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On the a.e. convergence of multiple orthogonal series. II 
(Unrestricted convergence of the rectangular partial sums) 

F. MÓRICZ and K. TANDORI 

1. Preliminaries and notations 

Let Zd
+ be the set of all ¿-tuples k=(k1, ...,kd) with positive integral coordina-

tes. In case d= 1, Z\ is the set of the positive integers, which is well-ordered. For 
¿s2, Zd

+ is only partially ordered by agreeing that fór k=(k1, ..., kd) and n = 
=(fix, ..., nd) we write k ^ n iff k j ^ t i j for each / ( = 1 , 2, ..., d). Further, sometimes 
we write 1 for the ¿-tuple (1, ..., 1). 

Let cp = {(pk(x): k^Zd
+} be an orthonormal system (in abbreviation: ONS) 

on the unit interval /=(0,1) . Since we are interested in the questions of almost eve-
rywhere (in abbreviation: a.e.) convergence behaviour, in this paper we do not make 
any distinction among open, half-closed, and closed intervals. Consider the ¿-mul-
tiple orthogonal series , 

(1) 2 ak<Pk(.x) = 2 ••• 2 aki kaVk!, ...,ka to, 
k£ZÍ *,=1 «¡„=1 

where a={ak: k£Zd
+) is a ¿-multiple sequence of real numbers (coefficients), for 

which 

(2) 2 al < 
ktzi 

By the well-known Riesz—Fischer theorem, there exists a function f(x)(iL2(l) 
such that the rectangular partial sums 

n, "d -
*„(*)= 2 ak<Pk(x) = 2 ••• 2 akx k,<pkl ki(x) kmn l kd=l 
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of series (1) converge to f(x) in L2-metric: 
i 

/ M * ) - / ( x ) ] 2 dx-* 0 as ^ i n ^ rij -
o J 

It is a fundamental fact that condition (2) itself does not ensure the pointwise 
convergence of j„(x) to fix) (see [2] for d= 1 and [5] for ds 2). Our goal is to give 
a necessary and sufficient condition in order to ensure the a.e. convergence of the 
rectangular partial sums J„(X) of series (1) for every ONS (p on 7. The case d= 1 was 
elaborated by the second author in [6] and [7]. Some of the results for d ^ 2 were 
announced by the first author in [4]. 

In this paper we do not suppose any restriction on the ratios njrii, 
that is, we are concerned ourselves with the a.e. unrestricted convergence of the rec-
tangular partial sums sn(x) of series (1). 

Given a ¿-multiple sequence a = : k£Zd
+}, let us introduce the following 

quantity: 
i 1 11/2 

H I = S U P j J ( s up I Z ak(pk(x)\f dx) , 
9 lo m,nez£:msn mSfcSn " J 

where the first supremum is extended over all ONS (p on I. Here and in the sequel 

"i >>d Z ak(pkix)= Z ••• 2 akl,...,ka<pkl kd(x). mSkSn ki = mi kd = md 

Given an arbitrary subset Q of Z + , we consider another ¿-multiple sequence a ( 0 = 
= {akiQ): keZd

+} defined as follows 

\ak for k£Q, 
for k£Zi\Q. 

In particular, we write 

QN={k£Z"+: kj^N for each j ) iN= 1,2, ...). 

In this case we may write 

(3) ' ||a(Giv)|| = s u p { / ( max | £ ak<pkix)\f dx\v\ 

It is clear that ||a(Qw)|| = M for every N= 1 ,2, . . . . On the other hand, by Beppo 
Levi's theorem, it follows that 

(4) lim ||a(gw)[| = || a||. 

Denote by 
501 = {a:||a|| < o o . 
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It will turn out that 9Jt is the very class of those ¿-multiple sequences a = {ak: 
kdZd

+), for which series (1) converges a.e. for every ONS <p on I. 

R e m a r k 1. Let us observe that 

i i 
2 ak<Pk(x) — 2 ••• 2 l)3l + "'+5'iS<H(mi-l) + (l-ii)n1 dd(md-l) + (l~dd)nd(X) rnSkSn St = 0 id = 0 

with the agreement of taking sk (x)=0 if k~ 0 for at least one j. Thus, intro-
ducing another quantity: 

s u p { / (sup I 2 ak(pk(x)\y dxY12 

" 0 n<iZ*+ 1—Ä—" ' 

for every ¿-multiple sequence a we have 

INI* — llail — 2d||a|l*- ^ 
This means that the corresponding classes 9JI and 9Jt+ = {a : HaJ|+< coincide. 
However, the use of ||a|| is more convenient for our purposes. 

Remark 2. The definition of ||a|| and the theorems below remain valid if the 
interval I of orthogonality is replaced by any finite, nonatomic, positive measure space 
(X , SF, v), in particular X=Id. In addition, the treatment.can be extended, with some 
simple modifications, to the case when we consider ONS q> of complex-valued func-
tions and ¿-multiple sequences a of complex numbers. 

