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Which C , contraction is quasi-similar to its Jordan model?
PEI YUAN WU*

Dedicated to Professor Béla Szbékefalvi-Nagy on his 71st birthday

For certain C , contractions on a Hilbert space, a Jordan model has been
obtained by B. Sz.-NaAGy [3] (cf. also [5]). It was shown that a C , contraction T
with the defect index dp=rank (/—T*T)'? finite is completely injection-similar
to a unique Jordan operator of the form J=S5(¢,)®... ® S(¢,)®S:, where ¢;’s are
non-constant inner functions satisfying ¢;l@;_;, S(@;) denotes the compression
of the unilateral shift S(¢;) f=P;(e"f) for feH*©¢,;H? P; being'the' (orthogonal)
projection onto H*©¢;H? j=1,...,k, and S, denotes the unilateral shift on
HZ?. Moreover, if n=d; and m=dp*=rank (I-TT*)"* then k=n and I=m—n.
It is known that in general T is not quasi-similar to J even when m<oo. (For an
example, see [5], pp. 321—322.) In this paper, we find necessary and sufficient con-
ditions under which they are quasi-similar at least in the case when both defect
indices of T are finite. The main result (Theorem 2 below) is a generalization of the
corresponding result for C,, contractions (cf. [13], Lemma 1). We also obtain other
auxiliary results concerning the invariant subspaces and approximate decomposi-
tions of C, contractions. Our treatments of contractions will be based on the dila-
tion theory developed by B. Sz.-Nagy and C. Foias. The main reference is their
book [4].- :

Recall that for operators T, and T, on H, and H,, respectively, T,<T, (resp.
T, iTz) denotes that there exists an operator X: H,—~H, which is injective (resp.
has dense range) such that T,X=XT;. If X is both injective and with dense range
(called quasi-dﬁ?nity), then we denote this by T3<T,. T, is quasi-similar to T,
(T,~Ty) if T7<T, and T,<T;. T12T2 denotes that there exists a family of
injections {X,} such that T,X,=X,T; foreachaand V X, H,=H,. T, is completely

injection-similar to T, (Tlf\‘l T, if T, °<iT2 and T, ) T..
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We start by proving the following preliminary lemma.

Lemma 1. Let T and S be C., contractions with finite defect indices on

H and K, respectively. Let T= ]on H=H,®H, and S= [0 ;] on K=
2

O T,
=K, ® K, be the triangulations of type [%’ c, ] If T~S, thenT,~S, and Ty~ S,.

Proof. Let X: H~K be a quasi-affinity which intertwines I and S.
Since H,={x¢H:T"x—~0 as n—} and K;={y€K:S"y—~0 as n—oo}, it is
easily seen that XH;SK,. Hence X can be triangulated as X= A(;l ; ] Note that
2

X; is an injection which intertwines T; and S;. Thus T, 1<S1 On the other hand,
X, has dense range and intertwines T2 and S, whence T2<S2 Similarly, from

S§'< T we infer that S1<T1 and S2<T2 Hence T;~S; and T,~S, as asserted
(cf. [6], Theorem 1 (a) and [11], Theorem 2.11).

Now we are ready to prove our main result.

Theorem 2. Let T be a C., contraction with finite defect indices on H and
let T= €1 ;2
Jfollowing statements are equivalent:

(1) T is quasi-similar to its Jordan model,

(2) T, is quasi-similar to a unilateral shift;

(3) there exists a bounded analytic function § such that QO . =041 for some
outer function 8, where O, is the x-outer factor of the characteristic Sfunction
Or of T. '

Moreover, under these conditions we have T~T\&S,_, (m=dp, n=dy)
and T~T,®T, and there exist quasi-affinities X:H—~H,®H:_, and Y:H,®
@®H2_,~H intertwining T and T\®S,-, and quasi-affinities Z: H—~H,® H,
and W:H ,@H,—~H intertwining T and T ®T, such that XY=06(T1®S,_,),
YX=6(T), ZW=6(T\®T,) and WZ=46(T).

] on H=H,®H, be the triangulation of type [%’ é ] Then the
1.

