Which $C_{\text {. }}$ contraction is quasi-similar to its Jordan model?

PEI YUAN WU*
Dedicated to Professor Béla Szökefalvi-Nagy on his 71st birthday

For certain $C_{._{0}}$ contractions on a Hilbert space, a Jordan model has been obtained by B. Sz.-NaGY [3] (cf. also [5]). It was shown that a $C_{\text {. }}$ contraction T with the defect index $d_{T}=\operatorname{rank}\left(I-T^{*} T\right)^{1 / 2}$ finite is completely injection-similar to a unique Jordan operator of the form $J=S\left(\varphi_{1}\right) \oplus \ldots \oplus S\left(\varphi_{k}\right) \oplus S_{l}$, where φ_{j} 's are non-constant inner functions satisfying $\varphi_{j} \mid \varphi_{j-1}, S\left(\varphi_{j}\right)$ denotes the compression of the unilateral shift $S\left(\varphi_{j}\right) f=P_{j}\left(e^{i i} f\right)$ for $f \in H^{2} \ominus \varphi_{j} H^{2}, P_{j}$ being the (orthogonal) projection onto $H^{2} \ominus \varphi_{j} H^{2}, j=1, \ldots, k$, and S_{l} denotes the unilateral shift on H_{l}^{2}. Moreover, if $n=d_{T}$ and $m=d_{T^{*}}=\operatorname{rank}\left(I-T T^{*}\right)^{1 / 2}$, then $k \leqq n$ and $l=m-n$. It is known that in general T is not quasi-similar to J even when $m<\infty$. (For an example, see [5], pp. 321-322.) In this paper, we find necessary and sufficient conditions under which they are quasi-similar at least in the case when both defect indices of T are finite. The main result (Theorem 2 below) is a generalization of the corresponding result for C_{10} contractions (cf. [13], Lemma 1). We also obtain other auxiliary results concerning the invariant subspaces and approximate decompositions of $C_{.0}$ contractions. Our treatments of contractions will be based on the dilation theory developed by B. Sz.-Nagy and C. Foiaş. The main reference is their book [4].

Recall that for operators T_{1} and T_{2} on H_{1} and H_{2}, respectively, $T_{1} \stackrel{i}{\prec} T_{2}$ (resp. $T_{1} \stackrel{\mathrm{~d}}{\curvearrowright} T_{2}$) denotes that there exists an operator $X: H_{1} \rightarrow H_{2}$ which is injective (resp. has dense range) such that $T_{2} X=X T_{1}$. If X is both injective and with dense range (called quasi-affinity), then we denote this by $T_{1}<T_{2} . T_{1}$ is quasi-similar to T_{2} ($T_{1} \sim T_{2}$) if $T_{1} \prec T_{2}$ and $T_{2} \prec T_{1} . T_{1} \prec{ }^{\mathfrak{c}} \mathrm{T}_{2}$ denotes that there exists a family of injections $\left\{X_{\alpha}\right\}$ such that $T_{2} X_{\alpha}=X_{\alpha} T_{1}$ for each α and $\bigvee X_{\alpha} H_{1}=H_{2} . T_{1}$ is completely

Received November 15, 1982.

* This research was partially supported by National Science Council of Taiwan, China.

We start by proving the following preliminary lemma.
Lemma 1. Let T and S be $C_{\cdot 0}$ contractions with finite defect indices on H and K, respectively. Let $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ on $H=H_{1} \oplus H_{2}$ and $S=\left[\begin{array}{cc}S_{1} & * \\ 0 & S_{2}\end{array}\right]$ on $K=$ $=K_{1} \oplus K_{2}$ be the triangulations of type $\left[\begin{array}{cc}C_{0} & * \\ 0 & C_{1}\end{array}\right]$. If $T \sim S$, then $T_{1} \sim S_{1}$ and $T_{2} \sim S_{2}$.

Proof. Let $X: H \rightarrow K$ be a quasi-affinity which intertwines T and S. Since $H_{1}=\left\{x \in H: T^{n} x \rightarrow 0\right.$ as $\left.n \rightarrow \infty\right\}$ and $K_{1}=\left\{y \in K: S^{n} y \rightarrow 0\right.$ as $\left.n \rightarrow \infty\right\}$, it is easily seen that $X H_{1} \subseteq K_{1}$. Hence X can be triangulated as $X=\left[\begin{array}{cc}X_{1} & * \\ 0 & X_{2}\end{array}\right]$. Note that X_{1} is an injection which intertwines T_{1} and S_{1}. Thus $T_{1} \stackrel{i}{\prec} S_{1}$. On the other hand, X_{2} has dense range and intertwines T_{2} and S_{2} whence $T_{2} \stackrel{\mathrm{~d}}{\prec} S_{2}$. Similarly, from $S<T$ we infer that $S_{1} \stackrel{\text { i }}{<} T_{1}$ and $S_{2} \stackrel{\text { d }}{<} T_{2}$. Hence $T_{1} \sim S_{1}$ and $T_{2} \sim S_{2}$ as asserted (cf. [6], Theorem 1 (a) and [11], Theorem 2.11).