2. Auxiliary results 

We begin with 

Lemma 1. For every positive integer N we have 

(5) { 2 «*}1/2 ll«(g*)ll S .2 k l - . . . kiQr, k£QN 

Proof . It immediately follows from the following inequalities: 

I 2 akVk(x)\= max | 2 ak<Pk(x)\= 2 k%(*)I-

Theorem 1. The mapping | |- | | : a(£9Ji)—||a|| is a norm, and 931 is a Banach 
space with respect to the usual vector operations and the norm |[ • ||. 

Proof . Obviously ||a|| g=0. By (4) and (5), 

(50 { 2 ak}1/2 — INI ^ 2 k l -

kezi kaz* 

Hence it follows that | |a| |=0 if and only if ak=0 for each k£Zd
+. 



352 F. Móricz and K. Tandori 

It is also clear that ||aa|| = |a|||a|| for every real number a and sequence a. 
Now let two sequences a={ak: k£Z\} and b={bk: k£Zd

+) be given. Then 
for every positive integer N 

max | 2 (ak + bk)cpk(x)\^max\ 2 «*<?*(*)|+max| 2 hVÁ*)|. 
mSfcSn mSk^n mSlSn 

where all the three maxima are taken under the conditions m,n£QN and mSn . 
Applying the Bunjakovskii—Schwartz inequality and definition (3), we get that 

ll(a+f>)(Öiv)ll ^ ll«(ft»)ll + l|b(Ö*)ll-
Hence, via (4), 

H o + b i ^ M + I N -
Thus we have shown that 2R is a linear space. Now we prove the completeness 

with respect to the norm || • ||. To this effect, let a (p )={4P>: k£Zd
+) (/>=1, 2, ...) 

be an ordinary sequence of elements from 5DÍ satisfying the Cauchy convergence 
criterion: 

||a(p)_a(?)|| as 
By (5'), 

2 as p, q ^ 

So there exists an a={a k: k£Zd
+} such that 

ak
p> — ak as p °° for each fc£Z+. 

Let an £>0 be given. By assumption there exists a positive integer p0=Po(E) 
such that 

||a(p)_a(«)|| ^ e whenever p, q £ p0. 

Given a positive integer N, a fortiori 

I!G(P)(Őjv)—a(,)(őiv)ll — e Whenever p, q p0. 

By (5) and the triangle inequality, 

IIA(P) (ŐJV) - A (ŐJV)II — IIFL(P) (QN) — A'Q) (ŐJV)II + IIFT(4) (ÖJV) — A (QN)\\ ^ 

^ £+ 2 Hq,-ak\. 
Letting q tend to infinity, hence 

lla(p)(őjv)"-a(6jv)ll —£ whenever p ^ p 0 . 

This holds true for each N= 1, 2, .... Thus, by (4) 

||a(p)—a|| ^ e whenever p £ p0, 

in particular, a£9Jt. Being e > 0 arbitrary, 

. ||a(p)—o|| - 0 as p -
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Remark 3. By (5'), if then condition (2) is necessarily satisfied. 

Theorem 2. If a={ak: k£Zd
+} and b={bk: k£Zd

+} are such that 

(6) k l \bk\ for every kdZ\, 

then ||a||^||b||. 

This immediately yields 

Coro l l a ry 1. Let a and b be such that (6) is satisfied. If b£9J?, then a€®l; 
and consequently, if then 9Ji. 

Proof of Theorem 2. By (4), it is enough to prove that for every positive 
integer N 

(7) iia(ew)iisiib(e f f)ii. 

By (6), if bk=0 for every k£QN, then also ak=0 for every k£QN. Thus, (7) 
is trivially satisfied: 

l|a(2iv)ll = l|t»(gN)ll = 0-

Now assume that the set 

RN = {k£QN: bk 7^0} 

is non-empty. If k£QN\RN, then bk = 0 and ak = 0. For a given e>0, let us choose 
an ONS {(pk(x): k^QN} in such a way that 

(8) l|a(e*)ll2-e ^ / ( max | 2" ak(pk(x)\f dx. 

We define for k£RN 

<Pk(x) = 

and for k(iQN\RN 

for *6(0, 1/3), 

/ 3 (l-aibï*)U*<pk(3x-l) . for *€(l/3, 2/3), 

0 for xe(2/3, 1); 

10 for *€ (0,2/3), 
<Pk (x) = [y ^ q,k (3x - 2) for x<E (2/3,1). 