Proof. (1)=(2). Let J=J,@®J, be the Jordan model of T, where J,=S(¢;)® ‘

é)..teaS((o,‘) and J,=S§,_,. Certainly, J= '(])1'(])
‘ 2

[C"' ¥ ] By Lemma 1, T~J implies Ty~J; and Ty~J,=S,,_,
(2)=>(3) Let ©,;=0,0,; be the *-canonical factorization of ‘@y. Then.
the characteristic functlon of T2 coincides with the purely contractive part e *e

of @,,. By [13], Lemma 1, there exists a bounded analytic function Q° and an outer
function d° such that 90612 0°I.  Condition (3).follows immediately.

is the triangulation of type
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(3)=(1). Note that 2 must be an outer function since QHZ2Q0, H:=
=6HZ=H? implies that QHZ=H?. Consider the operator @, from HZ to H?
defined by Q,f=Qf for feH?. Let K=ker Q,. Then K is an invariant subspace
for S,,, the unilateral shift on H2. It follows that K=®H? for some inner function
¢, where 0=I=m. We consider the functional model of T, that is, consider T as
the operator defined on H=H2© 0 H? by Tf=P(e"f) for feH, where P de-
notes the (orthogonal) projection onto H. Similarly, consider 7; as defined on H,;=
=H00,,H> by Tig=P,(c"g) for gcH,, where P, denotes the (orthogonal)
projection onto H,. (Here T; is unitarily equivalent to the C,, part of T.) Now define
X:H-~H,®H} by ,

Xf= P (Qf)DD*(6f—0,.9f) for fCcH.
Note that
QO —0,.Qf) = 6Qf— Q6. Qf = 6Qf—5Qf = 0.

Hence 6f—0,.Qf is in ker @, =K=®H? Thus &*(6f—0,,Qf) is indeed in
H?. Next define Y:H,®H?~H by ’

Y(g®h) = P(@*‘eg+<1')h)‘ for geahEHl'eaH,z.

It is easily verified that X and ¥ intertwine T and T, 1DS,. Moreover, for ghe
€H,®H? we have ‘ '
XY(geah) = XP(@*eg+¢h) = X(O,,8+Ph—Oru) =
= P,(Q0,.g+QPh—QO; ) HP* (50,8 +5Ph—50,u—0,,90,,5—0O,,QPh+
+0,,920ru) = P,(5g— 060 ,,u)D*(6Oh) =P, (5g) Doh = §(T1®S) (gdh),

where u€ H:. On the other hand, for f¢ H we have

YXf =Y [Py(Qf)DD*(f— O Q)] = Y (U — 0, 0) ®D* (6~ O, )] =
= P[0, Qf— 0,,0,,v+88*(3f— 0,,9f)] = P(O,,. Yf —Orv+3f~0,,Qf) =
= P(5f) = 6(D)f,

where »€ H2 and we made use of the fact that #*w=w for we @H? to simplify
the expression. That § is outer implies that both (778 S;) and 6(T) are quasi-
affinities. We conclude that so are X and ¥. Thus T~ T.®S,;. As before, let J=
=J;®J, be the Jordan model of T. Then J; is the Jordan model of Ty (cf. [11],
Lemma 2.7). From T;~J,, we infer that T'~J; & S,. If follows from the uniqueness
of the Jordan model of T that /=m—n (cf. [5], Theorem 3) and therefore T~
~T DS e n=J1 DT ,=J.

From the proof above and the proof of (2)=(1) in [13], Lemma 1, we may
deduce that T~T,&@ T, and there are intertwining quasi-affinities Z’ and W’ such
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that Z’W’'=8*(T,®T,) and W’'Z’=6%*T). In the following, we show that actually
quasi-affinities Z and W can be found for which ZW =6(T,®T;) and WZ=46(T).

As before, consider the functional model- of T. Then H=H>©O H?, H,=
=0, H'00;H: and H,=H:60O,H:. Assume that T has the triangulation

T= 1(;1 ?] on the decomposition H=H,® H,. Define S: Hy,—~H, by
2
Sf= P(0,.Qf) for fEH,,
where P denotes the (orthogonal) projection onto H. We first check that TS —ST,=
=8(T)R. For fcH,, assume that T,f=e"f—O@;u—0,v and Rf=0,.» for
some u, v€ H>. Then
(T\S—STy) f =T, P(0,. )~ S(e"f~Oru—0,,v) =
= P("0,,.Qf)—P(O,. Q" f-0,00,u—0,,20,,0) =

= P(60,u—30,,v) = P(50,,v).
On the other hand,

(T Rf = 6(T1) (O v) = P(30,,0).
Hence T,S—ST,=38(T)R as asserted. Now define Z: H—~H,®H, and W H1€B

[6(T1) s] W [1 V-5
“lo 1) “lo s(my)

Ty vV _ :
0 6(T2)] on H=H,@®H,. The

proof that Z and W intertwine T and 7,®7, and that ZW=45(T; @ T,) - and
WZ=456(T) follows exactly the same as the one for Theorem 2.1 in [12]. We leave
the verifications to the readers. This completes the proof.

where V is the operator appearing in 6(7T)=

We remark that the proof of (3)=(1) in the preceding theorem is valid even
when dr.=oo. Recall that for an arbitrary operator T, Alg T, {T}” and {T} denote
the weakly closed algebra generated by T and 7, the double commutant and the
commutant of T; Lat T, Lat” T and Hyperlat T denote the lattices of invariant
subspaces, bi-invariant subspaces and hyperinvariant subspaces of T, respectively.

