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Amalgamated free product of lattices.
III. Free generating sets. -

G. GRATZER* and A. P. HUHN

1. Introduction

In G. GrATZER and A. P. HUHN [4] it was proved that for a finite lattice Q any two
Q-free products have a common refinement. This means that, whenever L, 4y, 4,,
Bo, B, are lattices such that L=A,%y4;=By%B;, then .

L = (Ao By) # (Ao By) #o(A1N By) * (4, N By) .
A; = (4;NBy) %o(4;NByY), i=0,1,
and )
B; = (AoNB)) %o(4:N By, j=0,1.
It is still an open question whether there is any lattice Q not having this property.
In this paper, we shall prove a related weaker statement.

By a free generating set of a lattice L we mean ‘any relative sublattice freely
generating L. The following question arises:

Is it true, that a free generating set of an amalgamated free product always con-
tains free generating sets of the components?

In case of an affirmative answer it would follow that, for arbitrary Q, any two
Q-free products have a common refinement, thus the above property is, indeed,
stronger than the Common Refinement Property. In fact, assume that L=Ay%p4,=
=ByxoB,. Then B,UB, is a free generating set of L. Hence A4,N(B,UB,;)=
=(4;NB)U(4;NB;) is a generating set of 4;. Thus, by Section 5 of [4], A4;,=
=(4;NBg)*o(4;NBy), i=0, 1, whence, by the Main Theorem of [4], it follows that
the two Q-free products have a common refinement.

We shall give a negative answer by proving the following theorem.

Theorem 1. There exist lattices L, Ay, A,, Q with L=Ay%yA;, and a free
generating set G of L such that [GNA;] is a proper part of A;,i=0, 1.
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In fact, in our example [GNA4;]=0, and Q is a proper part of 4;. The generat-
ing set G will be of the form B,UB,, where By, B, are relative sublattices of L, and
L=By*yB, with B;=[B;]. Therefore, it is natural to ask whether Theorem 1 can be
developed into a counterexample showing that the two Q-free products Ay%y4,
and By%oB, have no common refinement. Theorem 2 in Section 5 shows that this is
not the case.

2. The construction of Q, 4, and G

First we shall define a 'pa'rt-ial lattice P and relative sublattices 0, 4;, and B; of
P, which will serve as generating sets of Q, A4;, and B,, respectively. For a set X, let
S.(X) denote the free semigroup on X with unit element e. P is defined as a subset of

S.({0,1, 4, r}):
P= S.{0, 1HU{sllse S. ({0, 1H}U{srls€ S. ({0, 11}.

The elements of P will be referred to as words, the elements 0, 1, r, / will be
called letters. The last letter of a word s will be denoted by 5. |s| will denote the num-
ber of letters in s. e will be considered the empty word. We shall use the convention
that é=0. Now we start defining joins and meets in P.

(i) For any s€S.({0,1}), define s=s0Vsl=s1Vs0.

(ii) For any s€S,({0,1}), define '

SRR » s =srVsl = slVsr,

sl = s00V 510 = s10V 500,

sr = s01Vsl1l = s11Vs01.
o '(.i'i-i) For any s, p,, ;,€P with §=0, define
¢ 0 ' sr= s0.1p0Vs11p1 = s11p,VsO01p,,
and, for;any S, ﬁo,pleP with 5=1, define -

. A sl = 500p,V s10p, = s10p,V s00p,.
Now let - : :
' Q= {sr|5=0}U{s!|5 =1},
A;=QU{s|5=1i, |s| is even, x€{e, L, r}}, i=0,1,
B,=QU{s|s=1i, |s| is odd, x€{e, 1,7}, i=0,1.
(iv) For a, be P, define a=b if and only if either a=b or there exist a positive

integer n, and elements ay, a4y, ..., @y_1, Gns Co5 C15 -5 Cx1€P, such .tha“t a=a,,
a,=b and the relations” a\Vci=a;y,, i=0,1,...,n—=1 hold by (i), (i), or (iii).
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This relation is a partial ordering on P. If a=b, define avb=bVa=b and
apb=bpa=a. : . .

