Embedding theorems and strong approximation

L. LEINDLER* and A. MEIR

1. Let $f(x)$ be a continuous and 2π-periodic function and let

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

be its Fourier series. We denote by $s_{n}=s_{n}(x)=s_{n}(f ; x)$ the n-th partial sum of (1), the usual supremum norm by $\|\cdot\|$ and by $E_{n}=E_{n}(f)$ the best approximation of f by trigonometric polynomials of order at most n. Let $\omega(\delta)$ be a nondecreasing continuous function on the interval $[0,2 \pi]$ having the properties: $\omega(0)=0, \omega\left(\delta_{1}+\delta_{2}\right) \leqq \omega\left(\delta_{1}\right)+$ $+\omega\left(\delta_{2}\right)$ for any $0 \leqq \delta_{1} \leqq \delta_{2} \leqq \delta_{1}+\delta_{2} \leqq 2 \pi$. Such a function is called a modulus of continuity.

In order to quote the result of [3], which has initiated our present investigation, we define two classes of functions:

$$
H^{\omega}:=\{f: \omega(f ; \delta)=O(\omega(\delta))\}
$$

and

$$
S_{p}(\lambda):=\left\{f:\left\|\sum_{n=0}^{\infty} \lambda_{n}\left|s_{n}-f\right|^{p}\right\|<\infty\right\}
$$

where $\lambda=\left\{\lambda_{n}\right\}$ is a monotonic sequence of positive numbers and $0<p<\infty . \mathrm{V}$. G. Krotov and L. Leindler [3] proved the following result.

Theorem A. If $\left\{\lambda_{n}\right\}$ is a monotonic sequence, ω is a modulus of continuity and $0<p<\infty$, then

$$
\begin{equation*}
\sum_{k=1}^{n}\left(k \lambda_{k}\right)^{-1 / P}=O\left(n \omega\left(\frac{1}{n}\right)\right) \tag{2}
\end{equation*}
$$

Received March 31, 1983.
*) The research of the first author was supported by an NSERC of Canada grant while visiting the University of Alberta, Edmonton.
implies
(3)

$$
S_{p}(\lambda) \subset H^{\omega}
$$

Conversely, if there exists a number Q such that $0 \leqq Q<1$ and

$$
\begin{equation*}
n^{Q} \lambda_{n} t, \tag{4}
\end{equation*}
$$

then (3) implies (2).
It is well known that the classical de la Vallée Poussin means

$$
\tau_{n}=\tau_{n}(f ; x):=\frac{1}{n} \sum_{k=n+1}^{2 n} s_{k}(x), \quad n=1,2, \ldots
$$

usually approximate the function f, in the sup norm, better than the partial sums do. Hence, if in analogy to $S_{p}(\lambda)$ we consider the class of functions

$$
V_{p}(\lambda):=\left\{f:\left\|\sum_{n=0}^{\infty} \lambda_{n}\left|\tau_{n}-f\right|^{p}\right\|<\infty\right\},
$$

we may expect that under reasonable conditions the following embedding relations will hold

$$
\begin{equation*}
S_{p}(\lambda) \subset V_{p}(\lambda) \subset H^{\infty} \tag{5}
\end{equation*}
$$

In the present paper we establish that condition (2) does imply the inclusion $V_{p}(\lambda) \subset$ $\subset H^{\omega}$ for all positive p. We further show that the embedding relation $S_{p}(\lambda) \subset V_{p}(\lambda)$ also holds if $p \geqq 1$ and the sequence $\left\{\lambda_{n}\right\}$ satisfies the mild restriction

$$
\begin{equation*}
\frac{\lambda_{n}}{\lambda_{2 n}} \leqq K, \quad n=1,2, \ldots, \tag{6}
\end{equation*}
$$

with a fixed positive $K\left(K, K_{1}, K_{2}, \ldots\right.$ will denote positive constants, not necessarily the same at each occurrence).

We were unable to decide whether $S_{p}(\lambda) \subset V_{p}(\lambda)$ holds when $0<p<1$; it is left as an open problem.
2. We shall establish the following results.

Theorem 1. If $p \geqq 1$ and $\left\{\lambda_{n}\right\}$ is a monotonic (nondecreasing or nonincreasing) sequence of positive numbers satisfying (6), then

$$
\begin{equation*}
S_{p}(\lambda) \subset V_{p}(\lambda) \tag{7}
\end{equation*}
$$

holds.
Theorem 2. Let $\left\{\lambda_{n}\right\}$ be a monotonic sequence of positive numbers, furthermore let ω be a modulus of continuity and $0<p<\infty$. Then condition (2) implies

$$
\begin{equation*}
V_{p}(\lambda) \subset H^{\omega} . \tag{8}
\end{equation*}
$$

If $p \geqq 1$ and there exists a number Q such that $0 \leqq Q<1$ and (4) holds, then, conversely, (8) implies (2).
3. To prove our theorems we require the following lemmas.