It is easy to check that {<pk (x): k£QN} is also an ONS on I. Further, (8) implies that 
1 1/3 

\MQNW [ (muxl 2 bkcpk(x)\ydx^3 f (max| 2 ak<pk{3x)\f dx = 
$ m^kSn „*' mSkSn 

1 / ( m a x I 2 ak(pk(x)\fdx^a(QNW-e, 
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where all the three maxima are taken under the conditions m,n£QN and m^n. 
Being e=-0 arbitrary, hence the wanted inequality (7) follows. 

In the sequel we shall need the following 

Lemma 2. Let &(QN)= {ak: ^QN} be given, where N is a positive integer. 
Then there exist an ONS \j/ = {^(x): kd QN} of step functions on I and a simple sub-
set E of I having the following properties: 

(9) mes E £ Q 

where Cl is a positive constant. 

A set E is said to be simple if it is the union of finitely many disjoint intervals and 
mes E stands for the sum of the lengths of these intervals (i.e. the Lebesgue measure of 
E). In the following, by C 2 ,C 3 , ... we shall denote positive constants, sometimes 
depending on d. 

Proof . If ||a(gjv)ll=0, then statements (9) and (10) are satisfied for E=(0, 1), 
C i = l , and arbitrary ONS t¡/ of step functions. 

From now on we assume that ||a(2jv)|| >0. Without loss of generality, we may 
also assume that ||«(2w)|| = l. By definition, there exists on ONS <p on 7, for which 

Let e > 0 be arbitrary, and let xk(x), k£QN, be step functions on 7 such that 

and 

(10) max 2 ak^k(x) £ I H f t v ) | | for every xdE, 

(11) 

I 

/ [<Pt (x) ~ Xk Ml2 dx £ (/c6&v). 
0 

We set 

0 
and 

1k= 2 Km I (/<> m£QN). 

It is not hard to see that if e > 0 is small enough, then we have 

( 1 2 ) 
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and 

(13) / ( max | 2 c J l -

We shall define an ONS {^(x): k£QN} of step functions on the interval (0, 2) 
in the following way. We divide the interval (1, 2) into Nd(Nd—1) subintervals lkm 

of equal length, where k,m£QN and k^m. Then, for k^QN, we set 

Xk(x) for *6(0,1), 
1/2 

ZkW = 
{ } for xak,m, 
12 mes 4, m J 

f I I I1'2 

signa t im for x6/m>fc, I 2mes4 > m j 
0 otherwise, 

where in the second and third lines m runs over QN except k. Taking into account that 
2 

/ fk(x)dx = ak:k + r]k, 
o • 

it is obvious that the step functions 

V<Xk,k+*1k 

constitute an ONS on the interval (0,2). Furthermore, by (12) and (13) 

(14) / ( max | 2 a k $ k ( x ) \ ) 2 d x ^ ± 
Now we set 

F(x) — max I 2 ak$k(x)\-m,n£Qy:mSn msks„ 

Since F(x) is a step function, we can divide the interval (0,2) into disjoint subintervals 
Ji,J2, •••, Je such that it is constant on each Jr; denote by wr this constant value 
(r—1, 2 , e ) . Then (14) can be rewritten into the following form: 

o 1 
S = 2 w2mes/ r sr —. 

r=l o 

Taking e sufficiently small, we may assume that S ^ 2 . We set 

1 ' 
"o = 0, Ur = — 2 w2 mes Js (r = 1,2,.. . , q), 

s = i 
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and, for k£QN, 

ri 
Mx) 

\2 ( 2 1 r \ 
TH— $k\-2—(x-ur)+— ^ m e s / J for xe(u„ ur+1), 

r = 0, 1, ..., Q— 1, provided vvr ^ 0; 
0 . otherwise. 

e-i 
It is easy to verify that these functions <j/k(x), k£QN, the simple set E= IJ (ur, w,+1) r = 0 

with 1/8 satisfy all requirements of Lemma 2. 

Theorem 3. Let a={ak: k£Zd
+} be given. If Q' and Q'%Zd

+ are such that 

Q'C\Q" = 0 and Q'\JQ" = Zd
+, 

then 
J|a(2')l|2 + I|a(2")ll2 — INI2-

Proof . Given an e>0, there exist two ONS {(p'k(x): k£Zd
+} and {<p'k (x): 

k£Z\] such that 
i 

/ ( s u p I 2 ak<p'k(x)\y-dx^\\a(Q'W-e, 
0 m,niZi:msn mSkSn:k(Q' 

(15) " 
/ ( s u p | 2 a ^ i x ^ f d x ^ M Q ' ^ W - e . 
0 m,n£Z*:msn mSkmmkeQ" 

We define for k£Q' 
„ n _ ( i 2 < p ' k ( 2 x ) for *€(0,1/2), 

for JC6C1/2,1); 
and for k£Q" 

[ 0 fo r JC€(0, 1/2), 
<Pk{x)~\y2(p^2x-l) for x£(l/2, 1). 