A part of P together with all non-trivial joins (there are only trivial meets) is
illustrated in the Figure. . : A

Finally, let L=F(P), the free lattice over P, let Q=[0], 4,=[4;], and B;=

=[B], i=0,1, in L, and let G=B,UB,."

. Fig. 1.

3. Pis a partial lattice

This statement is of primary importance in the proof of Theorem 1 (see the
proof of Lemma 6). In this section we shall give a proof. The following lemma will
be used to prove that P is a -weak partial lattice. ‘

Lemma 1. For any a,b,c€P, if a=c, b=c, andi.avb is defined, then
avb=c.

The proof of this lemma proceeds via checking all the possible cases (i), (ii),
(iii), and (iv) of how bVc is defined and establishing the assertion in these separate
_cases. We omit the details. : i

‘l.
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Lemma 2. P is a weak -partial lattice.

Proof. The following four statements and their duals are to be proved.
= - (a) for'any a€P, aVa is-defined and aVa=a;

(b) for any a, beP, if avb is defined, then - bva is defined and avb= bVa,

- (c) for-any a, beP; if avb, (aVb)Vc, ch are defined, then aV(bVc) is de-
fined and (aVb)Vc=aV(bVc);

(d) for an a, b€ P, if anb is defined, then aV(anb) is defined and aV(a/\b)=
=a.

Of these only (c) is non-trivial.-We consider the following five cases.

First case: aVb=b. Then ‘a=b=bVe, thus the right hand side in (c) exists
and equals bVc(= (aVb)Vc)

Second case: b<a\/b, c||b, and c|lavb. Observe that, under these conditions,
the joins bVc and (aVb)Vc can only be defined if, for suitable elements pq, p1, pe,
s€P, one of the following four subcases holds:

0 c-sO{lpo, b =sllp,, aVb =sllp,;
0, ¢=sllp,, b=3s01p,, aVbh = s0lp,;
1 .
1

tal Gl
T

it
il

,- ¢=3s00p,, b=510p;, -aVb =s10p,;
, ¢=s510p,, b= s00p1,' "aVb = s00p,.

et
It

In the first two subcases aV (bV ¢) exists and equals sr, which is also the value of
(aVb)Ve. The last two subcases are similar, only the common value of the two sides
is s.

Third case: b<aVb, b=c, and c|aVb. This case is impossible, for (aVh)Vc
is deﬁned and two incomparable elements whose join is defined cannot have a com-
mon lower bound (check the definitions (i), (ii), and (iii) ).

Fourth case: b<aV'b, b|c,c=aVb.- Applying Lemma I, we have that b=bV¢=
=aVb. If the join aVb was defined in (i) or (ii), then bVe=b; or bVc=aVb.
But bVe=>b contradicts bfc, thus bVc=aVb. Then aV(bVc¢) is defined and
avV(bVo=aV(@Vb)=aVb=(@Vb)Ve. If aVb was defined in (iv), then a=b,
thus a=aVb. Hence aV(bVc)=a=(aVh)Vc. Finally, if aVb was defined in (iii),
then we avgain have to consider four subcases as in the second case; we check only

one of these: -
a =s0tp,, b=sllp,, 5=0.

Then' aVb=sr, whence sllp,=bVc=sr. Thus either bVc=sr=aVbh, which
can be handled similarly as the cases (i) or (ii), or there is a factorization p;=p, p,
such that bVc=sllp, (g,=e is allowed, too). But then (iii) applies again, whence
aV(Vey=sr=aVb=(aVb)Ve.

Flfth case: b<aVb and c is comparable with both b and aVb. Then' the sub-
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cases c=b and aVb=c are trivial and b=c=aVb can be handled similarly as Athe
fourth case. »
These five cases exhaust all p0551b111t1es

To finish the proof of the statement formulated in the heading of this section, we:
have to prove the following lemma (and its dual, but the latter is obvious).

