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On the a.e. convergence of multiple orthogonal series. IT
(Unrestricted convergence of the rectangular partial sums)

F. MORICZ and K. TANDORI

1. Preliminaries and notations

Let Z% be the set of all d-tuples k=(k;, ..., k;) with positive integral coordina-
tes. In case d=1, ZY is the set of the positive integers, which is well-ordered. For
d=2, Z% is only partially ordered by agreeing that for k=(k,, ..., k;) and n=
=(my, ..., ny) wewrite k=n iff k;=n; foreach j(=1,2, ..., d). Further, sometimes
we write 1 for the d-tuple (1, ..., 1).. ‘

Let o={p,(x): k€Z1} be an orthonormal system (in abbreviation: ONS)
on the unit interval I=(0, 1). Since we are interested in the questions of almost eve-
rywhere (in abbreviation: a.e.) convergence behaviour, in this paper we do not make
any distinction among open, half-closed, and closed intervals. Consider the d-mul-
tiple orthogonal series ‘ ' .

0y Z a0 (x) = 2 2 akl,..,kd(pk;,...,kd(x)’

kez? k=1

where a={a,: k€Z%} is a d—multlple sequence of real numbers (coefficients), for
which e
® S ai<e

kez?

By the well-known Rlesz—Flscher theorem, there exists a funcnon f (x)EL2(1)
such that the rectangular partial sums .

. "1\‘ ny . o » B .
$;(x) = Dayp(x)= 2 ... 2 Uiy, coorka Py kg (%)
K=n k=1  ky=1
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of series (1) converge to f(x) in L2-metric:
1
f [:(x)—f(x)]2dx -0 as min n; ~ .
° 1=j=d .

It is a fundamental fact that condition (2) itself does not ensure the pointwise
convergence of s,(x) to f(x) (see [2] for d=1 and [5] for d=2). Our goal is to give
a necessary and sufficient condition in order to ensure the a.e. convergence of the
rectangular partial sums s, (x) of series (1) for every ONS ¢ on I. The case d=1 was
elaborated by the second author in [6] and [7). Some of the results for d=2 were
announced by the first author in [4].

In this paper we do not suppose any restriction on the ratios m;/n;, 1=i,j=d,
that is, we are concerned ourselves with the a.e. unrestricted convergence of the rec-
tangular partial sums s,(x) of series (1). '

Given a d-multiple sequence a={g,: k€Z +} let us introduce the following
quantity: - '

1 A1/2
lal} = sgp{ J( swp | P akcok(x)l)zgl_bc} ,

mneZd:m=n m=k=n

where the first supremum is extended over all ONS ¢ on I. Here and in the sequel

ny ng

2 aey()= 2 .. 2 ak;',...,kd(pkl,...,kd(x)"r

= . = =
m=k=n 1=my kg=mgq

Given an arbitrary subset Q of Z%, , we consider another d-multiple sequence a(Q)=
={a(Q): k€Z%} defined as follows

- _ fa, for k€@,
“"(Q)‘{o for keZiINQ.

In particular, we write _
 Qx={keZ: k,;=N for each j} (N=1,2,...).

In this case we may write

@ (@l =sup{ j ( | 2 a0l da ™.

EQN m=n

It is clear that [|a(Qy)l=]la] for every N=1,2,.... On the other hand, by Beppo
Levi’s theorem, it follows that-- '
@ Jlim Ila(QN)II = [af.

Denote by
M = {a:fa] < o.
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It will turn out that M is the very class of those d-rultiple sequences a={g;:
keZ%}, for which series (1) converges a.e. for every ONS ¢ on 1. .

Remark 1. Let us observe that
2 ar(x) = Z 2' (= 1%+ +""Sal(m1~1)+(1 —n3s oo Salma—1)+ (- 8Ing (X))
m=k=n 4,=0 6d—

with the agreement of taking s,
ducing another quantity:-

uau*—sup{f(supl

......

kL (0)=0 if kj=0 for at least one j. Thus, intro-

AP (x)|)2 dx}llz

k=n

for every d-multiple sequence a we have
lallx = llall = 2%[la]l4-

ThlS means that the corresponding classes M and M —{a |[a]]*<oo} comc1de
However, the use of ||a]] is more convenient for our purposes.