Corollary 3. Let T be a C., contraction with finite defect indices and let
T= 0 T] Co. = ] If Tis quasi-similar to its Jordan
2
model, then Lat T>Lat(T,®T,) and Lat” T o~ Lat” (T\oT,). '

be the triangulation of type [

Proof. Since a C., contraction T with dr<oco satisfies Alg T={T}" (cf.
[10], Theorem 3.2 and [9], Theorem 1), we have Lat T=Lat” T and Lat (T, @ Ty)=
=Lat” (T;®T,). Hence we only need to prove Lat T=Lat(I;®T,). It is easily
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verified that the lattice isomorphisms can be implemented by the mappings K ~ZK
and L-WL for Ke€LatT and LcLat(T,®7T,), where Z and W are the quasi-
affinities given in Theorem 2. ' '

For the hyperinvariant subspace lattice, more is true. If T'is a C., contraction

with dr<oe and T=[T1 *] is of type Co. * , then T and Ty T, have the
071 0 C.

same Jordan model (cf. {11], Lemma 2.7) whence Hyperlat T= Hyperlat (T, & T)
(cf. [8], Theorem 2). This is true even without the quasi-similarity of T to its Jordan
model.

If T is as above and K€Lat T, then, unlike the case for the more restrictive
class of Cy, contractions (cf. [13], Corollary 4 (2)), the quasi-similarity of T to its
Jordan model does not imply that T|K is quasi-similar to its Jordan model. The
next example suffices to illustrate this.

Example 4. Let T be the C , contraction S(uv)@®.S, where u is the Blaschke
product with zeros 1—1/r?, n=1,2,...,v is the singular inner function »(1)=
=exp ((A+1)/(A—1)) for |i|<1, and S is the simple unilateral shift. Then the

characteristic function of T is @T=[lg’]. Let KeLat T correspond to the regular

factorization @r=0,0,, where

@2:—1:.(0 u} and 0, =i_[u].

V2 \y —u ~ V2 lv

Note that T is itself a Jordan operator, but 7|K is not quasi-similar to its Jordan

model (cf. [5], pp. 321—322). '
Since it is known that if T is a C;, contraction with finite defect indices which

is quasi-similar to its Jordan model or T is a C, contraction, then Lat T=Lat” T=

={ran S: S¢ {TY} (cf. [13], Corollary 8 and [], Corollary 2.11), we may be tempted

to generalize this to C , contractions. As it turns out, this is in general not true.

The counterexample is provided by the operator T and its invariant subspace K in

Example 4. Indeed, if K=ran S for some S€{TY, then, by the main theorem of

{71, there exist bounded analytic functions <15=[$11 z‘Z] and ¥Y=[¥] such that
21 22 .

$0;=0,¥ and Hi=(PH2+6O,H?)~. From the first equation we have ¢, v=
=(1/V2)y¥ and @uu=(1/yY2)y. Thus oy and uly. Since uAv=1, these imply
that wo|y. Say, Y =uvw for some wecH=. We obtain ¢,;=(1/¥2)uw and @y=

=(1/V§)vw. For [g]eHg and he H?,

qb[f ]+@1 h= (1/V5)wVf+<ng]+L_[”h] - [u <DJ [(1/ﬁ) (wf+h)],
\8 (Uﬁ)vwf’f‘q)zzg _V2 vh U P2 g .
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Since these vectors are dense in HZ, we conclude that [Z g”]-, together with- its
22

determinant UQy—V(Pys, is outer (cf. [4], Corollary V.6.3). The latter contradicts
the main result proved in [2]. )
However, in such a situation, we still have something to say.

Theorem 5. Let T be a C., contraction with dr<oo on H. Then Lat T=
=Lat”" T= {SlHV SoH: Sy, Se€ {T}’}.

