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On the unicity of best Chebyshev approximation 
of differentiate functions 

A N D R A S K R O O * 

Let X be a normed linear space, U„ an «-dimensional subspace of X. The problem 
of best approximation consists in determining for each x£X its best approximations 
in U„, i.e. such elements pd U„ for which ||x—p|| = dist (x, £/„)=inf {||x—g||: U„}. 
Let us denote by G(x) = {p£U„: ||x—/?||=dist(x, £/„)} the set of best approxima-
tions ot x. Evidently, for every xdX the set G(x) is nonempty and convex. Recall 
that the convex set G(x) is said to have dimension k if there exist k+1 elements 
Po> •••,Pk£G(x) such that pi—p0, l^isk, are linearly independent and G(x) does 
not contain k+2 elements satisfying this property (k^O). The subspace U„ is called 
fc-Chebyshev if the dimension of G(x) is at most k for any x£X (Osfc^n—1). In 
particular when k=0, i.e. each x£X possesses a unique best approximation in U„, 
we say that U„ is a Chebyshev subspace of X. 

Let us consider the classical case of Chebyshev approximation when X=C(Q) 
is the space of complex valued continuous functions on the compact Hausdorff 
space Q endowed with the supremum norm | | / | | c=sup {\f(x)\: x£Q}. (The subspace 
of real valued functions in C(Q) will be denoted by C0(Q).) The characterization of 
Chebyshev subspaces of C(Q) is given by the celebrated Haar—Kolmogorov theo-
rem: the «-dimensional subspace Un is a Chebyshev subspace of C(Q) if and only if 
each p£U„\{0} has at most n—1 distinct zeros at Q. (This theorem was given at 
first by HAAR [3] in the real case Z = C 0 ( ® and then by KOLMOGOROV [4] in the 
complex case X=C(Q).) Later RUBINSTEIN [8] gave the characterization of k-
Chebyshev subspace of C0(Q) and ROMANOVA [7] generalized it for C(Q). Their result 
reads as follows: Un is a A:-Chebyshev subspace of C(Q) if and only if any k+1 
linearly independent elements of U„ have at most n — k— 1 common zeros at Q 
(Osksn — 1). (For k=0 this result immediately implies the Haar—Kolmogorov 
theorem.) 
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In the present paper we shall investigate the unicity of best Chebyshev approxi-
mation in the spaces of differentiable functions. This problem was posed by S. B. 
Stechkin and considered in the real case by G A R K A V I [2 ] . 

Let Cr[a, b] (CT
0[a, b]) denote the space of r-times continuously differentiable 

complex (resp. real) functions on [a, b] endowed with the supremum norm, 1 ^ r ^ oo. 
(In what follows c€[a, b] will be called a special zero of f£C\[a, b] if either f'(c)= 
=/ (c )=0 or / ( c ) = 0 and c coincides with one of the endpoints of the interval [a, fc].) 
G A R K A V I [2] gave the following characterization of ¿-Chebyshev subspaces of 
Cr

0 [a, b]: U„<zCr
0 [a, b] ( r £ l ) is a ¿-Chebyshev subspace of Cr

0 [a, b] if and only if for 
any s linearly independent elementsp1, •••,ps€ Un (k+1 ^s^n) among their common 
zeros there are not more than n—s special zeros common to any k+1 of the elements 
plt ...,ps. In particular in order that U„ be a Chebyshev subspace of Cr

0 [a, b] it is 
necessary and sufficient that for any s linearly independent elements ply ...,ps of 
U„ (1 =.?=«) among their common zeros there are at most n—s special zeros of any 
of pi, ...,ps- (Remark, that the characterization of ¿-Chebyshev subspaces of C"0 [a, b] 
turns out to be independent of l S r S » . ) 

In this paper we shall present another approach to the study of ¿-Chebyshev and 
Chebyshev subspaces of differentiable functions. This approach is based on the so-
called "extremal sets" which are essential in the study of unicity of best Chebyshev 
approximation of complex valued differentiable functions. Our method gives a possi-
bility to generalize Garkavi's result to the complex case. In the last sections of the 
paper we shall give several applications for the study of unicity of best Chebyshev 
approximation of differentiable functions by real and complex lacunary polynomials. 

1. First of all let us formulate a lemma characterizing best approximants. Recall, 
that the sign of a complex number c£C is given by c/|c| if c^O and 0 if c=0. 