Remark 2. The definition of |a| and the theorems below remain valid if the
interval I of orthogonality is replaced by any finite, nonatomic, positive measure space
(X, #, v), in particular X=1% In addition, the treatment.can be extended, with some
simple modifications, to the case when we consider ONS ¢ of complex—valued func-
tions and d-multiple sequences a of complex numbers. ~

2. Auxiliary results -
We begin with
Lemma 1. For every positive integer N we have

® { 2 afr=la@il = 2 lal .
kEQy kEQ

N

Proof. It immediately follows from the following inequalities: ~

| 2 a, o (x)| = max | 2 ak(pk(x)| = |ak§0k(x)l

mn€Qyim=n

Theorem 1. The mappzng l| II: a(E‘.Ul)—»lla” is a norm, and ‘.IR is a Banach
space with respect to the usual vector operations and the norm IF-1-

Proof. Obviously ja=0. By (4) and (5),
(59 {2 afr=la = 5 lal
kez? s kez?

Hence it follows that | a]| =0 if and only if ¢,=0 for each keZi.
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It is. also clear that |aafj=|x||a]l for every real number « and sequence a.
Now let two sequences a={a,: k€Z%} and b={b,: k€Z%} be given. Then
for every positive integer N
max| 2 (ak+bk) ‘Pk(x)l = max| 2 ak‘l’k(")l"‘maxl Z bk‘Pk(x)|

m=k=

where all the three maxima are taken under the conditions m,n€Qy and m=n.
Applying the Bunjakovskii—Schwartz inequality and definition (3), we get that

I(a+B)Y@MI = lla(@WIl +1B(@wl-

la+bl = |laf +[1b].

Thus we have shown that M is a linear space..Now we prove the completeness
with respect to the norm |- ||. To this effect, let a®={al®: k€Z%} (p=1,2,..)
be an ordinary sequence of elements from M satisfying the Cauchy convergence
criterion:

Hence, via (4),

_ la®—a®@|| -0 as p, g+ e
By (5), |
> (afP—af®? ~0 as p,q—c.
kezd
So thcre exists an a={a,: k€Z%} such that
al® ~a, as p-o for each keZ4.

Let an ¢>0 be given. By assumption there exists a positive integer po=po(e)
such that
' [al? —a@| = ¢ whenever p, g = p,.

Given a posmve integer N, a fortiori

la®(Qx)—a? (@] =& Whenever P> 4 = po.
By (5) and the triangle inequality,

16®(Q) ~a(@W] = [ ()~ @] +]a® (@) —a(@)] =

=¢+ D |a@—al
kEQy
Letting q tend to infinity, hence

[a®(Qn)—a(@W)] =¢ whenever PEpo.
This holds true for each N=1,2,.... Thus, by (4)
|a® —a| =& whenever p = p,,
in particular, a€M. Being &>0 - arbitrary,

'|1a("),—a|| -0 as p— e
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Remark 3. By (5), if a€dN, then condition (2) is necessarily satisfied.
Th.eorem 2. If a={a: k€Z%} and b={b,: k€Z’} are such that
©) lai] = |be| for every keZ4%,
then [la] =]bl}.
This immediately yields

Corollary 1. Let a and b be such that (6) is satisfied. If beIM, then acI;
and consequently, if a¢MM, then b¢IN. ‘

Proof of Theorem 2. By (4), it is enough to prove that for every positive
integer N

@) lla(@wIl = [15(@WIl.
. By (6), if b,=0 for every k€Qy, then also q,=0 for evéry k€Qy. Thus, (7)
is trivially satisfied: ,
la(@ml = Ib(@WI = 0.
Now assume that the set
‘Ry = {k€Qy: b, 0}

is non-empty. If k€ Oy\ Ry, then b,=0 and @,=0. Fora given ¢=>0, let us choose
an ONS {¢,(x): k€Qy} in such a way that

1 .
®) la@wlit—e= [( max | > a¢ ) dx.
¢ m,n N'MER k=g
We define for k€Ry

V3 a, b, (3x) for x€(0, 1/3),
P(x) =1 V3 (1—albi D2, (3x—1) . for x€(1/3,2/3),
0 for x€(2/3,1);
and for k€ QOy\Ry
' 0 for x€(0, 2/3),
i) = { V30.G3x~2)  for x€(2/3,1).
It is easy to check that {@,(x): k€Qy} is also an ONS on I. Further, (8) implies that

‘1/3

Ib(@WI? = [ (max| 2 ba)dx =3 [ (max| 2 apGr)Pdx =

= [ (max] 3 ap @) de=a@l*-s
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where all the three.maxima are taken under the conditions m,n€Qy and m=n.
Being &>0 arbitrary, hence the wanted inequality (7) follows.
In the sequel we shall need the following

Lemma 2. Let a(Qy)={a;: k€Qy} be given, where N is a positive integer.
“Then there exist an ONS Yy ={y(x): k€ Qn} of step functions on I and a simple sub-
set E of I having the following properties:

&) ' mes E = C,
and
(10 max | 3 a(x) = a(Qy)l for every x€E,

ma€QnimSn sy
where C, is a positive constant.

