Which $C_{.0}$ contraction is quasi-similar to its Jordan model?

PEI YUAN WU*

Dedicated to Professor Béla Szőkefalvi-Nagy on his 71st birthday

For certain C_{0} contractions on a Hilbert space, a Jordan model has been obtained by B. Sz.-NAGY [3] (cf. also [5]). It was shown that a $C_{.0}$ contraction T with the defect index $d_T = \operatorname{rank} (I - T^*T)^{1/2}$ finite is completely injection-similar to a unique Jordan operator of the form $J = S(\varphi_1) \oplus ... \oplus S(\varphi_k) \oplus S_l$, where φ_i 's are non-constant inner functions satisfying $\varphi_j | \varphi_{j-1}$, $S(\varphi_j)$ denotes the compression of the unilateral shift $S(\varphi_i) f = P_i(e^{it}f)$ for $f \in H^2 \ominus \varphi_i H^2$, P_i being the (orthogonal) projection onto $H^2 \oplus \varphi_i H^2$, j=1, ..., k, and S_i denotes the unilateral shift on H_l^2 . Moreover, if $n=d_T$ and $m=d_T^*=\operatorname{rank}(I-TT^*)^{1/2}$, then $k \le n$ and l=m-n. It is known that in general T is not quasi-similar to J even when $m < \infty$. (For an example, see [5], pp. 321-322.) In this paper, we find necessary and sufficient conditions under which they are quasi-similar at least in the case when both defect indices of T are finite. The main result (Theorem 2 below) is a generalization of the corresponding result for C_{10} contractions (cf. [13], Lemma 1). We also obtain other auxiliary results concerning the invariant subspaces and approximate decompositions of C_{0} contractions. Our treatments of contractions will be based on the dilation theory developed by B. Sz.-Nagy and C. Foiaş. The main reference is their book [4].-

Recall that for operators T_1 and T_2 on H_1 and H_2 , respectively, $T_1 \stackrel{i}{\prec} T_2$ (resp. $T_1 \stackrel{d}{\prec} T_2$) denotes that there exists an operator $X: H_1 \rightarrow H_2$ which is injective (resp. has dense range) such that $T_2X = XT_1$. If X is both injective and with dense range (called *quasi-affinity*), then we denote this by $T_1 \prec T_2$. T_1 is *quasi-similar* to T_2 ($T_1 \sim T_2$) if $T_1 \prec T_2$ and $T_2 \prec T_1$. $T_1 \stackrel{ci}{\prec} T_2$ denotes that there exists a family of injections $\{X_{\alpha}\}$ such that $T_2X_{\alpha} = X_{\alpha}T_1$ for each α and $\bigvee X_{\alpha}H_1 = H_2$. T_1 is completely injection-similar to T_2 ($T_1 \stackrel{ci}{\sim} T_2$) if $T_1 \stackrel{ci}{\sim} T_2$) if $T_1 \stackrel{ci}{\sim} T_2$ and $T_2 \stackrel{ci}{\prec} T_1$.

Received November 15, 1982.

^{*} This research was partially supported by National Science Council of Taiwan, China.

We start by proving the following preliminary lemma.

Lemma 1. Let T and S be $C_{.0}$ contractions with finite defect indices on H and K, respectively. Let $T = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$ on $H = H_1 \oplus H_2$ and $S = \begin{bmatrix} S_1 & * \\ 0 & S_2 \end{bmatrix}$ on $K = K_1 \oplus K_2$ be the triangulations of type $\begin{bmatrix} C_0 & * \\ 0 & C_1 \end{bmatrix}$. If $T \sim S$, then $T_1 \sim S_1$ and $T_2 \sim S_2$.