Lemma 1 ([9], p. 178). Let U„ be an n-dimensional subspace of C(Q) (C0(Q)). 
Then p(L Un is a best approximation of f£C(Q) ( C o ( 0 ) if and only if there exist 
m points jclt ...,xm£Q, where lSmSn+1 in the real case and in 
the complex case, and m numbers am^0 such that 

m 

(1) 

for each g£U„ and 

Zajg(xj) = 0 
j=i 

/(*;) - P (Xj) = sign a j \\f-p\\ c ( l S j S m ) . 

This lemma suggests the following definition. 

Def in i t i on . The set of m distinct points xt, ...,xm£Q, where l ^ m ^ n + l 
in the real case and in the complex case, is called an extremal set of 
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U„ciC (Q) if there exist nonzero complex numbers ax,...,am^ 0 (real if UnczCQ (Q)) 
such that (1) holds for any g£U„. 

If {x,}™=1 is an extremal set of U„ then the corresponding numbers are 
called the coefficients of this extremal set. Evidently the coefficients of an extremal set 
are defined in general nonuniquely (even with a normalization). Note that extremal 
sets are closely related to the set Q, on which the functions of U„ are considered. (The 
idea of the above definition comes essentially from REMEZ [6] who was the first to 
give a proposition like Lemma 1.) 

Using the notion of extremal sets we can formulate the Rubinstein—Romanova 
(and in particular the Haar—Kolmogorov) theorem in the following way: U„ is a 
fc-Chebyshev subspace of C(Q) if and only if the points of an extremal set of U„ 
cannot be common zeros of k+1 linearly independent elements of U„ (O^&Sn—1). 
In particular U„ is Chebyshev if and only if no pd Un\{0} can vanish on an extremal 
set of U„. The proof is left to the reader. Similar characterizations of Chebyshev 
subspaces of C(Q) were also given by CHENEY—WULBERT [1] and PHELPS [5] . 

The next theorem characterizing the ¿-Chebyshev. (in particular Chebyshev) 
subspaces of Cr[a, b] is our principal result. This characterization is essentially based 
on extremal sets since it also involves the coefficients of extremal sets. 

T h e o r e m 1. Let Un be a subspace of Cr[a,b], O^k^n—l. Then 
Un is a k-Chebyshev subspace of C r[a, b] if and only if there does not exist an extremal 
set b] ofU„ with coefficients {a;}™=1 and fc+1 linearly independent ele-
ments plt ...,pk+1£U„ suchthat Pj(xt)=0 (1^/Sm, ls/sfc+l) and Reaip ' j(Xi)= 
= 0 for each and x^(a,b). 

In particular Un is a Chebyshev subspace of CT[a, b] if and only if there does not 
exist an extremal set {*,•}!"= I of Un with coefficients and p(L C / „ \ { 0 } such that 
p(xt)=0 ( l S / S m ) and Re aip'(xi)=Q for each xt£(a,b). 

In the real case the coefficients of the extremal set do not appear in the charac-
terization theorem and therefore its formulation is much simpler. 

C o r o l l a r y 1. In order that U„ be a k-Chebyshev subspace of Cr
0[a,b] it is 

necessary and sufficient that the points of an extremal set of U„ cannot be common 
special zeros of k+l linearly independent elements of U„. 

In particular U„ is a Chebyshev subspace of CJ [a, b] if and only if the points of an 
extremal set of Un cannot be special zeros of a nontrivial element of U„. 

The above corollary is equivalent to Garkavi's result. It also follows from a result 
of BROSOWSKI—STOER [11] where an extension of Garkavi's result for real rational 
families was given. 

• P r o o f of T h e o r e m 1. Sufficiency. Assume that U„ is not a ¿-Chebyshev 
subspace of Cr[a, b] ( l s r s ° ° ) . Then there exists fdC'[a, b] with best approximants 

8« 
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0,Pi, • ••, pk+i£Un, where px, ...,pk+1 are linearly independent. Since 0 is a best 
approximation of / i t follows from Lemma 1 that we can find an extremal set {xi}f= l 

of U„ with coefficients {a,}|"=1 such that 

(2) f ( x j ) = sign a j ¡/He, 1 S j S m . 

Moreover, | | /—p s | |c=[|/ | |c for each 1 ^ s ^ k + l. Hence and by (2) we have 

ll/llc S \f(Xj)—ps(Xj)\2 = Ill/l]c-sign ajpJxj)I2 = 

= ( l l / l l c - ^ j Re ajPs(xj)} + Im ajPs(xj)] 

( l S j S m , 1 s == fc+1). 

We can easily derive from (3) that Re a jp s ( x j )=0 for each l s / ^ m and 1 S i S 
m 

+1. On the other hand by the definition of extremal sets 2 ajPs(xj) = ® f ° r 

j=i 
every l ^ s ^ k + 1 . Hence Reajp s(Xj)=0 ( l S / S m , 1 1). Moreover, this 
and (3) imply that Im ajp s(xj)=0, too. Since all coefficients a j ^ 0 we finally 
obtain that 
(4) Ps(xj) = 0 (1 ^ j == m, 1 s ^ k+1). 