Lemma 3. If a, b, c€ P and (a]V(b]=(c] in the ideal lattice ofP,' then aVb=c¢
in P. ' - » b

Proof (by R. W. Quackenbush). Suppose that (a]V(b]=(c] and aVb is not
" defined. Let axb=s be the largest common initial segment of @ and b. Then
(@V@®IS(s], so c=s. Now a, b€ {sr,sl, sO0p,slg} for some p,q.

Case 1. a=sl. Then b=s0p or slq since slVsr=s..

I.1: b=s0p. Since s>sl, c=s.

Clalm (s0\V(sl]= (s0] U(si.

Proof Let d=5s0 and e=sl. Thus d=s0p; we assume that dVe is deﬁned
Thus esxsl; so e=s00g or s10g. If e=s00g then dVe=s0. Thus let e=s10g.
Then dVe=sl. This contradicts (a]V(b]=(s] since a=s0 and b=sl.

1.2: b=slq. Similar to 1.1 using (s1]V(sl]= (sl]U(sl].

Case 2: a=sr. . By symmetry with Case 1. '

Case 3: a=s0p, b=slg. By symmetry, this is the last case.

3.1: a=s0. Thus g=0. We compute (sO]V(slq] Let d=s0 and e<s1q
and let us assume that dVe is defined. '

3.11: g=1q’. The only possibilities are:

dVe = s01Vsll = sr, dVe = s01p Vsllg” = sr.

Thus either sré(s0]V(slg] and so (s0]V(slq]=(s0]V(sr]= (sO]U(sr] or (sO]V
V(s1g]=(s0]U(s1q].

3.12: q=0q’. Then similarly to 1.11, (sO0]V(slq]= (sO]U(slq] or (sO]U(sI]

3.2: b=sl. So p=0. By symmetry with 1.1.

3.3: a=s00p’, b=sllq’. If d=a and e=b, then d sOOp" e= sllq” and
dVe is not defined. Thus (a]V(®l=(@U®]. -

3.4: a=s01p’, b=s510q’. Similar to 3.3.

3.5: a=s00p’, b=s10g’. Let d=a and e=b. Since aVb is not deﬁned we
must have p’#0 or ¢'#0 _and we must have 5=0. But'then dVe is not defined,
since d=s00p”, e=s510g”". Hence (a]V (b]=(a]U(d].

36: a= sOlp b= sllq Slmllar to 3.5.

Now the above results, together with . Funayama’s characterlzatlon of partlal
lattices (see G. Gritzer [3]), gurantee that P is a partial lattice.
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-4. Proof of Theorem 1

We shall need a description of the free lattice generated by a partial lattice. The
description we use is due to R. A. DEaN [2] (see also H. LAksER [5]). Let (X; A, V)
(or briefly X) be a partial lattice, and let F(X) denote the free lattice generated by X
Denote by FP(X) the algebra of polynomial symbols in the two binary operation
symbols A and V generated by the set X. Then F(X) is the image of FP(X) under a
homomorphism g: FP(X)—~F(X) with xo=x for x¢X. For each p¢FP(X),
we define an ideal py and a dual ideal p* of X as follows.

. px = {x€X|x = pg in F(X)}, p* = {x€X|pe = x in F(X)}.

Now the description of F(X) is found in the following three propositions. Actu-
ally, we need here only Propositions 2 and 3; Proposition 1 will be used in Section 5.

Proposition 1. If p, g€ FP(X), then po=qo Iﬁ’ltfollows by applying the fol-
lowing five rules.

W) p*Ngx #0;
(W) p=pVp, Poe=go and pio=qo;
(W) p=ppi, - Po0 =4qe or pe=qo;
W) 9=4qVaq1, pe=4qoe or pe=que;
W) q=q\aq, pe=4qee and pe=qio.:
If pGP(A; ), then py and p* can be calculated as follows.
Proposition 2. For peX, py=(p] (in(X; A, V)) and p*=[p). For p=p,V p1,
Px = (_Po)xV (P> P* = (po)* A (p)*,
and, Jor p=peAp,
px = (P)xNp)xs P* = (p)*V(p)*
where the N and N\ on the right hand sides are to be formed in the Iattic,e of all ideals
(respectively, dual ideals) of (X; A\, V).