Proof. Let $X: H \to K$ be a quasi-affinity which intertwines T and S. Since $H_1 = \{x \in H: T^n x \to 0 \text{ as } n \to \infty\}$ and $K_1 = \{y \in K: S^n y \to 0 \text{ as } n \to \infty\}$, it is easily seen that $XH_1 \subseteq K_1$. Hence X can be triangulated as $X = \begin{bmatrix} X_1 & * \\ 0 & X_2 \end{bmatrix}$. Note that X_1 is an injection which intertwines T_1 and S_1 . Thus $T_1 \stackrel{i}{\prec} S_1$. On the other hand, X_2 has dense range and intertwines T_2 and S_2 whence $T_2 \stackrel{d}{\prec} S_2$. Similarly, from $S \prec T$ we infer that $S_1 \stackrel{i}{\prec} T_1$ and $S_2 \stackrel{d}{\prec} T_2$. Hence $T_1 \sim S_1$ and $T_2 \sim S_2$ as asserted (cf. [6], Theorem 1 (a) and [11], Theorem 2.11).

Now we are ready to prove our main result.

Theorem 2. Let T be a $C_{.0}$ contraction with finite defect indices on H and let $T = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$ on $H = H_1 \oplus H_2$ be the triangulation of type $\begin{bmatrix} C_0 & * \\ 0 & C_1 \end{bmatrix}$. Then the following statements are equivalent:

(1) T is quasi-similar to its Jordan model;

(2) T_2 is quasi-similar to a unilateral shift;

(3) there exists a bounded analytic function Ω such that $\Omega \Theta_{*e} = \delta I$ for some outer function δ , where Θ_{*e} is the *-outer factor of the characteristic function Θ_T of T.

Moreover, under these conditions we have $T \sim T_1 \oplus S_{m-n}$ $(m=d_{T^*}, n=d_T)$ and $T \sim T_1 \oplus T_2$ and there exist quasi-affinities $X: H \to H_1 \oplus H^2_{m-n}$ and $Y: H_1 \oplus \oplus H^2_{m-n} \to H$ intertwining T and $T_1 \oplus S_{m-n}$ and quasi-affinities $Z: H \to H_1 \oplus H_2$ and $W: H_1 \oplus H_2 \to H$ intertwining T and $T_1 \oplus T_2$ such that $XY = \delta(T_1 \oplus S_{m-n})$, $YX = \delta(T), ZW = \delta(T_1 \oplus T_2)$ and $WZ = \delta(T)$.

Proof. (1)=(2). Let $J=J_1\oplus J_2$ be the Jordan model of T, where $J_1=S(\varphi_1)\oplus \oplus \dots \oplus S(\varphi_k)$ and $J_2=S_{m-n}$. Certainly, $J=\begin{bmatrix}J_1 & 0\\ 0 & J_2\end{bmatrix}$ is the triangulation of type $\begin{bmatrix}C_0 & *\\ 0 & C_1\end{bmatrix}$. By Lemma 1, $T\sim J$ implies $T_1\sim J_1$ and $T_2\sim J_2=S_{m-n}$.

 $(2) \Rightarrow (3)$. Let $\Theta_T = \Theta_{*e} \Theta_{*i}$ be the *-canonical factorization of Θ_T . Then the characteristic function of T_2 coincides with the purely contractive part Θ_{*e}^0 of Θ_{*e} . By [13], Lemma 1, there exists a bounded analytic function Ω^0 and an outer function δ^0 such that $\Omega^0 \Theta_{*e}^0 = \delta^0 I$. Condition (3) follows immediately. (3)=(1). Note that Ω must be an outer function since $\overline{\Omega H_m^2} \supseteq \overline{\Omega \Theta_{*e} H_n^2} = \overline{\delta H_n^2} = H_n^2$ implies that $\overline{\Omega H_m^2} = H_n^2$. Consider the operator Ω_+ from H_m^2 to H_n^2 defined by $\Omega_+ f = \Omega f$ for $f \in H_m^2$. Let $K = \ker \Omega_+$. Then K is an invariant subspace for S_m , the unilateral shift on H_m^2 . It follows that $K = \Phi H_l^2$ for some inner function Φ , where $0 \le l \le m$. We consider the functional model of T, that is, consider T as the operator defined on $H = H_m^2 \ominus \Theta_T H_n^2$ by $Tf = P(e^{it}f)$ for $f \in H$, where P denotes the (orthogonal) projection onto H. Similarly, consider T_1 as defined on $H_1 = = H_n^2 \ominus \Theta_{*i} H_n^2$ by $T_1g = P_1(e^{it}g)$ for $g \in H_1$, where P_1 denotes the (orthogonal) projection onto H_1 . (Here T_1 is unitarily equivalent to the C_0 part of T.) Now define $X: H \to H_1 \oplus H_1^2$ by