It is clear that {<pk(x): k£Zd
+} is an ONS on I. Furthermore, by (15) 

1 1/2 

||a||2 £ / ( s u p | ^ ak<pk(x)\fdx = 2f (sup| 2 akq>'i(2x)\Y dx + 
0 mSfcSn 0 mSkSn-.kiQ' 

+ 2 f (sup | 2' ak(Pk (2x- 1)|)2 dx = 
ife mSkSn:k£Q' 

1 1 
= / ( s u p | 2 ak<p'k(x)\ydx+[( sup | 2 q mSfcSnlkgQ' Q mSiSn:i£Q' 

— Ha(6')ll2 + lla(G")ll2 —2e, 
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where all the five suprema are taken over all m,n^Zd
+ such that m^n. Being 

£>0 arbitrary, the proof is complete. 

Coro l la ry 2. If then 

lim | | a (Z- \e w ) | | = 0. 
CO 

Proof . Given £>0, by (4) there exists a positive integer N0 such that 

l | a (e i v) l l 2 ^M 2 -e whenever N s N0. 

On the other hand, in virtue of Theorem 3 

l l « ( e N ) r + l | a ( Z i \ e K ) | M | | a r < ~ . 

Combining the two estimates above, we find that 

lloC^iXgjv)!!2 e whenever N ^ N0. 

Corol la ry 3. 501 is separable. 

Proof . On the one hand, by Corollary 2, 

l | a - a ( e w ) l l = H a ( Z i \ e w ) | | s e 

if N is large enough. On the other hand, we can choose b(QN)= {bk: k£QN} in such 
a way that all bk, k£QN, are rational numbers and by (5) 

l|a(e*)-&(&v)ll ^ 2\ak-bk\me. kHQ„ 

Since the class (J {b(QN): all bk are rational numbers for kdQN) is countable, 
N = 1 

the proof is complete. 

Theorem 4. If a£50t, then there exists a d-multiple sequence "/. = {/.k: k£Zd
+) 

of positive numbers such that 

(16) ?.k as max k, <=° and AagSR. lSj'Sd 3 

If a$501, then there exists a d-multiple sequence ji = {p.k\ k£Zd
+} of positive 

numbers such that 

(17) 0 as m&x^kj °° and ¿¿â SDl. 

Proof . If a£50t, then by Corollary 2 there exists a sequence (0= )N 0 < A^ <... 
...ciVp-c... of integers for which 

i K e ^ x & v . j u s p-* (P = 2,3,...). 
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We set 
Xk = p for k£QNp\QNp^ (p = 1, 2, ...). 

The first assertion in (16) is clearly satisfied. On the other hand, using the. triangle 
inequality and (4), 

Poll = Hm I I M e * J ^ Hm J P a i f i ^ X g ^ J U = 

= lim ¿ p f l a ( G * F \ f i f f , J I I S a ( e A l ) | | + 
«- P = i 

This is the second assertion in (16). 
If a$9Ji, then by (4), (5) and the triangle inequality there exists a sequence 

= of integers such that 

IMfi^Nfi^Jlls*2 (p = 1,2,.. .). 
Now we set 

pk = p~1 for k£QNp\QNp^ (p = 1,2,.. .). 

The fulfilment of the first assertion in (17) is obvious. Applying Theorem 2, we find 
that 

m £ i i M e ^ x a v j u ^ (p = i , 2,...), 

which implies /¿0^501. 

3. Two convergence notions for multiple series 

- Let us consider a ¿-multiple series 

(18) 2 «k = 2 - 2 utl fcd k£Z* kt=1 ka = l 

of real numbers, with the rectangular partial sums 
ni id 

sn — 2 u k = 2 ••• 2 ka (n£Zd
+). ksn *! = 1 kd=> 1 

More generally, given a rectangle R in Zd
+ with edges of finite length and parallel to 

the coordinate axis, i.e. R={k£Zd
+: m^k^n}, set 

s(K) = 2 «* = 2 "k = k£R mSkSn 
"i "d 

= 2 — 2 M*1 kd (m,n£Zi; m^ri). 
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It is clear that s(R)=s„ in the special case m= 1. On the other hand, it will be 
useful to notice that 

i i 
(19) s(R) = 2 ••• 2 (—lYl+"'+3dS5i(m1-l) + a-Si)nl,...,Sd(md-l) + a-id)ii<, 

with the agreement ski kd~® if k~0 for at least one j. 
We remind that series (18) is said to be convergent in Pringsheim's sense if there 

exists a finite number s with the following property: for every e>0 there exists a 
number N=N(e) so that . 

|s„ — s| < e whenever min n.-feiV. imjsd J 

The number s is said to be the sum of (18). It is well-known that a necessary and suf-
ficient condition that series (18) converge in Pringsheim's sense is that for every 
£>0 there exist a number M=M(e) so that 

|sm — s„| < £ whenever min m.-SAf and min n , ^ M ' lmjmi 1 lsjsd 1 

(the Cauchy convergence principle). 
It is also known from the literature that series (18) is said to be regularly conver-

gent if for every £>0 there exists a number N—N(e) so that for every rectangle 
R={k£Zd

+: m^k^n} 

ls(/?)| < £ whenever max m;>N and n s m, IMjSd 1 

i.e. m£Zd
+\QN and n^m. 