A set E is said to be simple if it is the union of finitely many disjoint intervals and
mes E stands for the sum of the lengths of these intervals (i.. the Lebesgue measure of
E). In the following, by C,, C,, ... we shall denote positive constants, sometimes
depending on d.

Proof. If [|[a(Qy)|=0, then statements (9) and (10) are satisfied for E=(0, 1),
C,=1, and arbitrary ONS ¥ of step functions.

From now on we assume that [a(Qy)]|>0. Without loss of generality, we may
also assume that [|a(Qy)|[=1. By definition, there exists on ONS ¢ on I, for which

1
1
(11 6[ (m,ng?z,av):(mén lmé%,gn a, ()2 dx = 5

Let ¢>0 be arbitrary, and let y,(x), k€Qu, be step functions on I such that

[l —nPdx =& (keQy).
We set

Gm = [ 2t (%) dx

and

N = 2 iak,ml (k, mEQz;r)-

mEQy:m#Ek

It is not hérd to see that if ¢>0 is small enough, then we have

(12 f( max kS aka(x)I)deE—i--

m,n€Qy: mSn



) On the a.e. convergence of multiple orthogonal series. 11 355

and _
13) f( max (1— Vs ]xk(x)|)2dx é

mn€Quyim=n. msksn

We shall define an ONS {%,(x): k€Qy} of step functions on the interval (0, 2)
in the following way. We divide the interval (1, 2) into N¢(N%—1) subintervals I,
of equal length, where k, méQy and k=m. Then, for k€Qy, we set

2 (X) for x€(0, 1),
|ak mI e ‘
{Zme’s A ,,,} for  x€lm:
zk(x) ={ _|a ,'I N2
—{T:S'"K;} Sign o, m for x€1, .,
0 o . otherwise,

where in the second and third lines m runs over Qy except k. Taking into account that
) _
[ B dx =yt
0 ) (. K

it is obvious that the step functions . _

Fe) = V—X& (keQy)

Oy, & 1k
constitute an ONS on the interval (0, 2). Furthermore, by (12) and (13)

(14) f ( max_ 5%;,. a ¥, (x)|)2 dx é—é—.

m,nEQy
Now we set . .
F(x) = en;l)a)ﬁ - | 2 aklpk(x)L

MBEUN M2 py<k=n
Since F(x) is a step function, we can divide the interval (0‘, 2) into disjoint subintervals
Jy, J2s s g such that it is constant on each J,; denote by w, this constant value
(r=1,2, ..., 0). Then (14) can be rewritten into the following form:
1

o .
= D wlmesJ, ==,
r=1 :8

Taking ¢ sufficiently small, we may assume that S=2. We set

u, =0, u, :—;— 2wimesJ, (r=1,2,..,0),
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and, for k€Qy,

WV:l Wk[ - (x— u)+ Zmes J) “for x€(u,, u,,y),

— r r+

Ui (x) = r=0,1,...,0—1, provided w,#0;
0 - otherwise. .

e—-1
It is easy to verify that these functions ,(x), k€ Qn, thesimpleset E= ) (u,, #,4,)
: r=0

with C,=1/8 satisfy all requirements of Lemma 2.
Theorem 3. Let a= {a: k€Z} be given. IfQ and Q"SZ% are such that
QﬂQi/zg and QlUQ”=Z.d(,,

then

Na@2+1a(@90* = llal

Proof. Given an &=0, there exist two ONS {(pk(x) kEZ"} and {0} (x):
k€Z%} such that

1

J( sup | 3 i) dx = le@)I -

mn€Z%:m=n m=ksn:
(15 v
f G, ! ZRE a"(P" (x)|)2 dx = ||a(Q")] —e.

0 mn€Z%:m=n m=k=n:

We define for k€Q’

_ [V201(2%) for x€(0,1/2),
Pe(x) = {() for x€(1/2,1);
and for keQ”
for x€(0, 1/2),
() = { V207 (2x—1) for x€(1/2,1).