$$Xf = P_1(\Omega f) \oplus \Phi^*(\delta f - \Theta_{*e} \Omega f) \quad \text{for} \quad f \in H.$$

Note that

$$\Omega(\delta f - \Theta_{*e} \Omega f) = \delta \Omega f - \Omega \Theta_{*e} \Omega f = \delta \Omega f - \delta \Omega f = 0.$$

Hence $\delta f - \Theta_{*e} \Omega f$ is in ker $\Omega_+ = K = \Phi H_l^2$. Thus $\Phi^* (\delta f - \Theta_{*e} \Omega f)$ is indeed in H_l^2 . Next define $Y: H_1 \oplus H_l^2 \to H$ by

$$Y(g \oplus h) = P(\Theta_{*e}g + \Phi h) \text{ for } g \oplus h \in H_1 \oplus H_l^2.$$

It is easily verified that X and Y intertwine T and $T_1 \oplus S_i$. Moreover, for $g \oplus h \in H_1 \oplus H_i^2$ we have

$$XY(g \oplus h) = XP(\Theta_{*e}g + \Phi h) = X(\Theta_{*e}g + \Phi h - \Theta_T u) =$$

$$= P_1(\Omega \Theta_{*e}g + \Omega \Phi h - \Omega \Theta_T u) \oplus \Phi^*(\delta \Theta_{*e}g + \delta \Phi h - \delta \Theta_T u - \Theta_{*e}\Omega \Theta_{*e}g - \Theta_{*e}\Omega \Phi h + \Theta_{*e}\Omega \Theta_T u) = P_1(\delta g - \delta \Theta_{*i}u) \oplus \Phi^*(\delta \Phi h) = P_1(\delta g) \oplus \delta h = \delta(T_1 \oplus S_i)(g \oplus h),$$

where $u \in H_n^2$. On the other hand, for $f \in H$ we have

$$YXf = Y [P_1(\Omega f) \oplus \Phi^*(\delta f - \Theta_{*e} \Omega f)] = Y [(\Omega f - \Theta_{*i} v) \oplus \Phi^*(\delta f - \Theta_{*e} \Omega f)] =$$

= $P [\Theta_{*e} \Omega f - \Theta_{*e} \Theta_{*i} v + \Phi \Phi^*(\delta f - \Theta_{*e} \Omega f)] = P (\Theta_{*e} \Omega f - \Theta_T v + \delta f - \Theta_{*e} \Omega f) =$
= $P (\delta f) = \delta(T) f,$

where $v \in H_n^2$ and we made use of the fact that $\Phi \Phi^* w = w$ for $w \in \Phi H_l^2$ to simplify the expression. That δ is outer implies that both $\delta(T_1 \oplus S_l)$ and $\delta(T)$ are quasiaffinities. We conclude that so are X and Y. Thus $T \sim T_1 \oplus S_l$. As before, let $J = = J_1 \oplus J_2$ be the Jordan model of T. Then J_1 is the Jordan model of T_1 (cf. [11], Lemma 2.7). From $T_1 \sim J_1$, we infer that $T \sim J_1 \oplus S_l$. If follows from the uniqueness of the Jordan model of T that l = m - n (cf. [5], Theorem 3) and therefore $T \sim$ $\sim J_1 \oplus S_{m-n} = J_1 \oplus J_2 = J$.