It is an exercise to show that convergence in Pringsheim's sense follows from 
regular convergence, but the converse statement is not true. 

The notion of regular convergence is due to HARDY [1]. Much later this kind of 
convergence was rediscovered by the first author and called in [3] convergence in a 
restricted sense. (As to a relatively complete history of the question, we refer to [4], 
where some of the results of the present paper were already stated.) 

4. The main results 

One of our main results is that the class 931 introduced in Section 1 contains 
exactly those ¿-multiple sequences a = {ak: k£Zd

+} of coefficients for which the 
orthogonal series (1) regularly converges a.e. for every ONS <p on I. 

Theorem 5. If a£9JZ, then series (1) regularly converges a.e. for every d-mul-
tiple ONS <p on I. 
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Proof . Let us fix an ONS <p on / and set 

Gw(*) = ( sup | 2 ak(Pk(x)\f (N = 1,2,.. .). 
m,n(.Z^\QK:mSn mSkSn 

It is plain that 
0 (N = 1, 2, ...). 

Since 
¡GN(x)dx ^ ||a(Zt\ew)||2, 
o 

Corollary 2 yields 
i 

lim fGN(x)dx = 0. 
0 

Hence, via Fatou's lemma, we obtain that 

lim Gn(X) = 0 a.e. 

and this is equivalent to the a.e. regular convergence of series (1). 

Theorem 6. If a<|9Jl, then there exists an ONS $={<Pk(x): k£Zd
+} of 

step functions on I such that series (1) for <p=<P does not converge regularly a.e. on I; 
even we have 
(20) lim sup | 2 ak&k(x)\ = °° a.e. as max^nj — 

Proof . By (4) and (5) there exists a sequence (0=)A^<A^<.. .<7VP<.. . of 
integers such that 

i iace^xe^jn^p (P = i , 2 , . . . ) . 

t For each p we consider the sequence a(QN \QN ) and apply Lemma 2. As a 
result we obtain an ONS {il/k(p; x): kf_QN } of step functions and a simple set Ep 

for each p = 1,2, . . . with the properties stated in Lemma 2. 
By induction we will define an ONS <P= {<Pk(x): k£Zd

+} of step functions and 
a sequence {Hp: p= 1,2,. . .} of stochastically independent, simple subsets of I 
having the following properties: 

(21) max | 2 ak€>k(x)\^2~dp for x£Hp m.niQNp\QNp-x'm-n mSkSn 
and 
(22) mes Hp £ Cj (p = 1, 2, ...) 

with the same constant as in Lemma 2. 
For p = 1 we set 

H1 = E1 and 0k(x) = <pk(l;x) (k£QNl). 

Then (21) and (22) are obviously satisfied (Qo=0). 
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Now let po be a positive integer and assume that the step functions <Pk (x) for 
k£QNp and the simple sets H1; H2, have been defined in such a way that 
these functions constitute an ONS on I, these sets are stochastically independent and 
relations (21) and (22) are satisfied for p=l,2, ...,p0. Then there exists a 
partition {J r : r=\,2, Q) of the interval I into disjoint subintervals such that 
each function $k(x), k£QN , assumes a constant value on e a c h r = l , 2 , . . . , q, Po . - . - • . 
and each set Hp, p = 1 ,2, ..., p0, is the union of a certain number of Jr. Let us divide 
each Jr into two subintervals J'r and J" of equal length. 

We shall use the following notations. Given a function f{x) defined on I, a sub-
set H and a subinterval J=(a, b) of I, we define 

f(J; x) = f ° r 

0 for x£I\J; 

and H{J) to be the set, into which H is carried over by the linear transformation 
y=(b—a)x+a. 

Now we define the functions $k(x) for k£QN^ +i\QNp
 a n d the set HPo+1 as 

follows: 

Mx) = ¿Wpo+1; x)-<pk(Po+i-, r;-x)] 
r=1 

and 

H p a + ! - U t ^ 0 + 1 ( / / ) u ^ 0 + 1 ( / ; ) ] . 
r=l 

Obviously, these 4>k(x), k€_QN \QN , are step functions and H + 1 is a Pq + 1 p0 PO 
simple set. It is a routine to verify that the functions <l>k(x), k£QN^ + i , form an 
ONS on I, the sets Hp, p=l,2, ...,p0+l, are stochastically independent, and rela-
tions (21) and (22) are satisfied for p=p0+l. (To deduce (21) from (10) one has to 
use a representation similar to (19).) 