It is clear that {@,(x): k€Z%} is an ONS on I. Furthermore, by (15)

1/2

laj? = f (sup| 2 apfdr=2 J Gl > ol @ol)fdx+

+2 f (sup| Z;Eé'ak(p;:(zx—l)pwx:

1/2 =k=n

1 . 1 ‘
= f (sup| 3 aoi(®)))? dx+/(sup| ) stg a, pp (X)|)2dx =
0 : 0 m=sk=n: ’

m=k=n:kcQ

= (@24 (2N~
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where all the five suprema are taken over all m,n€Z% such that m=n. Being
e>0 arbitrary, the proof is complete.

Corollary 2. If acM, then
Jim [[a(Z4\QWI = 0.

Proof. Given ¢>0, by (4) there exists a positive intéger Nj such that

.

[a(@W|? = [lal|*—¢& whenever N = N,.
On the other hand, in virtue of Theorem 3
la(@wl+1a(ZEN\2WI* = o] < .
Combining the two estimates abbve, we find that
la(Z4N@wl2 =¢ whenever N = N,.
Corollary 3. M is separable.
" ‘Proof. On the one hand, by Corollary 2,

la—a(@wl=la(ZiNOWI = ¢ .

if N is large enough. On the other hand, we can choose 6(Qy)={b,: k€ Qy} in such
a way that all b,, k€Qy, are rational numbers and by (5)

la(@m)—b(QWIl = ke%‘ la,—b,] =e.

S.ince the class D {b(Qy): all b, are rational numbers for k€Qy} is countable,
N=1
the proof is complete.

Theorem 4. If acM, then there exists a d-multiple sequence A= {l: k€Z5%}
of positive numbers such that

(16) Ay~ as max k; - and la€M.

1=j=d

If a¢IM, then there exists a H-Imultiple sequence p={u:k€Z%} of positive
numbers such that

a7n m—~0 as max k; -~ o and padgI.
1=sj=d

Proof. If acI, then by Corollary 2 there exists a sequence (0=)Ny<N,<...
...<N,=... of integers for which

1a(Qn, N\, DI = 770 (0 =2,3,..).
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We set
A=p for k€Qy\Qy,., (p=12..).

The first assertion in (16) is clearly satisfied. On the other hand, using the.triangle
inequality and (4), |

. q
I2all = lim [2a(On I = Jim 21 12 (Qn,\Qn, N =
p= ]

- lll}’n;l pgq;p”a(QNP\QNp—l)" = a(QNl)” + gp—z < oo,

This is the second assertion in (16).
If agM, then by (4), (5) and the triangle inequality there exists a sequence
(0=)Ny<N,<...<N,=... of integers such that

1a(@n,\On, N =p* (p=1,2,..).

me=p~t for k€QyNQy,., ®=12..).

The fulfilment of the first assertion in (17) is obvious. Applying Theorem 2, we find
that

Now we set

o el = a(@x NOy, I =P (p=1,2,..),

which implies pa ¢ i,

3. Two convergence notions for multiple series

- Let us consider a d-multiple series

(18) 2 =2 . 2 U ks
i Ki=1  kp=1

kez?

or real numbers, with the rectangular partial sums

ny na

Sp = Z'ukz 2

k=n k=1 ky=

1 ukl,...,kd (nezs-)'
More generally, given a rectangle R in Z° with edges of finite length and parallel to
the coordinate axis, i.e. R={k€Z%: m=k=n}, set

S(R)=k§(uk= > W=

m=k=n

ng
= 2 . 2 Wy, ..k (mneZi; m=n).
ky=m, kg=m, - .
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It is clear that s(R)=s, in the spec1a1 case m=1. On the other hand, it will be
useful to notice that

1 1 N
(19) SRy = 2 ... 2 (—D%FHoasy 0 1ys s, ..., sa(ma=1)+ (1= Sa)ng
5,=0  3,=0 .
with the agreement s, |, =0 if k;=0 for at least one j.
We remind that series (18) is said to be convergent in Pringsheim’s sense if there
exists a finite number s with the following property: for every &=0 there exists a
number N=N(g) so that :

|s,—s| <& whenever min n; = N.
1=j=d

The number s is said to be the sum of (18). It is well-known that a necessary and suf-
ficient condition that series (18) converge in Pringsheim’s sense is that for every
¢=>0 there exist a number M=M(e) so that:
|$.a—Sa] = & whenever mmd m; = M and mm n=M

(the Cauchy convergence principle). _

It is also known from the literature that series (18) is said to be regularly conver-
gent if for every ¢>0 there exists a number N=N(e) so that for every rectangle
R=1{k€Z% : m=k=n}

|s(R)| <& whenever Jmax mj; > N and ‘n=z=m,
=j=

ie. mez¢ “\QOy and n=m.