From the proof above and the proof of $(2) \Rightarrow (1)$ in [13], Lemma 1, we may deduce that $T \sim T_1 \oplus T_2$ and there are intertwining quasi-affinities Z' and W' such

that $Z'W' = \delta^2(T_1 \oplus T_2)$ and $W'Z' = \delta^2(T)$. In the following, we show that actually quasi-affinities Z and W can be found for which $ZW = \delta(T_1 \oplus T_2)$ and $WZ = \delta(T)$.

As before, consider the functional model of T. Then $H = H_m^2 \ominus \Theta_T H_n^2$, $H_1 = = \Theta_{*e} H_n^2 \ominus \Theta_T H_n^2$ and $H_2 = H_m^2 \ominus \Theta_{*e} H_n^2$. Assume that T has the triangulation $T = \begin{bmatrix} T_1 & R \\ 0 & T_2 \end{bmatrix}$ on the decomposition $H = H_1 \oplus H_2$. Define $S: H_2 \to H_1$ by $Sf = P(\Theta_{*e} \Omega f)$ for $f \in H_2$,

where P denotes the (orthogonal) projection onto H. We first check that $T_1S - ST_2 = = \delta(T_1)R$. For $f \in H_2$, assume that $T_2f = e^{it}f - \Theta_T u - \Theta_{*e}v$ and $Rf = \Theta_{*e}v$ for some $u, v \in H_n^2$. Then

$$(T_1S - ST_2) f = T_1 P(\Theta_{*e} \Omega f) - S(e^{it} f - \Theta_T u - \Theta_{*e} v) =$$
$$= P(e^{it} \Theta_{*e} \Omega f) - P(\Theta_{*e} \Omega e^{it} f - \Theta_{*e} \Omega \Theta_T u - \Theta_{*e} \Omega \Theta_{*e} v) =$$
$$= P(\delta \Theta_T u - \delta \Theta_{*e} v) = P(\delta \Theta_{*e} v).$$

On the other hand,

$$\delta(T_1) Rf = \delta(T_1) (\Theta_{*e} v) = P(\delta \Theta_{*e} v).$$

Hence $T_1S - ST_2 = \delta(T_1)R$ as asserted. Now define $Z: H \rightarrow H_1 \oplus H_2$ and $W: H_1 \oplus \oplus H_2 \rightarrow H$ by

$$Z = \begin{pmatrix} \delta(T_1) & S \\ 0 & 1 \end{pmatrix} \text{ and } W = \begin{pmatrix} 1 & V-S \\ 0 & \delta(T_2) \end{pmatrix},$$

where V is the operator appearing in $\delta(T) = \begin{bmatrix} \delta(T_1) & V \\ 0 & \delta(T_2) \end{bmatrix}$ on $H = H_1 \oplus H_2$. The proof that Z and W intertwine T and $T_1 \oplus T_2$ and that $ZW = \delta(T_1 \oplus T_2)$ and $WZ = \delta(T)$ follows exactly the same as the one for Theorem 2.1 in [12]. We leave the verifications to the readers. This completes the proof.

We remark that the proof of $(3) \rightarrow (1)$ in the preceding theorem is valid even when $d_{T^*} = \infty$. Recall that for an arbitrary operator *T*, Alg *T*, $\{T\}''$ and $\{T\}'$ denote the weakly closed algebra generated by *T* and *I*, the double commutant and the commutant of *T*; Lat *T*, Lat'' *T* and Hyperlat *T* denote the lattices of invariant subspaces, bi-invariant subspaces and hyperinvariant subspaces of *T*, respectively.

Corollary 3. Let T be a $C_{.0}$ contraction with finite defect indices and let $T = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$ be the triangulation of type $\begin{bmatrix} C_0 & * \\ 0 & C_1 \end{bmatrix}$. If T is quasi-similar to its Jordan model, then Lat $T \cong \text{Lat}(T_1 \oplus T_2)$ and Lat" $T \cong \text{Lat}"(T_1 \oplus T_2)$.