The above induction scheme shows that the ONS <P = {<Pk(x): k£Zd
+] and the 

sequence {Hp: p t Z \ } of stochastically independent sets can be defined in such a 
way that conditions (21) and (22) hold true. 

We set 
H = lim sup .fiT . 

By (22), the second Borel—Cantelli lemma implies that m e s H = \ . If x£H, then 
x£Hp and consequently (21) holds true for an infinite number of p. In other words, 
this means that 

lim sup I 2 = 00 • a-e- a s m a x m, — 
msk&n ISjsd 

7 
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Hence it is clear that series (1) for q> = $ does not converge regularly a.e. Taking 
into account the representation of 2 ak$Ax) corresponding to (19), assertion 

instil 
(20) also follows. 

Theorems 5 and 6 immediately yield the following two corollaries. 

Coro l l a ry 4. A necessary and sufficient condition that a d-multiple sequence a 
of numbers be such that series (1) regularly converge a.e. for every ONS (p on I is that 

• Coro l l a ry 5. íf a d-multiple sequence a of numbers is such that series (1) 
regularly converges a.e. for every ONS <p on I, then for every ONS <p the rectangular 
partial sums sn(x) of series (1) are majorized by a square integrable function F(x) = 
= F(x; a, <p) on I, the square integral of which depends only on a, but not on (p. 

Indeed, the condition of Corollary 5 is equivalent to the fact that a€3Ji. In 
this case, setting 

F(x) = sup | 2 ak<pk(x)|, 
ffl,n£2j:mSB msksn 

we have 
i 

J Fz(x) dx ^ |]a||2 < 
o 

as stated in Corollary 5. 
Using a previous result of the second author, we are able to prove a stronger 

assertion than that is stated in Theorem 6-This makes possible to deduce our second 
main result; if the a.e. convergence of series (1) is considered for every ONS on 7, 
then regular convergence and convergence in Pringsheim's sense are equivalent, up 
to a set of measure zero. This will be a corollary of the following 

Theo rem 7. If a$'OT, then there exist an ONS $={<l>k(x): k£Zd
+} of step 

functions on I such that 

(23) limsup | 2 ^ t ^ W l = 00 a-e- ds ^min^ — 

Consequently, series (1) for q> = <P does hot converge a.e. even in Pringsheim's sense. 

Proof . It will be done by induction with respect to d. If d= 1, Theorem 7 is 
a result of the second author [7]. 

For the sake of simplicity, we present the induction step from d= 1 to d+1=2. 
In this case we write (k, /) instead of (kly k2). For given positive integers k0 and /0 

let us put 

Tí? = {(ko,0: 1 = 1, 2, ...} " and T<0
2> = {(/c, /„): k = 1, 2, ...} 
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and consider the norms | | A ( 7 , ^ ) ) | | and ||A(R,(
O

2))||, respectively. We distinguish two 
cases. 

Case (i). For all positive integers k0 and /„ we have respectively 

II a (r«>)|| < - and ||a(T«>)|| < 

Applying the above mentioned theorem of the second author, we obtain that for 
every positive integer k0 the single series 

CO 

2ako,i<Pt(x) 1=1 

(a so-called "column") converges a.e. on I for every ONS {<M*): / = 1,2,...}; 
and for every positive integer /0 the single series 

CO 
2 ak,ia (pkW k=l 

(a so-called "row") converges a.e. on I for every ONS {(pk(x): k=1,2,...}. Conse-
quently, for every double ONS (p = {(pkl(x)\ k, I = 1,2, ...} and for every positive 
integer N we have 

(24) 
m n 

limsup| 2 2 au(Pkiix)\ TO a e - a s max (m, n)-»oo and min (m,ri)^N. 
k=ll=l 

In virtue of Theorem 6, there exists a double ONS $ = {$kl(x): k, 1=1,2, ...} 
such that relation (20) holds true. Taking into account observation (24) we can 
strengthen (20) as follows: 

m it 
limsup | 2 2 aki^ki(x)\ = °° a-e. as min(m, n) — 

*=if=i 

This is statement (23) for d=2. 

Case (ii). There exists at least one positive integer k0 or /„, for which 

ll«(7lj>)ll = ~ or ||a(r/0
3')|| = CO. 

For definiteness, let us assume the fulfilment of the first relation. Again applying the 
theorem of the second author [7], we can find an ONS {*Pt(x): 1=1,2,...} of step 
functions on I such that the single series 

1=1 
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diverges a.e. on 7 in the sense that 

N 

i 

n 
l i m s u p | 2 a k a . / ^ 0 ) | = » a e. 