It is an exercise to show that convergence in Prmgshelm s sense follows from
regular convergence, but the converse statement is not true.

The notion of regular convergence is due to HARDY [1]. Much later this kind of
convergence was rediscovered by the first author and called in [3] convergence in a
restricted sense. (As to a relatively complete history of the question, we refer to [4],
where some of the results of the present paper were already stated.) '

4. The main results

One of our main results is that the class 9 introduced in Section 1 contains'
exactly those d-multiple sequences a={a,: k€Z%} of coefficients for which the
orthogonal series (1) regularly converges a.e. for every ONS ¢ on I.

Theorem 5. If ac€IM, then series (1) regularly converges a.e. for every d-mul-
tiple ONS ¢ on I
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Proof. Let us fix an ONS ¢ on [ and set
GN(x) = ( sup I Z ay Py (x)|)2 (N = 15 2’ "')'

mncZ3\Qy:m=n m=ksn
It is plain that

Gy(X) =Gy (x) =0 (N=1,2,..).
Since

1
[ Gy(x) dx = [la(Z4N\QWI2
0
Corollary 2 yields
1
Jim of Gy(x)dx = 0.

Hence, via Fatou’s lemma, we obtain that

P}irralo Gy(x)=0 a.e.

and this is equivalent to the a.e. regular convergence of series (1).

‘Theorem 6. If adM, then there exists an ONS P={d,(x): k€Z%} of
step functions on I such that series (1) for @=® does not converge regularly a.e. on 1;
even we have
(20) lim sup |k2 a, cbk(x)] = ae as maxn; — o

=n ==
Proof. By (4) and (5) there exists a sequence (0=)Ny<N;=<...<N,<... of
integers such that

le(@w,\Cw, N =p (p=1,2,..).

For each p we consider the sequence a(Qy \Qy _) and apply Lemma 2. As a
result we obtain an ONS {i/,(p; x): k€ QNp}p of s{ep functions and a simple set E,
for each p=1,2,... with the properties stated in Lemma 2.

By induction we will define an ONS &= {®,(x): k€Z%} of step functions and
a sequence {H,: p=1,2,...} of stochastically independent, simple subsets of 7/
having the following properties:
¥4} max | 2 a®x)|=2" for x¢H,

m.nGQNP\QNP_I:'"é" msksn
and

(22) mesH,=C, (p=12,..)

with the same constant as in Lemma 2.
For p=1 we set

Hy=E, and &(x)=v.(1;x) (k€Qy).
Then (21) and (22) are obviously satisfied (Q,=9).
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Now let p, be a positive integer and assume that the step functions @, (x) for
ke QN and the simple sets Hy, Hy, ..., H, have been defined in such a way that

these functlons constitute an ONS on J, these sets are stochastically independent and
relations (21) and (22) -are satisfied for p=1,2,...,p,. Then there exists a
partition {/,: r=1,2,..., ¢} of the interval I into dlS_]Olnt subintervals such that
each function ®,(x), kEQN > assumes a constant value on each J,, r—-l 2,..., o

and each set H,, p=1,2, ..., po, is the union of a certain number of J,. Let us d1v1de
each J, into two submtervals J, and J; of equal length. -

~ We shall use the following notations. Given a function f(x) defined on I a sub-
set H and a subinterval J=(a, b) of I, we define :

Ui = f[;:Z) for x€J,

0 . for -xEI\._/;
and H(J) to be the set, into which H is carried over by the linear transformation
y=(b—ax+a.
Now we define the functions cbk(x) for k¢ QN +1\QN and the set H, ,; as
follows:

&,(x) = =2 We@o+1; 773 )~ Yo+ 1; T2 )]
and T

Hpy i1 = U[ rot1 (S UEpa (I

_ ~ Obviously, these. dik(x) kEQN +1\QN , are step functions and H, ., is a
simple set. It is a routine to verlfy that the functlons D, (x), k€ QN . form an
ONS on I, the sets H,, p=1,2, ..., po+1, are stochastically mdependent and rela-
tions (21) and (22) are satlsﬁed for p=po+1. (To deduce (21) from (10) one has to
use a representation similar to (19).) .
The above induction scheme shows that the ONS &={®,(x): keZ? } and the
sequence {H,: p€Z% } of stochastically independént sets-can be defined in such &
way that conditions (21) and (22) hold true. _ _ -

We set
= limsup H,.