Now we shall use the differentiability of the functions involved. Consider an 
arbitrary Xj£(a, b) and set /(x)=(l/|a,-|) Re a}f{.x), A(x)=(l/|a,-|) Re djps(x), 1 ^^^ 

1. Obviously, f,p1,...,pk+1£Cr
0[a,b]-,f(xJ)=\\f\\c=\\f\\c,ps(xJ)=0 (I 

^k+1) and \\f—ps\\c=\\f\\c ( l=i=A: + l)- Since Xj£(a, b) is an extremum point 
of the real function / i t follows that f'(xj)=0. Therefore for any h£R such that 
|/i|<min {xj—a, b—Xj} we have 

PAxj + h) ^/(xj + h)-¡/He = f ( x j + h)-f(xj) £ 
^-\h\co(f',\h\) ( l ^ s ^ / c + 1 ) . 

(Here and in what follows we denote by co(F, <5)=max {iFfo)—F(x2)|: x1,x2£ 
£[a, b], —x2| — <5} the modulus of continuity of F£C[a,b].) Combining (4) and 
(5) we can easily derive, that p's(xj)=0, i.e. 

Re ajp's (Xj) = 0 (1 s ^ k +1) 

if Xj£(a,b). This and (4) imply that for the extremal set {x;}J"=1 with coefficients 
{^¡}r=i a n ( i 1 linearly independent elements p1, ...,pk+1£Un the condition of 
the theorem is violated, which proves its sufficiency. 

Necessity. Assume that the condition of theorem does not hold, i.e. there exists 
an extremal set {x;}f=1 of U„ with coefficients and k +1 linearly independent 
functions Pi, ••.,pk+i£Un such that /?,-(x;)=0 ( l s / s m , 1 ^ j ^ k + l ) and 



Best Chebyshev approximation of differentiable functions 381 

Re aiPj(Xi)=0 forany and x£(a, b). Without loss ofgenerality we may 
assume that for each 

Let O^h be small enough so that [— h+Xi, xt+h] Pl[—h+Xj, Xj+h] = 0 
m 

if i ^ j , and set Ah=[a,b]Cl((J (—h+Xt, Xt+h)). Evidently, there exists a function 
¡=1 

g£C°°[a, b] such that | |g| |c= 1 and g(x) = sign a-, for xd[ — h+xh Xj+/i]n[a, b] 
( l ^ i ^ m ) . (This function can be chosen real if a ;£R.) 

Consider at first the case r= 1. Set 
fc+i 

(6) <p(d) = d+ 2 (o(pj,S) (0 ^d^b-a); 
J=i 

• \x-xt\ 
f (p{t)dt, if x£(a, b) 

(7) il/i(x) = » (1 i ^ m); 

\x-xil if xt = a or b 
m 

(8) «K*)= IIUx) (x£[a, b]). 

It is easy to see that b] ( lSi 'Sm), Furthermore, we have by (6) and (7) 
that if Xi£(a,b) then for any xd[a,b] 

Ux) = 1 7 " ' V (0 dt - <p ( J i p L ) s 
(9) 

J i p L ) - coip'j, \X-Xl\) ( l s j - fc + 1). 

On the other hand, since pj(x^=0 ( l ^ / ^ w , 1 ^ / ^ / c + l ) and Re aip'j(xi) = 0 for 
any l^jsk + l if Xid(a, b) we have by (9) and (7) that 

[Re aiPj{x)\!\ai\ == | x - x t \ o j ( p ' j , \x-xi\) ^ 4il/t(x) 
if Xi£(a,b) and 

|Re atpjix^/lail ¡x-x f | \\p'j\\c 

if x{=a orb (x€[a, b], l^j^k + l). Thus for any l ^ i S m , l^j^k+l and x€[a, b] 

(10) \ReaiPj(x)\/\at\^4^i(x). 
Furthermore the function i/'/i/'i is positive on [a, fc]fl[—h+xt, xt+h] (1 S / S m ) , 

hence i/^(x)/i/'i(x)^t'0>0 fo r any x£[a,b]C\[—h+xl,xi+h] and 1 ^ / ^ w . This 
and (10) imply that for each x£[a, ¿]D[—h+Xi, Xi+h] 

(11) Hx) = ft Mx) - C ° | R e
4 | f f ( X ) l = |Re aiPj(x) I 

(lSi^m, l ^ j S k + l ) . 
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In addition we can derive from (6) and (7) that 

ф,{х) S min (х-хдЧ2} £ ( X - X i f m in {1 /(b-a), 1/2} = с^х-хд*. 