By a binary tree we mean a finite poset T with greatest element such that every
element of T is either minimal or has exactly two lower. covers. Now the join and
meet of a set of ideals of (X; A, V) can be formed as follows The operations on the
dual ideals are analogous.

Proposition 3. Let I;,j€J be ideals of (X; A, V). Then xEV(Ij]JEJ) iff
there is a binary tree T and there exist elements x,€X, t€ T such that

(1) X=XgupT3
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(2) if t is a minimal element in T, then x,€1; for some jeT; .
3) ifuand v are dzﬁerent lower covers of t, then x,Vx, is defined i in X5 A, V),
and x,=x,\N x,.
N(jljeT) is the mtersectlon of {I |jes }.

The proof of T heorem 1 will be completed by the followmg three lemmas.
Lemma 4. L is freely generated by A,UA, as well as by ByUB,.

Proof. It is enough to show that all the elements of P can be expressed by ele-
ments of 4,UA4,, and these expressions obey all the relations (i) to (iv) in F (4,U4y),
that is, (i) to (iv) can be derived from the relations valid in 4,U4,. (The statement
concerning ByUB, can be proved analogously.) In fact, let s€P, s&AOUAl Then
an expression of s by elements of 4,U A4, is.

@ s =s0Vsl if {0, 1},
) s.= $000V 001V s'100V 5101 if s = s'],
(6) s = s'010Vs'011Vs'110Vs'111 if s=s'r.

It is straightforward to check the relations (i) to (iv). Let us consider only one example:
s=s50Vsl, s€ 4,UA,. In fact, applying (i) within 4,UA; and (4) we have -

s = slVsr = (s00Vs10)V (s01V s11) = (sO0V s01)V (s10V s11) = sOV sl.
Lemma 5. L=Ay*pA;=By*yB,.

Proof. Let 4,UzA4,; be the weakest partial lattice defined on the set A4,UA4,
having A, and A4, as sublattices. The same proof as that of Lemma 4 yields that
L=F(A4,UgA4,), for every join defined in A,UA4, is defined either within 4, or
within 4;. Now QS 4, and Q< 4,, thus we can form the union A4, U4, subject to
the condition A,NA4,=Q. Let 4,Uy4, be the weakest partial lattice on AOUA1
extending the operations defined in 4, or 4,. Since 4,Uy4; contains a copy of
AOUQAI, there is a homomorphism ¢ of L=F (4,UgA4,) onto F (AOUQA ). Since L
contains copies of 4, and 4; with QS 4,, Q< 4,, there is a homomorphism ¥ of
F (AOVQAI) into L. @y is the identity on AyUp4,;, hence it'v_is the identity on L.
Thus ¢ is one-to-one. Summarlzmg . - -

L F(A()UQ 1) = F(AoUQ 1) = AO*QAI

This 1somorphlsm is the 1dent1ty on A0 and on 4, therefore Lis the Q-free product of
its sublattices 4, and A4,. Analogously, L=B,%,B;,- completmg the proof.-

By Lemma 4, L has the free generating set G=B,UB,, and, by Lemma 5, it has
the Q-free decomposition L=A,*,4,. Thus the following lemma proves Theorem 1.
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Lemma 6. GNA;SQ, that is, [GNA)) is a proper part of A;.

Proof. By symmetry it is enough to show that B,NA,S 0. Let us assume that
an element by€B, can be expressed by elements of A,, that is, b,=p(ay, ..., a,),
where p is a polynomial and a,, ..., a,€ 4y. Then, by Proposition 2,

[bo) = pd([ao), vy [a,,))

holds in the lattice of all dual ideals of P, where p’ is the polynomial dual to p. This
lattice is distributive and, by distributivity, p® can be rearranged in such a way that
all the joins precede all the meets in it:

() T [bo) = V(Adayljc J)lien
with J,£{0, 1, ..., n}, for all i€l, while, by the distributive inequality,
®) bo = AV(a,|je i€ D)

holds in L. Since [by) is a pr1n01pa1 dual ideal, from (7) we obtain that there exists
i in I such that
[b0) = A(la)lj€ ).
By Proposition 2, we have :
by = V(a;|j€ ).
This, together with (8) yields
by = V(a,ljeJ).
Again, by Proposition 2, we have

(bl = V((aj]IjE J).