P+

By (22), the second Borel—Cantelli lemma implies that mes H=1. If x€H, then
x€H, and consequently (21) holds true for an infinite number of p. In other words,
this means that

lims P, = o . a.e. .
supl, 2 bl = e as g m, -
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Hence it is clear that series (1) for ¢=¢ does not converge regularly a.e. Taking
into account the representation of 2’ a, P, (x) corresponding to (19), assertion

(20) also follows. : ‘
Theorems 5 and 6 immediately yield the following two corollaries.

Corollary 4. A necessary and sufficient condition that a d-multiple sequence a
of numbers be such that series (1) regularly converge a.e. for every ONS ¢ on I is that
acM.

" Corollary 5. If .a d-multiple sequence a of numbers is such that series (1)
regularly converges a.e. for every ONS ¢ on I, then for every ONS ¢ the rectangular
partial sums s,(x) of series (1) are majorized by a square integrable function F(x)=
=F(x; a,¢) on I, the square-integral of which depends only on a, but not on ¢.

Indeed, the condition of Corollary 5 is equivalent to the fact that aEIR In
this case, setting _
Fx)=  sup | 2 a e,

m, nez“ m=n m=k=n

we have

[ PP dx =]t < =,
0 .

as stated in Corollary 3.

.Using a previous result of the second author, we are able to prove a stronger
assertion than that is stated in Theorem 6.. This makes possible to deduce our-second
main result; if the a.e. convergence of series (1) is considered for every ONS on I,
then regular convergence and convergence in Pringsheim’s sense are equlvalent up
to a set of measure zero. This will be a corollary of the followmg S

.Theorem 7. If a¢M, then there exist an ONS ®={d,(x): k€Z%} ofstep
functions on I such that

23) lim su . (x)| = de. s min n, - co.
@) . _plk‘;y,. (] = 1zjza 0T T
Consequently, series (1) for @=® does not converge a.e. eveh in Pringsheim’s sense.

Proof. It will be done by induction with respect to d. If d=1, Theorem 7 is
a result of the second author [7].

For the sake of simplicity, we present the induction step from d=1 to d +1 2.
In this case we write (k, /) instead of (k;, k;). For given positive mtegers k‘l and I0
let us put

TP = {kosD: 1=1,2, 0} dnd TP = {(d): k=1,2,..}
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and consider the norms la(7")] and Ja(7, ), respectively.- We distinguish two
cases. .

Case (i). For all positive integers k, and J, we have respectively
la(TH < e and |a(TP)] < .

Applying the above mentioned theorem of the second author, we obtain that for
every positive integer kq the single series

;_21' Ago,1 D1 (x)

(a so-called “‘column”) converges a.e. on I for every ONS {o,(x): I=1,2,...};
and for every positive integer /, the single series

Z g, 1, 0 (x)
k=1

(a so-called “row”) converges a.e. on I for every ONS {¢,(x): k=1,2,...}. Conse-
quently, for every double ONS ¢={¢,(x): k, [=1,2,...} and for every positive
integer N we have ' Do

(29)
limsup| 5 3 auou(x)) << ae. as max(m, n)»e and min(m, n)=N.
k=11=1 . . .
In virtue of Theorem 6, there exists a double ONS &= {'<I>,;,(x): k,1=1,2,...}

such that relation (20) holds true. Taking into account observation (24) we can
strengthen (20) as follows:

m n . X .
limsup| > 3 au®Pu(x¥)| =« ae. as min(m, n) - o
k=1 1l=1 R -

This is statement (23) for d=2.
Case (ii). There exists at least one positive integer &, or J,, for which
la(TDN == or [a(T) = . |

lo

For definiteness, let us assume the fulfilment of the first relation. Agaih épplying the
theorem of the second author [7], we can find an ONS {¥,(x): /=1,2, ...} of step
functions on I such that the single series

12; Ao i (x)

T*
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diverges a.e. on [ in the sense that
X N
limsup| > G V(%) = = ae.
—_ GO l=1 . - -

From here it follows that there exist a sequence '(0=)N0<N1<...<Np<... of
integers and a sequence {E,: p=1,2,...} of simple subsets of I such that :

N o

25 max | 3 a,, Y0 =p for xCE,
Ny <N=N, I=N,_,+1

and '

(26) - | mes E, =1-2"7"1 r=12.). .