Hence estimating as in (11) we have for x(L[a, Ь]П[—h+x t, Xi+h] 

(12) ф(х) £ W*-*i)2 = Кг{х-х? (1 S i ^ m). 

Let us consider now the function 

(13) / ( * ) = g ( * ) ( l - W ( * ) ) (*€[«, Ц), 

where A=l/2|№||c. Obviously fdC^a, b] and | | / | | c = l . Moreover / ( * , )= 
—S(xi)(l—Лф(*,)) = g ( x t ) = signat and | / (x ) |< l if x^xt (1 ^Шт). Since 
{х,}Г=1 is an extremal set of U„ with coefficients {«¡}™=1 it follows from Lemma 1 that 
0 is a best approximation o f / . We state that eplt ..., spk+1 are also best approximants 
o f / f o r e>0 small enpugh. Using that |/(л:)|<1 if х^х{, and х£Ан, l^i^m, 
we can find a constant n > 0 such that |/(x)| ^1—tj if x£[a, b]\Ah. Then if 
0 w h e r e A i = i j n a x + i | | p j c we have for xd[a, b]\Ah 

(14) \f(x)-ePj(x)\^i-ri+EM^i ( l s j s f c + 1 ) . 

Assume now that x£Ah, i.e. x£(—h+xib Xi+h)(~)[a, b] for some 1 g / S m . In 
this case g(x)=sign a b hence and by (13) 

(15) \f(x)-ePj(x)\> = |sign ai{l-W(x))-ePj(x)\* = \1-1ф(х)-в(а1/\а,\) Pj(x)\2 = 

= (1 -Я<К*)-(в /Ы) Re aiPj (х))2+((г/|аг|) Im aiVj(x)f (1 m). 

Since Pj(Xi)=0 ( lSy 'Sfc+l) it follows that 

(16) |Imв,р/ж)|/ |в, | == Шс\х-х,\ ^ \x-xt\ ( l s j s m). 

Assume now in addition that e^XKj2. Then (11) yields that for any 1 S j ^ m 

(17) 0 1-(ЗЩ)ф(х) S l-A^(x)-(8/1^1) Re alPj(x) S 1-(Щ)ф(х). 

Applying inequalities (17), (16) and (12) in (15) we have 

\f(x)-ePj(x)\* S (1 -№ф(х)У+*(х-хд* S 1-(Я/2 )ф(х)+е*(х-хд* S 

S 1 - ( Л В Д ( Х - Х ; ) 2 + £ 2 ( Х - Х ; ) 2 S I ( L S J I k+1), 

if we assume also that e<]/A£2/2. Hence and by (14) we finally obtain that for e 
small enough \\f— £p ; | | cSl ( 1 ^ / ^ / c + l ) . This means that ¿ + 1 linearly independ-
ent elements plt ...,pk+1£U„ are also best approximants of / (in addition to 0), 
i.e. Un is not fc-Chebyshev. 

If r s 2 then setting <p(<5)=<5 and constructing / by (7), (8) and (13) we can 
analogously verify that U„ is not ¿-Chebyshev. 

The proof of Theorem 1 is completed. 
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The corollary follows immediately from Theorem 1 since in the real case the 
coefficients of extremal sets and therefore the function (13) are real. 

Let us now show that the characterization of fc-Chebyshev subspaces of Cr
0 [a, b\ 

given by Corollary 1 is equivalent to Garkavi's characterization. 

P r o p o s i t i o n 1. Let Un be a subspace of C\[a,b]. Then for any O^ArSw—1 
the following statements are equivalent: 

(i) for any extremal set of Un its points cannot be common special zeros of k+\ 
linearly independent elements of £/„; 

(ii) for any s linearly independent elements Pi, ...,ps in U„ (k+l^s^ri) among 
their common zeros there are at most n—s special zeros common to any fc+1 of the 
elementspx, ...,ps. 

Proof . (i)=Kii). Let {(Pi}"=1 be a basis in U„ and consider the matrix 

W * i ) - (PniXl) 
M = M(XI, ..., X„_S+1) = 

.(Pi(xn-s+1)...(p„(xn-s+i) 

where xlt ..., x„_ J+1 are arbitrary distinct points at [a, 6]. If x1, ..., x„_ s + 1 are com-
mon zeros of s linearly independent elements in U„ then it follows that r ankM^ n—s. 

II-S + 1 n-s + 1 
Therefore for some b£R, 2 = 1> we have y. bt'<pj(Xi)=0 (1 S j S n ) . 