Now we are ready to prove our main result.
Theorem 2. Let T be a $C_{.0}$ contraction with finite defect indices on H and let $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ on $H=H_{1} \oplus H_{2}$ be the triangulation of type $\left[\begin{array}{cc}C_{0} . & * \\ 0 & C_{1} .\end{array}\right]$. Then the following statements are equivalent:
(1) T is quasi-similar to its Jordan model;
(2) T_{2} is quasi-similar to a unilateral shift;
(3) there exists a bounded analytic function Ω such that $\Omega \Theta_{* e}=\delta I$ for some outer function δ, where $\Theta_{* e}$ is the $*$-outer factor of the characteristic function Θ_{T} of T.

Moreover, under these conditions we have $T \sim T_{1} \oplus S_{m-n} \quad\left(m=d_{T^{*}}, \quad n=d_{T}\right)$ and $T \sim T_{1} \oplus T_{2}$ and there exist quasi-affinities $X: H \rightarrow H_{1} \oplus H_{m-n}^{2}$ and $Y: H_{1} \oplus$ $\oplus H_{m-n}^{2} \rightarrow H$ intertwining T and $T_{1} \oplus S_{m-n}$ and quasi-affinities $Z: H \rightarrow H_{1} \oplus H_{2}$ and $W: H_{1} \oplus H_{2} \rightarrow H$ intertwining T and $T_{1} \oplus T_{2}$ such that $X Y=\delta\left(T_{1} \oplus S_{m-n}\right)$, $Y X=\delta(T), Z W=\delta\left(T_{1} \oplus T_{2}\right)$ and $W Z=\delta(T)$.

Proof. (1) \Rightarrow (2). Let $J=J_{1} \oplus J_{2}$ be the Jordan model of T, where $J_{1}=S\left(\varphi_{1}\right) \oplus$ $\oplus \ldots \oplus S\left(\varphi_{k}\right)$ and $J_{2}=S_{m-n}$. Certainly, $J=\left[\begin{array}{cc}J_{1} & 0 \\ 0 & J_{2}\end{array}\right]$ is the triangulation of type $\left[\begin{array}{cc}C_{0} & * \\ 0 & C_{1}\end{array}\right]$. By Lemma $1, T \sim J$ implies $T_{1} \sim J_{1}$ and $T_{2} \sim J_{2}=S_{m-n}$.
(2) \Rightarrow (3). Let $\Theta_{T}=\Theta_{* e} \Theta_{* i}$ be the *-canonical factorization of Θ_{T}. Then. the characteristic function of T_{2} coincides with the purely contractive part $\Theta_{* e}^{0}$ of $\Theta_{* e}$. By [13], Lemma 1, there exists a bounded analytic function Ω^{0} and an outer function δ^{0} such that $\Omega^{0} \Theta_{* e}^{0}=\delta^{0} I$. Condition (3): follows immediately.
(3) $\Rightarrow(1)$. Note that Ω must be an outer function since $\overline{\Omega H_{m}^{2}} \supseteq \overline{\Omega \Theta_{* e} H_{n}^{2}}=$ $=\overline{\delta H_{n}^{2}}=H_{n}^{2}$ implies that $\overline{\Omega H_{m}^{2}}=H_{n}^{2}$. Consider the operator Ω_{+}from H_{m}^{2} to H_{n}^{2} defined by $\Omega_{+} f=\Omega f$ for $f \in H_{m}^{2}$. Let $K=\operatorname{ker} \Omega_{+}$. Then K is an invariant subspace for S_{m}, the unilateral shift on H_{m}^{2}. It follows that $K=\Phi H_{l}^{2}$ for some inner function Φ, where $0 \leqq l \leqq m$. We consider the functional model of T, that is, consider T as the operator defined on $H=H_{m}^{2} \ominus \Theta_{T} H_{n}^{2}$ by $T f=P\left(e^{i t} f\right)$ for $f \in H$, where P denotes the (orthogonal) projection onto H. Similarly, consider T_{1} as defined on $H_{1}=$ $=H_{n}^{2} \ominus \Theta_{* i} H_{n}^{2}$ by $T_{1} g=P_{1}\left(e^{i t} g\right)$ for $g \in H_{1}$, where P_{1} denotes the (orthogonal) projection onto H_{1}. (Here T_{1} is unitarily equivalent to the C_{0}. part of T.) Now define $X: H \rightarrow H_{1} \oplus H_{l}^{2}$ by

$$
X f=P_{1}(\Omega f) \oplus \Phi^{*}\left(\delta f-\Theta_{* e} \Omega f\right) \text { for } f \in H
$$

Note that

$$
\Omega\left(\delta f-\Theta_{* e} \Omega f\right)=\delta \Omega f-\Omega \Theta_{* e} \Omega f=\delta \Omega f-\delta \Omega f=0
$$

Hence $\delta f-\Theta_{* e} \Omega f$ is in ker $\Omega_{+}=K=\Phi H_{l}^{2}$. Thus $\Phi^{*}\left(\delta f-\Theta_{* e} \Omega f\right)$ is indeed in H_{l}^{2}. Next define $Y: H_{1} \oplus H_{l}^{2} \rightarrow H$ by

$$
Y(g \oplus h)=P\left(\Theta_{* e} g+\Phi h\right) \quad \text { for } \quad g \oplus h \in H_{1} \oplus H_{l}^{2}
$$