. Now we show that this is impossible unless by€ Q. We carry out the proof for
be=e; for other choices of b, there is no essential difference in the proof.
We show that e¢ V (a;] if a; runs over all elements of A,. Consider a binary tree
T and a set X={x,|t€ T} with the properties (1) to (3), with I;=(a;]. There are only
two joins with the value e, namely e=0V1 and e=[Vr. Thus X contains 0 and 1 or
T'and r. Of these 1za; (respectively, / $aj) for all j, therefore, by (2), there is a
te T (¢ not minimal), such that 1=ux, (respectively, /=x,). Thus (3) can be-applied:
10 (and 11) or 1r (and 1/) (respectively, 10 (and 00)) are contained in X. (2) does not
apply for 10 and 1r, thus we can proceed by (3): 101€ X or 10/€ X. Now, by induction,
‘we obtain that 101...01€ X or 101...0/€ X, which contradicts the fact that X is finite.
This contradiction completes the proof.
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5. Some remarks

First of all, we prove the statement already announced in the introduction that
the example is no counterexample for the common refinement property. It is worth
mentioning that it is exactly the characterization theorem of the existence of common
refinements in [4] that will be used to prove this assertion.

Theorem 2. The two Q-free products L=Ay*yA,=By*,B, have a common
refinement. "

We need the following lemma.

Lemma 7. Let by, ..., b,€B, and let p be a polynomial inby, ..., b,. Then for
any x€A4, satisfying x=p(by, ..., b,) in F(P), there exists an element c€A,NB,
with x=c=p(b,, ..., by).

Before proceeding to the proof, we present another lemma, which will be used in
the proof of Lemma 7.

Lemma 8. Let b, <.es bu€By and let p=py\/ p, be a polynomial in by, ..., b,.
Assume that, for any x€A4, satisfying x=p,(by, ..., b,) for i=0 or i=1, there
exists an element c€ AyUB, such that x=c=p,. Let, furthetmore, T be a binary
tree and let x,, t€T, be elements of P satisfying the condition x,,r€ A, as well as
the conditions (2) and (3) of Section 4 with (p;)p, j=0,1, and P in the place of
1;, jeJ, and (X; N, V), respectively. Then there exists an element c€ AyN\B, such
 that Xy, =c=p(by, ..., b). '

Proof of Lemma 8. We proceed by an induction. Set b=p(b,, ..., b,)-
If T={t} is a singleton, then, by (2), x,=p;(be, ..., b,), for i=0 or i=1. By one
of our assumptions x,=c=p;(f, ..., b) for a suitable c€4,NB,, whence x,=c=
=p(bg, ..., by)=b. Assume that T consists of more than one element and the state-
ment is valid for any proper binary subtree of 7. Let # and v denote the different maxi-
mal elements of T—{sup T}. Now Xg,r=x,Vx,=b. If x,Vx,€A4, (respectively,
x,Vx,€B,), then, by Lemma 5, there exists an element ¢€Q such that x,Vx,=q=
=XgupT (respectively, Xupr=g=Db), proving the statement of the lemma. If x,Vx,€
€B,, then we may assume that there exists no y€A4,UB, with x,,,r=y=x,Vx,,
else we could find an element g€Q with x,,,r=g=x,Vx, similarly as above. Thus
it follows that the interval [x,, 1, X,V X,] contains a prime interval [y,, y;] of P with
Vo€ Ag, y1€ B,. Then, using the notation of Section 2, y,=y,0. Let c¢=y,0Vy,r.
Obviously, c€4,. Compute:

