as sublattices. The same proof as that of Lemma 4 yields that 
L=F(A0\JQA1), for every join defined in A0\JAX is defined either within A„ or 
within AX. Now QQA0 and QQAX, thus we can form the union AQUA! subject to 
the condition AOR>A1=Q. Let A^QA^ be the weakest partial lattice on A0UAX 
extending the operations defined in A„ or AX. Since AQUQAX contains a copy of 
AOUQA.!, there is a homomorphism <p of L= F{A0\JQA1) onto FIAQUQA^. Since L 
contains copies of A0 and AX with QQA0, QQALF there is a homomorphism \}/ of 
F^AqJqAj) into L. <pi]/ is the identity on A0UEA1, hence it is the identity on L. 
Thus <p is one-to-one. Summarizing 

L = F{A0{JQA1)^F(A0(JQA1) = A0*QA1. 

This isomorphism is the identity on A0 and on AX, therefore £ is the g-free product of 
its sublattices A0 and AX. Analogously, L—B0 *QBX, completing the proof. : 

By Lemma 4, L has the free generating set G=BAUB1, and, by Lemma 5, it has 
the Q-free decomposition L=A0*QA1. Thus the following lemma proves Theorem 1. 
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Lemma 6. GDAjQQ, that is, [GfMJ is a proper part of A{. 

Proof . By symmetry it is enough to show that B0C\A0QQ. Let us assume that 
an element b0£B0 can be expressed by elements of A0, that is, b0=p(a0, ..., an), 
where p is a polynomial and a0, ..., an£A0. Then, by Proposition 2, 

holds in the lattice of all dual ideals of P, where pi is the polynomial dual to p. This 
lattice is distributive and, by distributivity, ps can be rearranged in such a way that 
all the joins precede all the meets in it: 

(7) [b0) = V(A([aj)\jUmi) 
with {0,1, ..-., n), for all i£l, while, by the distributive inequality, 

(8) b ^ M i a j M t U i a ) 

holds in L. Since [f>0) is a principal dual ideal, from (7) we obtain that there exists 
i in I such that 

[ba) = 

By Proposition 2, we have 
b0^\/(aj\jeJd-

This, together with (8) yields 

b0 = V(aj\jiJd. 

Again, by Proposition 2, we have 

(b0] = V((aJ]\j€Ji). 

Now we show that this is impossible unless Q. We carry out the proof for 
b0=e; for other choices of b0 there is no essential difference in the proof. 

We show that V (aj\ if a} runs over all elements of A0. Consider a binary tree 
T and a set X= T) with the properties (1) to (3), with Ij=(aj\. There are only 
two joins with the value e, namely e = 0 V l and e=/Vr . Thus X contains 0 and 1 or 
/ and r. Of these 1 ^aj (respectively, for all j, therefore, by (2), there is a 

T( i not minimal), such that 1 =xt (respectively, l=xt). Thus (3) can be- applied: 
10 (and 11) or 1 r (and 1/) (respectively, 10 (and 00)) are contained in X. (2) does not 
apply for 10 and lr, thus we can proceed by (3): 101 £Zor 10KX. Now, by induction, 
we obtain that 101...016X or 101.. .0 l£X, which contradicts the fact that X is finite. 
This contradiction completes the proof. , 
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5. Some remarks 

First of all, we prove the statement already announced in the introduction that 
the example is no counterexample for the common refinement property. It is worth 
mentioning that it is exactly the characterization theorem of the existence of common 
refinements in [4] that will be used to prove this assertion. 

Theorem 2. The two Q-free products L = A0*QA1=B0*0B1 have a common 
refinement. 

We need the following lemma. 

Lemma 7. Let b0, ...,bm£B0 and let p be a polynomial in b0, ...,bm. Then for 
any x£A0 satisfying x^p(b0, ..., bm) in F(P), there exists an element c^A0C]B0 

with x^c^p(b0, ...,bm). 

Before proceeding to the proof, we present another lemma, which will be used in 
the. proof of Lemma 7. 

Lemma 8. Let b0, ...,bm£B0 and let p=p0\Jpx be a polynomial in b0, ...,bm. 
Assume that, for any x£A0 satisfying x^pi(b0, ..., bm) for i= 0 or i— 1, there 
exists an element such that Let, furthetmore, T be a binary 
tree and let xt, t£ T, be elements of P satisfying the condition xsupr€^0 as well as 
the conditions (2) and (3) of Section 4 with (pj)P, j=0,1, and P in the place of 
I j , and (X; A, V), respectively. Then there exists an element c€A0C\B0 such 
that xsupT.^c^p(b0, ...,bm). 