Proof. Since a $C_{.0}$ contraction T with $d_T < \infty$ satisfies Alg $T = \{T\}^{"}$ (cf. [10], Theorem 3.2 and [9], Theorem 1), we have Lat $T = \text{Lat}^{"} T$ and Lat $(T_1 \oplus T_2) = = \text{Lat}^{"} (T_1 \oplus T_2)$. Hence we only need to prove Lat $T \cong \text{Lat} (T_1 \oplus T_2)$. It is easily

verified that the lattice isomorphisms can be implemented by the mappings $K \rightarrow \overline{ZK}$ and $L \rightarrow \overline{WL}$ for $K \in \text{Lat } T$ and $L \in \text{Lat } (T_1 \oplus T_2)$, where Z and W are the quasiaffinities given in Theorem 2.

For the hyperinvariant subspace lattice, more is true. If T is a $C_{.0}$ contraction with $d_T < \infty$ and $T = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$ is of type $\begin{bmatrix} C_0 & * \\ 0 & C_1 \end{bmatrix}$, then T and $T_1 \oplus T_2$ have the same Jordan model (cf. [11], Lemma 2.7) whence Hyperlat $T \cong$ Hyperlat $(T_1 \oplus T_2)$ (cf. [8], Theorem 2). This is true even without the quasi-similarity of T to its Jordan model.

If T is as above and $K \in \text{Lat } T$, then, unlike the case for the more restrictive class of C_{10} contractions (cf. [13], Corollary 4 (2)), the quasi-similarity of T to its Jordan model does not imply that T|K is quasi-similar to its Jordan model. The next example suffices to illustrate this.

Example 4. Let T be the $C_{.0}$ contraction $S(uv) \oplus S$, where u is the Blaschke product with zeros $1-1/n^2$, n=1, 2, ..., v is the singular inner function $v(\lambda) = \exp((\lambda+1)/(\lambda-1))$ for $|\lambda| < 1$, and S is the simple unilateral shift. Then the characteristic function of T is $\Theta_T = \begin{bmatrix} uv \\ 0 \end{bmatrix}$. Let $K \in \text{Lat } T$ correspond to the regular factorization $\Theta_T = \Theta_2 \Theta_1$, where

$$\Theta_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} v & u \\ v & -u \end{pmatrix} \text{ and } \Theta_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} u \\ v \end{pmatrix}.$$

Note that T is itself a Jordan operator, but T|K is not quasi-similar to its Jordan model (cf. [5], pp. 321-322).

Since it is known that if T is a C_{10} contraction with finite defect indices which is quasi-similar to its Jordan model or T is a C_0 contraction, then Lat T=Lat'' T= $=\{\overline{\operatorname{ran} S}: S \in \{T\}'\}$ (cf. [13], Corollary 8 and [1], Corollary 2.11), we may be tempted to generalize this to $C_{.0}$ contractions. As it turns out, this is in general not true. The counterexample is provided by the operator T and its invariant subspace K in Example 4. Indeed, if $K=\overline{\operatorname{ran} S}$ for some $S \in \{T\}'$, then, by the main theorem of [7], there exist bounded analytic functions $\Phi = \begin{bmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{bmatrix}$ and $\Psi = [\psi]$ such that $\Phi \Theta_T = \Theta_1 \Psi$ and $H_2^2 = (\Phi H_2^2 + \Theta_1 H^2)^-$. From the first equation we have $\varphi_{11}v =$ $= (1/\sqrt{2})\psi$ and $\varphi_{21}u = (1/\sqrt{2})\psi$. Thus $v|\psi$ and $u|\psi$. Since $u \wedge v = 1$, these imply that $uv|\psi$. Say, $\psi = uvw$ for some $w \in H^\infty$. We obtain $\varphi_{11} = (1/\sqrt{2})uw$ and $\varphi_{21} =$ $= (1/\sqrt{2})vw$. For $\begin{bmatrix} f \\ g \end{bmatrix} \in H_2^2$ and $h \in H^2$,