J=i ¡=1 
This means that the set or a proper subset of it is an extremal set of Un. 
Hence if s linearly independent elements in U„ have n—s+1 common zeros ..., 
x„_s+i then the set or a proper subset of it is an extremal set of Un. This 
observation proves the implication (i)=>(ii). 

(ii)=^(i). Assume that (i) is not true. Then there exists an extremal set {x;}™=1 

andA:+l linearly independent elementsp^, ...,pk+1€Un such that each xt is a special 
zero of pj (1 S / S m , Consider the matrix M*=M(xx, ...,xm). Then 
the set of functions in Un vanishing on {A'j}f=1 is a subspace of dimension s= 
=7i—rankM*. Evidently, s^k+1. Then we can find elements pk+2, ...,ps£U„ 
such that Pi, ...,ps are linearly independent and pk+i, ..., ps also vanish on {JC,}J"=1. 
It follows from (ii) that m^n—j=rank M*, i.e. rank M*=m. But since {Af}™=1 

is an extremal set of U„ the rows of M* are linearly dependent. This implies that 
rank M*^m—1, a contradiction. 

2. In [2] there are given different examples of real polynomial spaces which are 
Chebyshev subspaces of C\[a, b] but do not satisfy this property with respect to 
C0[a, b]. Let Pn denote the space of real algebraic polynomials of degree at most n—1. 
It is shown in [2] that if for the subspace U the embeddings P ^ ^ j C C/cP„ hold then 
U is a Chebyshev subspace of C\[a, 6]. In this section applying Theorem 1 we shall 
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give a similar statement for complex polynomials. (Since, the characterization of 
Chebyshev subspaces of Cr[a, b] does not depend on r ^ l , in what follows we shall 
consider only the case r = l . ) 

Let Tn={ 2 c,e'5x, cs€C} be the space of complex polynomials of degree at 
5 = 0 

most n—1 and real variable x^[a, b], where 0sa<b<2n. Evidently, each extremal 
set of T„ consists of at least n +1 points (and at most 2n+1 points by definition). In 
order to apply Theorem 1 we shall also need some information on the coefficients of 
extremal sets of T„. 

Lemma 2 (VIDENSKY [10]). Let {x;}™=1c[a, b] be an extremal set of T„ with 
coefficients {ajY]=i (n + l ^ m ^ 2 n + l). Then there exists ud.Tm.„_1 such that for 
any J=l,2,...,m 

m 
(18) aj = u(Xj)/ [I (eixJ-e>^. 

s = 1 

, J > - 1 
Let now 0 = r 0 < r 1 < . . . < r p _ 1 b e a sequence of integers and set UP={ 2 *•> 

s —0 
cs£C}. Since g(x)=l —eiro-ixd Up may have rp_1 distinct zeros at [a, b] it follows 
by the Haar—Kolmogorov theorem that Up is in general a Chebyshev subspace of 
C[a, b] only if rp_1=p — l and thus UP=TP. But for the space C 1 [a, b] we have a 
much more general statement. 

Theorem 2. Assume that Tr(zUp(zTn, where r^p^n and r=[2n/3] (n^4). 
Then Up is a Chebyshev subspace of C1[a, b] for any 0^a<b<2n. 

Proof . Assume that Up is not a Chebyshev subspace of C1^, b]. Then by Theo-
rem 1 there exists an extremal set {x¡Y¡=í of Up with coefficients {«/}™=1 and 
ge Up\{0} such that g(xj)=0 and Re ajg'(Xj)=0 for each Xj£(a, b). 
Without loss of generality we may assume that x¡€(a,b) for every 2 ^ ' S m - l . 
Since Upz3Tr, {xj}J=1 is an extremal set of Tr, too. Hence m ^ r + 1 . On the other 
hand, g£r„\{0} vanishes on xJt l^y'Sm. Thus r+l^miSn-1^2r+l. There-
fore by Lemma 2 we can find a polynomial u^Tm_r_1 such that for any j=\,2, ...,m 
(18) holds. Furthermore, using that g(xj)=0 ( l á / S m ) we can write 

m 
g(x)= n(eix-eixj)g(x), 

j=i 

where g£T„_m. This yields that 

m 
(19) g'(xj) = ieixj J] (eixj-eix*)g(xj), 1 S j S m . 