¢ = 1,0V yir = 3,00V 3,01V 3,7 = 300V 3y 7. |
Now yréQ and y,00€ By, hence c€B,, which again proves the lemma. We may
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assume that x,Vx,£A4,. We may also assume that x,Vx,#x,,x,. Thus, by the
definition of P, either x,, x,€4, or x,€B,, x,€B,. In the former case we can apply
the induction -hypothesis for the subtrees (1], (W] © 7T, whence there exist elements
Co, 1€ A,NB, with x,=cy=b, x,=c;=b. Thus x,Vx,=coVe;=b and ¢,V €
€A4,NB,. In the latter case, using again the notations introduced in Section 2,
x,=x,0Vx,1, x,=x,0Vx,1, and x,1V x,1€ 0. Now, replacing the element x, by x,0
and x, by x,0, we may apply the induction hypothesis for the subtrees (1] and (»].
Hence we obtain that there exist elements c,, ;€ 4o\ B,, With x,0=c,=b, x,0=
=¢,=b. Therefore

x,Vx, = (x,0Vx,DV(x,0Vx,1) = ¢Ve,V(x,1Vx,1)€EA4,N B,
completmg the proof of Lemma 8. '

Proof of Lemma 7. We again use an induction. Set b=p(b,, ..., b,). If p
is a projection, that is b€B,, then we may assume that there exists no y€4,UB,
with x=y=b. In fact, for example the existence of such an y€4, would imply the
existence of a g€Q with x=g=y=b, proving the lemma. Thus the interval [x, b]
contains a prime interval [y,, y;] with yo€ 4y, y,€ By, and we can proceed similarly
as in the proof of Lemma 8. Consid:r the case p=p,Ap,. By the induction hypothe-
sis, there are elements ¢g, ¢,€ 44N By with x=c;=<p;(by, ..., b,)- Hence x=cyAc,=
;p(bo, ..rs by). Thus we may assume that .p=p,Vp,, and the polynomials p; have
the property described in the lemma. By Proposition 2, we have x€(p,),V(p1),- By
Proposition 3, there exists a binary tree T and-elements x,EP t€ T, satisfying con-
ditions (1) to (3) of Section 4, with (p;),, j=0,1, and P in the place of I iy J&J,
and (X; A, V) respectively. Now an application of (1) and Lemma 8 completes the
proof. .

Proof of Theorem 2. By the main theorem ofGRATzER; HUHN [4] and by
symmetry, it suffices to prove that, for any a€4, and b€B, with a=b in L, there
is an element c€4,NB, with a=c and c=b. Let a=p’(ay, ...,a,), b=p(by, ...

,b)s o, ..., @€ Ay, by, ..., b€ By, p, p’€ FP(P). We apply an induction following
the description in Proposition 1. Assume a=b by (,W), that is r’=p;Vp; and
pi(aq, ---> a)=p(bo, <..sby), i=0,1. Then, by the induction hypothesis ‘there. are
elements ¢, ;€ A,N By, With p;(ay, .., a)=ci=p(by, ... 'b,,,). Hence '

P (@, - ',an)='pa(ao,.. , )V P (ay, .. ,a,.)_cOVcl_p(bo,...;’m), ‘

as claimed. The proof is 51m11ar 1f a=b by (\W), W), or (W,). Thus we may assu-
me that a=b follows from (W), that is, there is an element x€P ‘with a=x=b.
If x€ A, (respectively, x€B,), then,. by Lemma 5, there. exists an element g€ Q with
a=q=x (respectively, x=g=b), and we can choose c=g. If x€A4,, then, by Lem-
ma 7, [x, 5] (4,NBy) 0. If -x€B,, then-the dual of Lemma 7 yields that [a; x]N

~
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MN(A;N By)#0. (The dual of Lemma 7 could be proved similarly as Lemma 7 but
~ the proof is much easier, for the operations on the dual ideals of P are the set opera-
tions.) This completes the proof.

We conclude this paper by mentioning an open problem. There is an obvious
similarity between our main theorem and M. E. Apawms’ theorem [1] that a generating
set of a free product (without amalgamation) need not contain generatmg sets of the
components. This glves rise to the following question.

Problem. Need a free generating set of a free product always contain free gene-
rating sets of the components?
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