Proof of Lemma 8. We proceed by an induction. Set b=p(b0, ..., bm). 
If T={t) is a singleton, then, by (2), xt^Pi(b0, ..., bm), for i=0 or /=1. By one 
of our assumptions ..., bm) for a suitable cdAaf]B0, whence 
^p(b0, ..., bm)=b. Assume that Tconsists of more than one element and the state-
ment is valid for any proper binary subtree of T. Let u and v denote the different maxi-
mal elements of T— {sup T). Now xsupT^xu\/xv^b. If xuM xv(iAx (respectively, 
xu\Jx^Bx), then, by Lemma 5, there exists an element q£Q such that 
—*suPr (respectively, xsupT^q^b), proving the statement of the lemma. If xu\/xv£ 
£B0, then we may assume that there exists no y^AxUBx with x s u p T ^y^x u Vx v , 
else we could find an element qdQ with xtupTSq^xuV x„ similarly as above. Thus 
it follows that the interval [xrsupr, xuVxv] contains a prime interval [y0, of P with 
yo€A0,yx€E0. Then, using the notation of Section 2, y0=yxO. Let c=y1QVy-ir. 
Obviously, c€A0. Compute: 

c = y10Vy1r = ^OOVAOlVjxr = jjOOVj!/-. 

Now y^r^Q and ĵ OOG-So* hence c^BQ, which again proves the lemma. We may 
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assume that xuVxv£Aa. We may also assume that xu\Zxv^xu, xB. Thus, by the 
definition of P, either xu,xv£A0 or xu£B0, In the former case we can apply 
the induction hypothesis for the subtrees («], (v] Q T, whence there exist elements 
Cq^^AoOBo with x u ^ c 0 ^ b , x ^ c ^ b . Thus x u V x „ S c 0 V c ^ b and CoVc^ 
£A0DB0. In the latter case, using again the notations introduced in Section 2, 
xu=xu0Vxu\, xv=x„0Vx„l, and xu\Mx„\^Q. Now, replacing the element xu by xu0 
and x„ by x„0, we may apply the induction hypothesis for the subtrees (m] and («]. 
Hence we obtain that there exist elements c0, c^AqOBq, with xvQ^ 
^ c ^ b . Therefore 

xuVx0 = ( * „ 0 V * L L L ) V ( * . 0 V * . L ) ^ C 0 V C 1 V ( * 1 I L V * . L ) € I 4 O N 5 O , 

completing the proof of Lemma 8. 

P roof of Lemma 7. We again use an induction. Set b=p(b0, ...,bm). If p 
is a projection, that is b£B0, then we may assume that there exists no y^.A1UB1 

with x^y^b. In fact, for example the existence of such an y£At would imply the 
existence of a q£Q with xSq^y^b, proving the lemma. Thus the interval [x, b] 
contains a prime interval [j0> .Vi] with y0£A0, and we can proceed similarly 
as in the proof of Lemma 8. Consider the case p=p0Ap1. By the induction hypothe-
sis, there are elements c0, c^AQCiBQ with X^Ci^Pi(b0, ..., bm). Hence 
s p ( b 0 , ..., bm). Thus we may assume that -p—po^pi, and the polynomials pt have 
the property described in the lemma. By Proposition 2, we have x^(p0)pV(p1)p. By 
Proposition 3, there exists a binary tree T and elements x,£P, tZT, satisfying con-
ditions (1) to (3) of Section 4, with (Pj)p, 7 = 0 , 1, and P in the place of /,-, jdJ, 
and (X; A, V) respectively. Now an application of (1) and Lemma 8 completes the 
proof. 

P roof of T h e o r e m 2 . By the main theorem of G R A T Z E R ; H U H N [ 4 ] and by 
symmetry, it suffices to prove that, for any a€A0 and b€B0 with a^b in L, there 
is an element c£A0C\B0 with a S c and c^b. Let a=p'(a0, ..., an), b=p(b0, ... 
..., bm), a0,..., an£A0, b0, ..., bmeB0,p,p'£FP(P). We apply an induction following 
the description in Proposition 1. Assume a^b by (yW), that is p' =p'<^p'x and 
p\(aa, ..., an)Sp(b0, ..., bm), i = 0 , l . Then, by the induction hypothesis there are 
elements c0, cx£AaC\BQ, with ..., an)^Ci^p(b0, ..., bm). Hence 

p'(go, ..., an) = p'0(a0, ..., A N )V/>I( 'A 0 , • • , , a„) C I V D I P F T , . . . , b j , . 

as claimed. The proof is similar if a ^ b by ( hW), Wv), or (WA). Thus we may assu-
me that a ^ b follows from (Wc), that is, there is an element x £ P 'with a ^ x ^ b . 
If xdAt (respectively, x^Bj), then,.by Lemma 5, there exists an element q£Q with 
a^qSx (respectively, x^qSb), and we can choose c=q. If x£AQ, then, by Lem-
ma 7, [x, ¿ ]n(^ o r i5 o )? i0 . If x£B0, then-"the dual of Lemma 7 yields that [a;x]fl 
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n ( ^ 0 n # 0 ) ? i 0. (The dual of Lemma 7 could be proved similarly as Lemma 7 but 
the proof is much easier, for the operations on the dual ideals of P are the set opera-
tions.) This completes the proof. 

We conclude this paper by mentioning an open problem. There is an obvious 
similarity between our main theorem and M. E. ADAMS' theorem [1] that a generating 
set of a free product (without amalgamation) need not contain generating sets of the 
components. This gives rise to the following question. 

Problem. Need a free generating set of a free product always contain free gene-
rating sets of the components? 
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