S = 1 5 
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Since {Xjf ; i l^(a ,b) , Rec ; g / (x y )=0 for This together with (18) and 
(19) imply that for each — 1 
(20) " 0 = Re aj g (xj) = Re u (xj) ieixj g (xj) = Re u (Xj), 

where u(x) = ieuu(x)g(x)£ Tn_r_1 and M does not contain the constant term. More-
over (20) yields that /(x) = Re u(x) has m—2 distinct zeros at (a, b), where m - 2 g 

1. On the other hand t is a trigonometric polynomial of degree at most n—r—2. 
Thus either t is identically zero or it has not more than 2w — 2r—4 distinct zeros at 
(a, b). But since r=[2n/3] it follows that 2 / i - 2 r - 4 < 3 r + 3 - 2 r - 4 = = r - l . Hence 
i(x) = Re«(x) is the zero function. Using that does not contain the con-, 
stant term we finally obtain that u is identically zero, a contradiction. The theorem is 
proved. 

3. In this final section of our paper we shall solve some extremal problems con-
nected with the unicity of best Chebyshev approximation of real differentiable func-
tions by lacunary polynomials. Consider the space C0[ —1, 1]. Then Pn = 
= span {1, x, ..., A:"-1} is a simple example of a Chebyshev subspace of C0[ —1, 1]. 
Here and in what follows we denote by span {...} the real linear span of functions 
specified in the brackets. Let us now omit the basis function xk ( 0 < £ < n —1) and 
consider the resulting space oflacunary polynomials span {1, ..., xk_1, xk+1, ... 
..., x"-1}. The polynomials in P® x may still have n — 1 distinct zeros at [ — 1,1], 
while the dimension of this space is only n—1. Thus P f l 1 is not a Chebyshev subspace 
of C0[ —1, 1]. On the other hand it was shown in [2] that Pik}_i is a Chebyshev sub-
space of Cj[ —1, 1], if 4. Analogously, if we add to P„ an arbitrary power func-
tion xr (r€N, r£w + l) then the resulting space P ^ 1 = s p a n {1, x, ..., x"_1, xr} 
is Chebyshev in C0[— 1, 1] only if r — n is even but nevertheless it is Chebyshev in 
Cj[ — 1, 1] for any r (see [2]). Thus deleting from P„ or adding to P„ a power function 
we in general violate the Haar property and hence obtain nonuniqueness of best 
Chebyshev approximation in C„[ — 1, 1]. On the other hand the unicity with restric-
tion to the space Cj[— 1, 1] still holds. This observation raises the following ques-
tions : 

A) Determine the maximal integer y = y(ri) such that omitting from P„ arbi-
trary y basis functions xr\ ..., xr? (1 ... 2, N) the resulting set of 
lacunary polynomials P*_y=span {x\ OS/S«— 1, i V ^ , 1 =y=y} is still a Cheby-
shev subspace of Cj[—1, 1]. 

B) Determine the maximal integer /i=/j.(n) such that adding to P„ arbitrary ¡i 
powers x'1, ...j x'" (H +1 = , if€N) the resulting set of lacunary polyno-
mials P'n+ll = span{l,x, . . . ,x"_1 , x'1, ...,x'"} is still a Chebyshev subspace of Cj[—1, 1]. 

We shall verify in this section that y(n) = [n/4] and n(n) = [n/2]. Thus omitting 
(or adding) from P„ a considerable number of power functions we can still 
guarantee the unicity of best Chebyshev approximation in Cj[ —1,1]. 
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In what follows the finite-dimensional Chebyshev subspaces of C0[ —1,1] will 
be called Haar spaces. 

We shall need the following simple lemma. 

Lemma 3. Let and 0 = m 0 < m 1 < . . . be a sequence of integers such 
that mj—mj-i is odd for each j= 1,2, ..., r. Then the space P*+1=span {l=xm°, 
x™',..., x"1--} is a Haar space. 

Proof . We shall prove the lemma by induction. For r= 1 the statement is 
evident. Assume that it holds for r—1 (rs2) . For any p£P*+1 which is not a con-
stant function p'(x)=^~1p(x), where p£Pr=spar> {l,*"1»-"1', By 
our assumption Pr is an r-dimensional Haar space, hence p has at most r — 1 distinct 
zeros at [ — 1,1]. Moreover, mx—1 is even, therefore p' has at most r—1 points of 
change of sign at [ — 1,1]. This yields that p has not more than r distinct zeros at 
[ — 1,1]. The lemma is proved. 

By the well-known interpolatory property of Haar spaces it follows that each 
extremal set of an /i-dimensional Haar space consists of exactly n + 1 points on [ —1,1]. 
In particular if U„ contains a ¿-dimensional Haar subspace ( k ^ n ) then each extremal 
set of U„ consists of at least k+1 points (i/„cC0[ —1, 1]). We shall frequently use 
this simple observation. 

Theo rem 3. For any n^4, y(n)=[«/4]. 