$$\Phi\begin{pmatrix}f\\g\end{pmatrix} + \Theta_1 h = \begin{pmatrix}(1/\sqrt{2})uwf + \varphi_{12}g\\(1/\sqrt{2})vwf + \varphi_{22}g\end{pmatrix} + \frac{1}{\sqrt{2}}\begin{pmatrix}uh\\vh\end{pmatrix} = \begin{pmatrix}u & \varphi_{12}\\v & \varphi_{22}\end{pmatrix}\begin{pmatrix}(1/\sqrt{2})(wf + h)\\g\end{pmatrix}.$$

Pei Yuan Wu

Since these vectors are dense in H_2^2 , we conclude that $\begin{bmatrix} u & \varphi_{12} \\ v & \varphi_{22} \end{bmatrix}$, together with its determinant $u\varphi_{22} - v\varphi_{12}$, is outer (cf. [4], Corollary V.6.3). The latter contradicts the main result proved in [2].

However, in such a situation, we still have something to say.

Theorem 5. Let T be a $C_{.0}$ contraction with $d_T < \infty$ on H. Then Lat $T = = \text{Lat}^{"} T = \{S_1 H \lor S_2 H : S_1, S_2 \in \{T\}'\}.$

Proof. Let $K \in \text{Lat } T$ and let $J = S(\varphi_1) \oplus ... \oplus S(\varphi_n) \oplus S_p$ on H_1 and $J' = S(\psi_1) \oplus ... \oplus S(\psi_m) \oplus S_q$ on K_1 be the Jordan models of T and T|K, respectively. Since $J' \stackrel{i}{\prec} T|K \stackrel{i}{\prec} T \prec J$, we infer that $m \le n$, $q \le p$ and $\psi_j |\varphi_j$ for j=1, ..., m(cf. [5], Theorem 4). Say, $\varphi_j = \psi_j \eta_j$ for each j. Note that $S(\varphi_j) | \operatorname{ran} \eta_j (S(\varphi_j)) \cong S(\psi_j)$ (cf. [5], pp. 315—316). For each j, let Z_j be the operator which implements this unitary equivalence and let $Z: H_1 \rightarrow K_1$ be the operator

$$Z_1\eta_1(S(\varphi_1))\oplus\ldots\oplus Z_m\eta_m(S(\varphi_m))\oplus \underbrace{0\oplus\ldots\oplus 0\oplus P}_{n=m},$$

where P denotes the (orthogonal) projection from H_p^2 onto H_q^2 . Then Z intertwines J and J' and has dense range. Let $X:H \rightarrow H_1$ be the quasi-affinity which intertwines T and J and let $Y_1, Y_2:K_1 \rightarrow K$ be the injections which intertwine J' and T|K and are such that $K=Y_1K_1 \lor Y_2K_1$. Let $S_1=Y_1ZX$ and $S_2=Y_2ZX$. Then S_1 and S_2 are in $\{T\}$ and

$$K = Y_1 K_1 \lor Y_2 K_1 = Y_1 Z H_1 \lor Y_2 Z H_1 = Y_1 Z X H \lor Y_2 Z X H = S_1 H \lor S_2 H.$$

This completes the proof.

It is interesting to know whether the converse of Lemma 1 is true. It may turn out that a stronger assertion is true.

Open problem: If T is a $C_{.0}$ contraction with $d_T < \infty$ and $T = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$ is the triangulation of type $\begin{bmatrix} C_0 & * \\ 0 & C_1 \end{bmatrix}$, is $T \sim T_1 \oplus T_2$?

In this respect, we have the following partial result.

Theorem 6. If T is a $C_{.0}$ contraction with $d_T < \infty$ and $T = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$ on $H = H_1 \oplus H_2$ is the triangulation of type $\begin{bmatrix} C_0 & * \\ 0 & C_1 \end{bmatrix}$, then $T_1 \oplus T_2 \stackrel{\text{ci}}{<} T < T_1 \oplus T_2$.