From here it follows that there exist a sequence (0=)Af0<iV1<.. .<iVp<.. . of 
integers and a sequence {Ep: p= 1,2,. . .} of simple subsets of 7 such that 

(25) max | J akoJW,(x)\^p for x£Ep 

and 

(26) ^ ... mes Ep £ l—2 _ p _ 1 (p = 1, 2, ....). 

We may assume that N ^ k ^ . 
We are going to construct a double ONS <P = {<Pkl(x): k, / = 1,2, ...} of step 

functions and another sequence {Hp: p=1,2,...} of simple subsets of / in such a 
way that 

(27). ' max " I J ; 2 akl$kl(x)\^p fov.x£Hp 

and 

(28)' mes Hp £ 1 - 2 - " (p = 1, 2, ...). 

We usé aigaïn an induction argument, this time with respect to p. If p = 1, we 
set for /=1 ,2 , . . . ,N1 

. f._.Y2V,(2x) for xm 1/2), 
for *€(1/2,1>; 

and define the other functions <Pki(x) for (k,l)£QN={(k,l): k, 1=1,2, ..., Nt}, 
k ^ k 0 , in such a way that they be zero on (0,1/2) and they form an ONS on (1/2, 1) 
consisting of step functions. Furthermore, set HX=EX. It is clear that (27) and (28) 
are satisfied for p= 1. . . . 

Now let p0 be a positive integer and suppose that the step functions <t>kl (x) for 
(k, l)£QN and the simple sets Hp for p = \, 2, ...,p0 have been defined in.such'a way 

Po 
that these functions form an ONS on 7, and relations. (27) and (28) are satisfied for 
p=l, 2, ...,p0. Then there exists a partition {/s: j = 1 , 2 , ..., tr} of the interval 7 
into disjoint subintervals such that each function $ki(x), (k, l)£QN , assumes a 

Po 
constant value on each Js, s=\, 2,..., a. 

Let us divide each Js into three subintervals J's, J" and J"' with the following 
lengths: 

(29) mes J's = mes J" = 2-1 (1-.2-p°"2) mes Js 
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and 
mes J"' = 2~Pa~2 mes Js (s = 1,2, ,.., &). 

Now we define the functions <£*oi,00 for l=NPo+l, NPo+2, ..., NPo+1 and the set 
vs: • • 

<./(*) = 2 x ) x ) ] _ : .' 

HP o + l as follows: 

and 

Hp a + 1 = u [£ P O + 1 ( / ; )ux o + 1 ( / ;o] -
• s 1 

Relation (27) follows from (25), while (28) follows from (26) and (29). It is clear that 
a 

each function <Pk ¡(x), Np + 1 , vanishes on U and H is also dis-0 0 , . S = 1 ? ' a 
joint from |J J"'. Finally, we define the other functions $ki(x) for QN ,\QN , 

s = l Po+1 Po a • " 

k ^ k 0 , in such a way that they vanish on |J (J'SUJ") and they form a n O N S on 
a 
U J'", consisting of step functions with zero mean on each interval J'", 

5 = 1 
s= 1, 2 , . . . , a. -

By construction, the step functions <Pki(x), (k, /)€ QN , form and ONS on /, 
the sets Hx, H2, ..., / /P o + 1 are simple, and relations (27) and (28) are satisfied for 
p = l ,2 , . . . ,p0+1. This completes the proof of the induction step. 

We set 
..-.•.-. ...... H = lim sup H . 

By (28), the first Borel—Cantelli lemma implies that 

mes [lim inf ( 7 \ / f p ) l = 0, or equivalently, mes H = 1. 

If x£ H, then (27) holds true for an infinite number of p, consequently, 

N . N 

lim sup max | 2 2 akl<I>kl(x)\ = a.e. 

Taking into account that . N N 2 2 akl0kl(x) = 

= 2 2 - 2 2 - 2 2 + 2 2 U i *«(*)," 

i*=n=i *=i /=1 s=i /=i t=i 1=1 J 

assertion (23) for i /=2 immediately follows. 
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The proof of Theorem 7 is complete. 
We emphasize the significance of the following two consequences of Theorems 

5,6 and 7. 

Co ro l l a ry 6. If a d-multiple sequence a of numbers is such that for every ONS <p 
series (1) converges in Pringsheim's sense on a set of positive measure,perhaps depending 
on q>, then series (1) for every ONS cp regularly converges a.e. 

Coro l l a ry 7. If a d-multiple sequence a of numbers is such that for an ONS q> 
series (1) does not converge regularly on a set of positive measure, then there exists 
another ONS $ such that series (1) for (p=<P does not converge in Pringsheim's 
sense a.e. 