Lemma 1 ([1, p.534]). For any continuous function f we have the following inequality

$$
\begin{equation*}
\omega\left(f ; \frac{1}{n}\right) \leqq K n^{-1} \sum_{k=1}^{n} E_{k}(f) \tag{9}
\end{equation*}
$$

Lemma 2. Let $a=\left\{a_{n}\right\}_{0}^{\infty}$ be a nonincreasing sequence of positive numbers, $q>0$ and $\gamma>0$. Then there exists a positive constant $C=C(a, \gamma, q)$ such that for every m

$$
\begin{equation*}
\sum_{n=0}^{m} q^{n} a_{n} \leqq C \cdot \sum_{n=0}^{m} q^{n} a_{n}\left(\frac{a_{n+1}}{a_{n}}\right)^{\gamma} . \tag{10}
\end{equation*}
$$

Proof. We let $\beta=\min \left(a_{1} / a_{2}, 1 / 2 q\right)$. We define the (possibly finite) sequence of integers $N_{0}<N_{1}<\ldots$ as follows. Let $N_{0}=0$. For $i \geqq 1$ let N_{i} be the smallest integer such that $N_{i}>N_{i-1}$ and $a_{N_{i}+1} \geqq \beta a_{N_{i}}$; if no such integer exists we set $N_{i}=\infty$. Now, if $N_{i}<n<N_{i+1}$, then $a_{n+1}<\beta a_{n}$ and so $a_{N_{i}+r} \beta^{r-1}$ for $r=1,2, \ldots, N_{i+1}-N_{i}$. Therefore, we have for $i=0,1, \ldots$

$$
\begin{gather*}
\sum_{n=N_{i}+1}^{N_{i+1}} q^{n} a_{n} \leqq q^{N_{t}+1} a_{N_{i}+1} \cdot\left(1+q \beta+q^{2} \beta^{2}+\ldots\right) \leqq 2 q^{N_{i}+1} a_{N_{i}+1} \leqq 2 q^{N_{i}+1} a_{N_{i}} \leqq \tag{11}\\
\vdots \leqq \beta^{-\gamma} q^{N_{i}} a_{N_{i}}\left(\frac{a_{N_{i}+1}}{a_{N_{i}}}\right)^{\gamma},
\end{gather*}
$$

on using, in the last inequality, the definition of the sequence $\left\{N_{i}\right\}$. Now, for any given integer m, let j be the largest integer so that $N_{j}<m$. We then have, on using (11), and the fact that $\beta \leqq a_{1} / a_{0}$,

$$
\sum_{n=0}^{m} q^{n} a_{n} \leqq \beta^{-\gamma} a_{0}\left(\frac{a_{1}}{a_{0}}\right)^{\gamma}+2 q \beta^{-\gamma} \sum_{i=0}^{j} q^{N_{i}} a_{N_{i}}\left(\frac{a_{N_{i}+1}}{a_{N_{i}}}\right)^{\gamma} \leqq C \cdot \sum_{n=0}^{m} q^{n} a_{n}\left(\frac{a_{n+1}}{a_{n}}\right)^{\gamma},
$$

with $C=\beta^{-\gamma}(1+2 q)$.
This completes the proof of Lemma 2.
4. Proof of Theorem 1. For $p \geqq 1$ we have, by the "power sum inequality",

$$
\left|\tau_{n}-f\right|^{p} \leqq \frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}-f\right|^{p}
$$

Hence

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda_{n}\left|\tau_{n}-f\right|^{p} \leqq \sum_{n=1}^{\infty}\left(\lambda_{n} / n\right) \sum_{k=n+1}^{2 n}\left|s_{k}-f\right|^{p} \leqq \tag{12}\\
& \leqq \sum_{k=2}^{\infty}\left|s_{k}-f\right|^{p} \sum_{n=k / 2}^{k-1}\left(\lambda_{n} / n\right) \leqq K \sum_{k=2}^{\infty} \lambda_{k}\left|s_{k}-f\right|^{p},
\end{align*}
$$

where the last inequality follows from (6). Inequality (12) clearly implies (7).
Proof of Theorem 2. First we consider the case $p \geqq 1$. Suppose $f \in V_{p}(\lambda)$. Then we have for $n=1,2, \ldots$