Proof. Let K€LatT and let J=S(¢)®...®S(¢,)®S, on H, and J'=
=SWY)®...0SW,)®S, on K, be the Jordan models of T'and TI|K, respectively.
Since J'<T|K <T<J, we infer that m=n, g=p and Yile; for j=1,..,m
(cf. [5], Theorem 4). Say, ¢;=4yn; for eachj. Note that S(¢;)lrann;(S(¢;))=S¥;)
. (cf. [5], pp. 315—316). For each j, let Z; be the operator which implements this uni-
tary equivalence and let Z: H,—~K; be the operator

Z(S(@))® ... 0Z (S (0,) DOG... OB P,

N
n—m

where P denotes the (orthogonal) projection from H3 onto H:. Then Z intertwines
J and J’ and has dense range. Let X:H—H, be the quasi-affinity which intertwines
T and J and let Y;, Y;:K;—~K be the injections which intertwine J* and T|K and
are such that K=Y,K,VY,K;. LetS$;=Y,ZX and S§,=Y,ZX. Then S, and S,
are in {T'Y and

K= Y].KIVYZK]. = YIZHlezzHl = YIZXHVYZZXH = SlHVSZH-

~ This completes the proof.

It is interesting to know whether the converse of Lemma 1 is true. It may turn
out that a stronger assertion is true.

Open problem: If T is a C,, contraction with dr<e and T= T, *]

0 T,

is the triangulation of type [C(';’ ; ], is T~T1T,? '
1-

In this respect, we have the following partial result.

Theorem 6. If T is a C., contraction with dr<o and T= gl ;] on
. 2

C()"" C*l] then TL@T,RT<T,&T,.
Proof. Let 7=J,&J, be the Jordan model of T, where J1=S(@)®... &S ()

and J,=S,,_, (m=dr«, n=dy). Then JXT<J. Since J; and J, are the Jordan

models of T; and T, respectively (cf. [11], Lemma 2.7), we have Ty~J; and

"H=H,®H, is the triangulation of type
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TR Ty<J,. It follows that T,@Ty<J,@J,<T and T<J,®J,~T,®J;. Let X

be a quasi-affinity which intertwines T and T;&®J,. Then it is easily verified that

on the decompositions H=H,®H, and H,®H2_,, X can be triangulated as

X= A(;l i,,‘”' . Consider the operator X’ ’=["§1 {3] on H=H,® H,. It is easily seen
2 . .

that X” intertwines T and T,&®7T,. Moreover, since T, is a Co(N) contraction
and X; is an injection in {T}}, X, must be a quasi-affinity (cf. [6], Theorem 2).
It follows that X” is a quasi-affinity. This shows that T<T,&T,, completing the
proof. ' .

We would like to thank the referee for keeping us from making a foolish mistake.
The arguments before Theorem 5 are due to him.

References

[1] H. Bercovicl, On the Jordan model of C, operators. II, Acta Sci. Math., 42 (1980), 43—56.
[2] E. A. NorDGREN, The ring N* is not adequate, Acta Sci. Math., 36 (1974), 203—204.
[3] B. Sz.-NAGY, Diagonalization of matrices over H™, Acta Sci. Math., 38 (1976), 223—238.
[4] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North Holland—
Akadémiai Kiadé (Amsterdam—Budapest, 1970).
[5] B. Sz.-NaGy and C. Foias, Jordan model for contractions of class C.q, Acta Sci. Math., 36
(1974), 305—322.
[6] B. Sz.-NaGy and C, Foias, On injections, intertwining operators of class Cy, Acta Sci. Math., 40
(1978), 163—167. _
[71 R. 1. Teoporescu, Factorisations réguliéres et sous-espaces invariants, Acta Sci. Math., 42
(1980), 325—330. .
[8] M. Ucmrvama, Hyperinvariant subspaces for contractions of class C.,, Hokkaido Math. J.,
6 (1977), 260—272.
9] M. UcHivaMa, Double commutants of C.q contractions. II, Proc. Amer. Math. Soc., 74 (1979),
271--2717.
{10] P. Y. Wy, Commutants of Cy(N) contractions, Acta Sci. Math., 38 (1976), 193—202.
[11] P. Y. Wu, C., contractions: cyclic vectors, commutants and Jordan models, J. Operator Theory,
5 (1981), 53—62.
{12] P. Y. Wu, Approximate decompositions of certain contractions, Acta Sci. Math., 44 (1982),
137—149. :
[13] P. Y. Wu, When is a contraction quasi-similar to an isometry?, Acta Sci. Math., 44 (1982),
151—155.

DEPARTMENT OF APPLIED MATHEMATICS
NATIONAL CHIAO TUNG UNIVERSITY
HSINCHU, TAIWAN, CHINA