Proof. Let $J=J_1\oplus J_2$ be the Jordan model of T, where $J_1=S(\varphi_1)\oplus \ldots \oplus S(\varphi_k)$ and $J_2=S_{m-n}$ $(m=d_{T^*}, n=d_T)$. Then $J \stackrel{ci}{\prec} T \prec J$. Since J_1 and J_2 are the Jordan models of T_1 and T_2 , respectively (cf. [11], Lemma 2.7), we have $T_1 \sim J_1$ and

454

 $J_2 \stackrel{\text{ci}}{\prec} T_2 \prec J_2$. It follows that $T_1 \oplus T_2 \prec J_1 \oplus J_2 \stackrel{\text{ci}}{\prec} T$ and $T \prec J_1 \oplus J_2 \sim T_1 \oplus J_2$. Let X be a quasi-affinity which intertwines T and $T_1 \oplus J_2$. Then it is easily verified that on the decompositions $H = H_1 \oplus H_2$ and $H_1 \oplus H_{m-n}^2$, X can be triangulated as $X = \begin{bmatrix} X_1 & X_3 \\ 0 & X_2 \end{bmatrix}$. Consider the operator $X' = \begin{bmatrix} X_1 & X_3 \\ 0 & 1 \end{bmatrix}$ on $H = H_1 \oplus H_2$. It is easily seen that X' intertwines T and $T_1 \oplus T_2$. Moreover, since T_1 is a $C_0(N)$ contraction and X_1 is an injection in $\{T_1\}'$, X_1 must be a quasi-affinity (cf. [6], Theorem 2). It follows that X' is a quasi-affinity. This shows that $T \prec T_1 \oplus T_2$, completing the proof.

We would like to thank the referee for keeping us from making a foolish mistake. The arguments before Theorem 5 are due to him.

References

- [1] H. BERCOVICI, On the Jordan model of C_0 operators. II, Acta Sci. Math., 42 (1980), 43-56.
- [2] E. A. NORDGREN, The ring N^+ is not adequate, Acta Sci. Math., 36 (1974), 203-204.
- [3] B. Sz.-NAGY, Diagonalization of matrices over H[∞], Acta Sci. Math., 38 (1976), 223-238.
- [4] B. Sz.-NAGY and C. FOIAŞ, Harmonic analysis of operators on Hilbert space, North Holland— Akadémiai Kiadó (Amsterdam—Budapest, 1970).
- [5] B. SZ.-NAGY and C. FOIAŞ, Jordan model for contractions of class C.0, Acta Sci. Math., 36 (1974), 305-322.
- [6] B. Sz.-NAGY and C. FOIAŞ, On injections, intertwining operators of class C₀, Acta Sci. Math., 40 (1978), 163–167.
- [7] R. I. TEODORESCU, Factorisations régulières et sous-espaces invariants, Acta Sci. Math., 42 (1980), 325–330.
- [8] M. UCHIYAMA, Hyperinvariant subspaces for contractions of class C.0, Hokkaido Math. J., 6 (1977), 260-272.
- [9] M. UCHIYAMA, Double commutants of C_{.0} contractions. II, Proc. Amer. Math. Soc., 74 (1979), 271-277.
- [10] P. Y. WU, Commutants of C₀(N) contractions, Acta Sci. Math., 38 (1976), 193-202.
- [11] P. Y. Wu, C_{.0} contractions: cyclic vectors, commutants and Jordan models, J. Operator Theory, 5 (1981), 53-62.
- [12] P. Y. Wu, Approximate decompositions of certain contractions, Acta Sci. Math., 44 (1982), 137-149.
- [13] P. Y. Wu, When is a contraction quasi-similar to an isometry?, Acta Sci. Math., 44 (1982), 151-155.

DEPARTMENT OF APPLIED MATHEMATICS NATIONAL CHIAO TUNG UNIVERSITY HSINCHU, TAIWAN, CHINA