P roof . Let us prove at first that y(n)S[n/4]. Set m=[n/4] and let l ^ r 1 < . . . 
2 be arbitrary integers. Omitting from P„ the basis functions xf' ( 1 ^ / s 

^ m ) we obtain the space P*_m=span x'', ..., x'"-™-1}, where 0=t0<t1-=:... 
. . .<ín_m_i=/i—1 and ti^rj forevery Og/Sn—m —1, l ^ j ^ m . Set cJ=tJ — tj_i, 
l^j^n—m—l. Evidently, at most m of these n—m—l integers are even. Deleting 
from the sequence 0 = i 0 < i 1 < . 1 those integers t¡ for which c¡ is 
even we obtain a sequence 0=/¿<?í<. . . -=/ j=h—1, where s^n—2m—\. Let us 
prove that for any l^j^s, t'j—t'jis odd. Indeed, we have for some <7<r, that 
t'j-1=tq<tq+1^...<tr=tj, where c¡ is even for every q + l ^ i ^ r — l , while cT is 

r 
odd. Therefore t'¡—t'}_x=tT—tq= 2 c't is odd. Applying Lemma 3 we can con-

> = 9 + 1 
elude that span {x'o, ..., x'»} is a Haar space. Thus P*_m contains a Haar space of 
dimension s+l^n—2m. Therefore each extremal set of P*_m consists of at least 
n—2m+1 points. If the points of an extremal set of P*_m are special zeros of g£P*_m 

then g has at least (n—2m+l)+(n—2m—l)=2n—4m^n zeros counting double 
zeros twice. Since g£P„ it follows thatg is identically zero. Thus we obtain by Corol-
lary 1 that P*_m is a Chebyshev subspace of Cj[ —1, 1], i.e". y(n)Sm=[«/4]. 

Now we shall verify that y(n)Sm=[n/4]. We have n=4m+i ( /=0 ,1 ,2 ,3) . 
Assume that in contrary y(w)Sm+l, i.e. omitting from P„ arbitrary m+1 basis 
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functions we still have a Chebyshev subspace of Cj[ —1,1]. Set 

= span{1, x, ..., jc2m+i-3, x2 m + i"1 , ..., x^*'"1}. 

P^_m_i is generated from P 4 m + i=P„ by deleting m + l powers x2 m + i _ 2 + 2 s , OS iSm. 
Thus by our assumption P*_m_± is a Chebyshev subspace of Cj[ —1,1]. Consider 
the function / ( * ) = * f c , + | - 1 (x<E[-l, 1]). 

Case 1: i= 1 or 3. Then/ i s odd. Since/possesses a unique best approximation 
q in P*_m_1, q is odd, too. But the powers x 2 m + i - 1 + 2 s (OSiSm) are even, hence 
q£P2m+i-s. Therefore /—#=i2 m + i_2 , where tk(x)=2~k+1 cos k arccosx denotes 
the Chebyshev polynomial of degree k. Consider the extremas of t2m+i_2: 
=cosjnl(2m+i—2) (0^j^2m+i—2). Since q is the best approximation of / in 
Pn-m-i it follows from Lemma 1 that the set {x } , 0sjs2m+i—2} or a proper sub-
set of it is an extremal set of P*_m - 1 . On the other hand P*_m_1z>P2m+i_2, hence 
each extremal set of P*_m - 1 contains at least 2m+i— 1 points. Thus the set {xj, 
0 s / s 2 m + / — 2 } is an extremal set of P*_m_x. Consider now the polynomial 

2 m + i - 3 

(21) />(*) = ( l - x 2 ) I ] (x -xd 2 . 
i=l 

Evidently, each Xj is a special zero of p (0s/^2m+i '—2) and deg p=4m+2i—4s 
S 4 m + i —1. Furthermore, since x}= — x2m+i_2_y (0 s / s2m+i—2) it follows that 
p is even. Thus finally we obtain that p£P*_m_1, which contradicts Corollary 1. 

Case 2: i=0 or 2. In this case instead of polynomial p given by (21) we should 
consider the polynomialp*(x)=x/5(x). Then we can derive a contradiction analo-
gously to Case 1, the details are left to the reader. 

Thus the assumption y(ri)^m+1 leads to a contradiction. This completes the 
proof of the equality v(")=[w/4]. 

T h e o r e m 4. For any nS2, p(n)=[n/2]. 

Proof . Let us verify that p.(n)^m=[n/2]. Take arbitrary integers / i + l s 
and consider the space P^+m=span {1, x , . . . , x"_1, x'1, ..., x'm}. 