We may assume that N,=k,.
We are going to construct a double ONS. &={&,,(x): k,I=1,2, ...} of step
functions and another sequence {H,: p=1,2, ...} of simple subsets of / in such a

way that
N

R ) N

(27) _' oo.oomax | ¥ 2’- ak,cb,‘,(x)] >p for xEH
N Np1=<N=Np k= =N_. l+11 N,

and

(28) mes H, =1-27 (p=1,2,..).

We usé agam an mductlon argument, this time with respect to D It p=1, we
set for 1 1 2

o ) = {V‘ P,(2x) for x€(0, 1/2);
kst ) = 0 for x€(1/2 ;
and define the other functions ®,(x) for (k,1)€Qy —{(k D: k1= l 2, ..., M},

k#k,, in such a way that they be zero on (0, 1/2) and they form an ONS on (1/2 1)
consisting of step functions. Furthermore, set HI—E1 It.is clear that (27) and (28)
are satisfied for p=1.

Now let p, be a positive integer and suppose that the step functxons <15k,(x) for
(k, )¢ QN‘,0 and the simple sets H, for p=1, 2, ..., p, have'been defined in such a way
that these functions form an ONS on 7/, and relations;(2~7) and (28) are satisfied for
p=1,2,...,p,. Then there exists a partition {J,: s=1,2,...,0} of the interval I
into dlS_]Olnt subintervals such that each function d5k,(x) (k e QN .’ assumes. a

constant. value on each Js, s=1,2,.
~ Let us divide each J, into three submtervals J.,J, and J7" with the following
lengths:

29) mes J; = mes J) = 2-1(122-P0—2) mes Js
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and o
mes J” =2"7"2mesJ, (s=1,2,..,0)

Now we define the functlons <Dk ,(x) for I=N, +1 N, +2 p 1 and the set’
H,,, as follows: I

&, 1) =(1-27 PomB)TiR Z'[‘Pz(Js',x) YII(Js”’x)]
and

Hypi = U [Eppir UDU Epora (I

Relation (27) follows from (25), while (28) follows from (26) and (29). It is clear that
each function @, 1(x), N, <I= N o+ vanishes on sUIJ”’ and H, o+1 is ‘also dis-
joint. from U J7. Flnally, we define the other functions @,(x) for - QN +1\sz 5
k;éko, in such a way that they vamsh on’ U (J UJ ”) and they form an, ONS on:

U J’” consisting of step functions with zero mean on each mterval JY,

s 1 2,. o
By constructlon the step functions ¢k,(A), (k Ne QN , form and ONS on I,
the sets H,, H,, ..., H, ,, are simple, and relations (27) and (28) are satisfied for
p=1,2, ..., po+1. This completes the proof of the induction step.
We set R
. FEET. H =limsup H,,..

s
By (28), the first Borel—Cantelli lemma implies that - -
mes [liminf (I\\H,)] =0, or equivalently, mes H = 1.
e

If x€ H, then (27) holds true for an infinite number of p, consequently,

N N
limsup - max | > auPu()| = ac
LT NpamNEN, k=N T HI=N, gL
Taking into account that .= .
' N’ "N o
2 akl ‘pkt(x) =

k—NPf1+1 I=N, 2,1

N_'.

N N “NN,_y Nyoy N NP 1¥p -1
{22-25-53+5 Slaouw
k=11=1 k=1 1=1 k=1 I=1 k=1 1=1

assertion (23) for d=2 imrhediately'foll‘owS.
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The proof of Theorem 7 is complete.

We emphasize the significance of the following two consequences of Theorems
5,6 and 7.

Corollary 6. If ad-multiple sequence a of numbers is such that for every ONS ¢
series (1) converges in Pringsheim’s sense on a set of positive measure, perhaps depending
on @, then series (1) for every ONS @ regularly converges a.e.

Corollary 7. If a d-multiple sequence a of numbers is such that for an ONS ¢
series (1) does not converge regularly on a set of positive measure, then there exists
another ONS @ such that series (1) for ¢=® does not converge in Pringsheim’s
sense a.e.

We note that for an individual ONS the notions of a.e. regular convergence and
a.e. convergence in Pringsheim’s sense can essentially differ from each other. In
[4, pp. 214—215] a double sequence {ay: k,/=1,2,...} of real numbers and on
I1*=[0; 11* a double ONS {¢,,(x): k,I=1,2, ...} are constructed in such a way that

al2cl < o9,

Mg
M3

k

1l
-

1

1
-

the double orfhdgonal series

8

M

3 A P (X)

k=11

1t

_ converges in Pringsheim’s sense a.e on I2, but does not converge regularly on a set
of measure at least 1/2. It is not hard to modify this example so as the resulting ortho-
gonal series converges in Pringsheim’s sense a.e. and does not converge regularly a.e.