We note that for an individual ONS the notions of a.e. regular convergence and 
a.e. convergence in Pringsheim's sense can essentially differ from each other. In 
[4, pp. 214—215] a double sequence {aH: k,l= 1,2, ...} of real numbers and on 
72=[0; l]2 a double ONS {(pki(x): k, / = 1,2,. . .} are constructed in such a way that 

A = 1 1=1 
the double orthogonal series 

. . . oo oo 

2 2 aki<Pu{x) 

converges in Pringsheim's sense a.e on 72, but does not converge regularly on a set 
of measure at least 1/2. It is not hard to modify this example so as the resulting ortho-
gonal series converges in Pringsheim's sense a.e. and does not converge regularly a.e. 

5. Estimation of the norm ||a|| 

Using the ¿-multiple generalization of the famous Rademacher—Mensov 
inequality, it is not hard to give an upper bound for ||a|| (see [3, Corollary 2]). 

Theorem 8. For every d-multiple sequence a we have 

(30) ||a|| S C 2 { 2 4 / 7 ( l o g 2 k j ) ^ ! \ 

where C2=C2(d). 

Here and in the sequel the logarithms are to the base 2. 
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A nontrivial lower bound for ||a[| is not known in general. In the special case 
when a is such that {|a*|: k£Zd

+} is nonincreasing in the sense that 

(31) |a t | s |a„| whenever k, n£Z% 1 and k s n, 

an opposite inequality to (30) holds also true. 

Theorem 9. If a d-multiple sequence a is such that (31) is satisfied, then we have 

(32) || a|| 2 at /7 (log 2fc,)2}^, 
kiZi /=i 

where C3=C3(d). 

The proof of Theorem 9 is based on the following basic result of MENSOV [2] : 

Lemma 3. For every positive integer N there exist an ONS {¡¡/(
k
N\x): k= 

= 1, 2, ..., N} of step functions on the interval I and a simple subset £(W) of I such 
that 

(33) m e s £ C " £ C 4 

and for every x£EiN> there exists an integer n=n(x) between 1 and N such that 
\l/[N\x)^0 for k=l,2, ...,n and . -

(34) 2 № to S Q / ? log IN. 

A trivial consequence of (33) arid (34) is that 

(35) f \ m M j 2 W K x ) \ ) 2 d x ^ C 6 N ( l o g 2 N ) \ 

. This inequality will be enough for our purpose. 

P roof of Theorem 9. For the sake of simplicity in notations, we present the 
proof again for the case d=2. 

Denote by T a measure-preserving transformation of the square I2 onto the 
interval I: T(y1,y2)=x, where _v2)€/2 and x£I. Given two positive integers 
Nx and Nz, we define for k=1,2, /=1 ,2 , ...,N2 , 

Then (35) yields 

it m n 
[(max max I 2 2 (P{u1,N2)(x)\)2 dx ^ 

(36) 
s CiN,Nz (log 2Nj)2 (log 2NJ2. I. . . 
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After these preliminaries, let us consider the partition of Z\ into the following 
"dyadic" rectangles: -

Qmn = { ( k , l ) i Z $ : 2 m - ^ k < 2 m and 2"-1 I < 2"}, 

where (m, ri) runs over Z\. According to this partition we modify the original sé-
quence. a into another a* so as it should be constant on each Qm„: a* = 
= {a*:>,/)€Z2

+}, where 

ati = a2-»,2» for (/c, /)€£?m„, (m, n)€Z£. 

Due to Theorem 2, inequality (36), and the monotony of \akt\, for every 
(m, ri)£Z\ . . .. 

. - 2m + 1 —12" + 1 — 1 
^ 3 - 4 C | 2 2 a?,(log2fe)2(log2/)2. 

k = 2m 1 = 2 " 

Applying Theorem 3, we obtain that 

(37) ||a||2 £ 2 2 lla(ômn)ll2 ^ 3-4C6
2 2 2 "(log 2/c)2 (log 2/)2. 

m=ln=l k = 21=2 

Now we examine the cases m= 1 or (and) «=1 once more. A more accurate 
calculation gives 

IMfiJII ^ H*(QM)\\ ^ C 6 2 " - ^ 2 < 2 „ £ 3 - 2 C 6
2 2 _ 1 «f , ( log20 2 , 
1 = 2 " 

whence we get that " " % 

(38) II a||2 £ 2 l№i«)ll2 ^ 3~2C6 J a2, (log2/)2.. 
n=1 1=2 

Analogously, 

(39) IMI2 — 3 - 2C t ) 2 aki (log 2/c)2. 
k = 2 

Finally, it is obvious that 

(40)' ||a||2 S a2,. • 

Now the statement of Theorem 9 immediately follows from relations (37}—(40). 
Remark 4. If one treats each "finite" sequence a(QN), N=l, 2,. . . , separately 

instead of the whole sequence a and makes use of the fact that all ^{^(x) are step 
functions, one can prove Theorem 9 without taking a measure-preserving transfor-
mation T of the unit sequare 72 onto 7. 
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