Obviously, each extremal set of P'n+m consists of at least n-f 1 points. We state that 
P'„+m is a Chebyshev subspace of Cj[—1,1]. Assume the contrary. Then for some 
extremal set of P'„+m and some g£P^+ m \{0} the points of the extremal set are spe-
cial zeros of g, hence g' has at least 2n—1 distinct zeros at [—1,1]. Furthermore 
g'gspan {1, x,..., x"~2, x '1 _ 1 , . . . , x'm_1}\{0}. By Lemma 3 the space span{1, x , . . . 
..., x" - 2 , x'1-1 , ..., x'm_1} can be imbedded to a Haar space of dimension at most 
n+2m—ls2w—1. This means that each element of this space, in particular g', 
may have at most 2n—2 distinct zeros at [—1,1], a contradiction. By this contradic-



388 András Kroó 

tion we obtain that P'n+m is a Chebyshev subspace of Cj[ —1, 1], i.e. p (ri)S w — 
=[n/ 2]. 

Assume now that p(ri)^m +1. Set n=2m+i ( /=0,1) , 
p' — crmn /1 v y.2m + i-l v2m+i + l v4m + i + l\ ^n+m + i ~ span X, ..., X , X , ..., X }. 

Then P'n+m+1 is generated from P2m-H = Pn by adding m + 1 basis functions 
.v2m+i+1+2s (Os j s f f l ) . Since f i (n )^m+1, it follows that is a Chebyshev 
subspace of Cj[ —1, 1]. Now we can derive a contradiction analogously to the proof 
of Theorem 3. We omit the details. 

This completes the proof of Theorem 4. 

Consider now the general case of lacunary polynomials. Let 0=W0</M1< ... < m r 

be arbitrary integers and set 

(22) P = Pr+1 = span {1 = x"1«, xmi, ..., (r£N). 

Furthemore denote by 5(P) the number of those j-s for which mJ—mj_1 is even, 
1 .Then 0^<5(P)Sr=dim ( P ) - l . By Lemma 3 if 5(P) = 0 then P is a Haar 
space on [—1, 1]. It can be easily shown that this condition is also necessary for the 
Haar property. The next theorem gives a sufficient condition for P to be a Chebyshev 
subspace of Cj[ —1, 1]. 

T h e o r e m 5. Let dim (P)^4 and assume that 

(23) ¿ ( P ) ^ [ ( d i m ( P ) - l ) / 3 ] 

holds. Then P is a Chebyshev subspace of Cj[—1, 1]. 

P roo f . Consider the space P* which results from P after deleting in (22) all 
basis functions xmJ such that nij — nij _ t is even. Obviously, P* is a space of dimension 
dim (P) — 5(P). Moreover, similarly as in the proof of Theorem 3 we can show that 
5(P*) = 0, thus by Lemma 3 P* is a Haar space. Therefore each extremal set of P 
consists of at least dim(P*) + l = d i m ( P ) - 5 ( P ) + l points. Assume that (23) 
holds but P is not a Chebyshev subspace of Cj[ — 1,1]. Then there exists a p£P\{0} 
such that the set of special zeros of p contains at least dim (P) — 5 (P) + 1 points. 
This means that p' has at least 2dim (F)—2<5(P) — 1 distinct zeros at [ — 1, 1]. Further-
more, p '=xm '_ 1g> where gispan {1, xm*~m', ..., xm--~m'}=P* and g is not identi-
cally zero. It is evident, that S(P*)^5(P). Hence adding to P* at most 8(P) power 
functions we can obtain (by Lemma 3) a Haar space. This means that P* can be 
enbedded to a Haar space of dimension at most dim(P)+5(P)—1. Hence g( :P*\{0} 
can have not more than dim (P)+(5(P)—2 zeros, i.e. p' has at most dim(P) + 
+<5(P) — 1 distinct zeros at [ — 1,1]. Since we have shown that p' has at least 
2dim ( P ) - 2 8 ( P ) - 1 distinct zeros, it follows that 2dim ( P ) - 2 8 ( P ) - \ ^ d i m (P) + 
+<5(P)-1, i.e. dim (P)s3<5(P). But this contradicts (23). The theorem is proved. 
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Remark . The converse of Theorem 5 is not true in general. There exist Cheby-
shev subspaces of Cj[ —1, 1] of the form (22) such that (23) does not hold. Indeed, 
let n=2k and add to P„ k odd powers greater than /2—1. Then for the resulting space 
P the realtion 8(P)=k holds. By Theorem 4 P is a Chebyshev subspace of Cj[ — 1, 1]. 
On the other hand <5(P) = fc>A:--l = [ (d im(P) - l ) /3 ] . 
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