5. Estimation of the norm | a]l

Using the d-multiple generalization of the famous Rademacher—MenSov
inequality, it is not hard to give an upper bound for |a] (see'[3, Corollary 2]).

Theorem 8. For every d-multiple sequence a we have
2 d ’ Lo
(30) | la] = C, {kezz'§ akj L]l (log 2k )12,
where C,=Cy(d). : :

Here and in the sequel the logarithms are to the base 2.
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A nontrivial lower bound for |la] is not known in general. In the special case
when a is such that {|a,|: k€Z%} is nonincreasing in the sense that

(31) lai| = |a,] whenever k,n€Z4 'and k=n,
an opposite inequality to (30) holds also true.

Theorem 9. If ad-multiple sequence & is such that (31) is satisfied, then we have

d
(32 , lall = C{ Z ai 7 (log 2k,
kezy  j=1
where C;=C;(d). .
The proof of Theorem 9 is based on the following basic result of MeNSov [2]7

Lemma 3. For every posiiive integer N there exist an ONS {YyM(x): k=
=1,2, ..., N} of step functions on the interval I and a simple subset E'™ of I such
that .

33 . mes EM = C,

and for every x€E™ there exists an integer n= n(x) between 1 and N such that
Y™ (x)=0 for k=1,2,...,n and :

Gy . Zn' lﬁ,‘c"5 x) = C; ﬁlog 2N.
k=1" T ! S
A trivial consequence of (33) and (34) is that

@3 f (1s..s~ l Z l//‘"’ @) dx = C,,N(log 21\/)2 |

. This inequality will be enough for our purpose.

Proof of Theorem 9. For the sake of 51mp11c1ty in notations, we present the
proof again for the case d=2..

Denote by T a measure-preserving transformatlon of the square I* onto the
interval I: T(y,,y:)=x, where (yl,y2)612 and x€I. Given two positive integers
N; and Nz, we define for k=1,2,...,Ny; I=1,2,..., N, .

@Y (x) = YD () YD (py)-

)

Then (35) yields

1=m=N, 1sn=N, /=

| f( max _max ]22’([) 1"’*’(x)|)2‘dx§'

(36)
= CZN, N, (log 2Ny (log 2N,)®. .
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After these preliminaries, let us consider the partltlon of Z% into the followmg
“dyadic™ rectangles: -

0, = {(k; DEZ2: 2" 1=k <2™ and 2" 1=1=<2",

where (m, n) runs over Z% . According to this partition we modify the original se-
quence. a into another a* so as it should be constant on each .Q,,: a*=
= {a}: (k,1)€Z%), where

ahi = agm,g0 for (K, DEQ,, - (m, MEZE.
Due to Theorem 2, mequahty (36), and the monotony of Iak,l for every
(m, mEZ2 . A
IIG(Q.m.)Il = IIG*(Qm,.)II = 2”-12"'1m2n2a§m,2"_§ )

[ .- 2M+l 12n+l 1

=3-4ct > > ak,(log2k)2(log21)2.

k=2m ) 1=2
Applying Theorem 3, we obgin that
(37 llal® = Z Z Ila(Qm,.)I!2 = 3‘4Czk22 12 af (log 2k)2 (IOg 21)2

Now we examine the cases m=1 or (and) n=1 once more. A more accurate

calculation gives
2n+1 1

la(@i)l = 0" (@il = Ce2"‘1n afen =37 2Ce _Z' a3 (108 2072,

whence we get that =~~~ - Tt
(3%) llall® = ;; la(@ul* = 372C, g,; a}i (log 21)2-1,
Analogously, ) B o . PR -
(39) lall* = 372C, > af (log2k)*.

T . k=2
Finally, it is obvious that ' o '
(40)- - |lafl? = af;.

Now the statement of Theorem 9 immediately follows from relatlons (37)—(40)_

Remark 4. If one treats each “finite” sequence a(Qy), N=1, 2 . separately
instead of the whole sequence a and inaKes use of the fact that all Y™ (x) are step
functions, one can prove Theorem 9 without takmg a measure-preservmg transfor-
mation T of the unit sequare /% onto /.
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