$$
\begin{equation*}
E_{4 n}(f) \leqq\left\|\frac{1}{n} \sum_{k=n+1}^{2 n}\left|\tau_{k}-f\right|\right\| \leqq\left\|\left\{\frac{1}{n} \sum_{k=n+1}^{2 n}\left|\tau_{k}-f\right|^{p}\right\}^{1 / p}\right\| \leqq K_{1}\left(n \lambda_{n}^{*}\right)^{-1 / p} \tag{13}
\end{equation*}
$$

where $\lambda_{n}^{*}=\min \left(\lambda_{n+1}, \lambda_{2 n}\right)$ and the last inequality follows from the assumption $f \in V_{p}(\lambda)$. Now, from (13), both if $\left\{\lambda_{n}\right\}$ is increasing or decreasing we can deduce that

$$
\begin{equation*}
\sum_{v=1}^{m} 4^{v} E_{4^{v}}(f) \leqq K_{2} \sum_{v=0}^{m} 4^{v}\left(4^{v} \lambda_{4^{v}}\right)^{-1 / p} \tag{14}
\end{equation*}
$$

with a suitable $K_{2}>0$.
Hence, by Lemma 1 and (2), for $m=1,2, \ldots$

$$
\begin{equation*}
\omega\left(f ; 4^{-m}\right) \leqq K_{3} \omega\left(4^{-m}\right), \tag{15}
\end{equation*}
$$

which proves that $f \in H^{\omega}$.
We turn now to the case $0<p<1$. We have for $n=1,2, \ldots$

$$
\begin{equation*}
n E_{4 n}(f) \leqq\left\|\sum_{k=n+1}^{2 n}\left|\tau_{k}-f\right|\right\|=\left\|\sum_{k=n+1}^{2 n}\left|\tau_{k}-f\right|^{p} \cdot\left|\tau_{k}-f\right|^{1-p}\right\| . \tag{16}
\end{equation*}
$$

It is known [see e.g. [2], p. 58] that $\left\|\tau_{k}-f\right\| \leqq K E_{k}(f)$ for all k; hence, in particular, for $n+1 \leqq k \leqq 2 n,\left\|\tau_{k}-f\right\| \leqq K E_{n}(f)$. Therefore, from (16) we obtain that

$$
n E_{4 n}(f) \leqq K\left(E_{n}(f)\right)^{1-p} \| \sum_{k=n+1}^{2 n}\left|\tau_{k}-f\right|^{p}| |
$$

which, since $f \in V_{p}(\lambda)$, implies that $E_{4 n}(f) \leqq K_{1}\left(E_{n}(f)\right)^{1-p}\left(n \lambda_{n}^{*}\right)^{-1}$, with $\lambda_{n}^{*}=$ $=\min \left(\lambda_{n+1}, \lambda_{2 n}\right)$. If we rewrite the last inequality as

$$
E_{n}(f) \cdot\left(\frac{E_{4 n}(f)}{E_{n}(f)}\right)^{1 / p} \leqq K_{2}\left(n \lambda_{n}^{*}\right)^{-1 / p}
$$

and use it for $n=4^{\nu}, v=0,1, \ldots, m$, we see that

$$
\sum_{v=0}^{m} 4^{\nu} E_{4^{v}}(f)\left(\frac{E_{4^{v+1}}(f)}{E_{4^{v}}(f)}\right)^{1 / p} \leqq K_{3} \sum_{v=0}^{m} 4^{v}\left(4^{\nu} \lambda_{4^{v}}\right)^{-1 / p}
$$

holds. Applying Lemma 2 now with $a_{n}=E_{4^{n}}, q=4$ and $\gamma=1 / p$, we get that (14) is satisfied in this case as well. Hence, as before, f satisfies (15) and so $f \in H^{\omega}$.

This completes the proof of (8) for all positive p.
In order to prove that, under the stated assumptions, (8) implies (2), it is sufficient to note that, because of (7), relation (3) of Theorem A is satisfied; therefore Theorem A provides the proof of the required assertion.

References

[1] N. Bary, A treatise on trigonometric series (Oxford, 1964).
[2] R. P. Feinerman and D. J. Newman, Polynomial Approximation, Waverly Press (1974).
[3] V. G. Krotov and L. Leindler, On the strong summability of Fourier series and the class H^{ω}, Acta. Sci. Math., 40 (1978), 93-98.

[^0](A. M.)

DEPARTMENT OF MATHEMATICS
EDMONTON, CANADA

[^0]: (L. L.)

 BOLYAI INTÉZET
 ARADI VÉRTANÚK TERE 1
 SZEGED, HUNGARY