It is easily verified that X and Y intertwine T and $T_{1} \oplus S_{l}$. Moreover, for $g \oplus h \in$ $\in H_{1} \oplus H_{l}^{2}$ we have

$$
\begin{gathered}
X Y(g \oplus h)=X P\left(\Theta_{* e} g+\Phi h\right)=X\left(\Theta_{* e} g+\Phi h-\Theta_{T} u\right)= \\
=P_{1}\left(\Omega \Theta_{* e} g+\Omega \Phi h-\Omega \Theta_{T} u\right) \oplus \Phi^{*}\left(\delta \Theta_{* e} g+\delta \Phi h-\delta \Theta_{T} u-\Theta_{* e} \Omega \Theta_{* e} g-\Theta_{* e} \Omega \Phi h+\right. \\
\left.+\Theta_{* e} \Omega \Theta_{T} u\right)=P_{1}\left(\delta g-\delta \Theta_{* i} u\right) \oplus \Phi^{*}(\delta \Phi h)=P_{1}(\delta g) \oplus \delta h=\delta\left(T_{1} \oplus S_{l}\right)(g \oplus h),
\end{gathered}
$$

where $u \in H_{n}^{2}$. On the other hand, for $f \in H$ we have

$$
\begin{gathered}
Y X f=Y\left[P_{1}(\Omega f) \oplus \Phi^{*}\left(\delta f-\Theta_{* e} \Omega f\right)\right]=Y\left[\left(\Omega f-\Theta_{* i} v\right) \oplus \Phi^{*}\left(\delta f-\Theta_{* e} \Omega f\right)\right]= \\
=P\left[\Theta_{* e} \Omega f-\Theta_{* e} \Theta_{* i} v+\Phi \Phi^{*}\left(\delta f-\Theta_{* e} \Omega f\right)\right]=P\left(\Theta_{* e} \Omega f-\Theta_{T} v+\delta f-\Theta_{* e} \Omega f\right)= \\
=P(\delta f)=\delta(T) \dot{f}
\end{gathered}
$$

where $v \in H_{n}^{2}$ and we made use of the fact that $\Phi \Phi^{*} w=w$ for $w \in \Phi H_{l}^{2}$ to simplify the expression. That δ is outer implies that both $\delta\left(T_{1} \oplus S_{l}\right)$ and $\delta(T)$ are quasiaffinities. We conclude that so are X and Y. Thus $T \sim T_{1} \oplus S_{l}$. As before, let $J=$ $=J_{1} \oplus J_{2}$ be , the Jordan model of T. Then J_{1} is the Jordan model of T_{1} (cf. [11], Lemma 2.7). From $T_{1} \sim J_{1}$, we infer that $T \sim J_{1} \oplus S_{l}$. If follows from the uniqueness of the Jordan model of T that $l=m-n$ (cf. [5], Theorem 3) and therefore $T \sim$ $\sim J_{1} \oplus S_{m-n}=J_{1} \oplus J_{2}=J$.

From the proof above and the proof of (2) $\Rightarrow(1)$ in [13], Lemma 1 , we may deduce that $T \sim T_{1} \oplus T_{2}$ and there are intertwining quasi-affinities Z^{\prime} and W^{\prime} such
that $Z^{\prime} W^{\prime}=\delta^{2}\left(T_{1} \oplus T_{2}\right)$ and $W^{\prime} Z^{\prime}=\delta^{2}(T)$. In the following, we show that actually quasi-affinities Z and W can be found for which $Z W=\delta\left(T_{1} \oplus T_{2}\right)$ and $W Z=\delta(T)$.

As before, consider the functional model of T. Then $H=H_{m}^{2} \ominus \Theta_{T} H_{n}^{2}, H_{1}=$ $=\Theta_{* e} H_{n}^{2} \ominus \Theta_{T} H_{n}^{2}$ and $H_{2}=H_{m}^{2} \ominus \Theta_{* e} H_{n}^{2}$. Assume that T has the triangulation $T=\left[\begin{array}{cc}T_{1} & R \\ 0 & T_{2}\end{array}\right]$ on the decomposition $H=H_{1} \oplus H_{2}$. Define $S: H_{2} \rightarrow H_{1}$ by

$$
S f=P\left(\Theta_{* e} \Omega f\right) \text { for } f \in H_{2},
$$

where P denotes the (orthogonal) projection onto H. We first check that $T_{1} S-S T_{2}=$ $=\delta\left(T_{1}\right) R$. For $f \in H_{2}$, assume that $T_{2} f=e^{i t} f-\Theta_{T} u-\Theta_{* e} v$ and $R f=\Theta_{* e} v$ for some $u, v \in H_{n}^{2}$. Then

$$
\begin{gathered}
\left(T_{1} S-S T_{2}\right) f=T_{1} P\left(\Theta_{* e} \Omega f\right)-S\left(e^{i t} f-\Theta_{T} u-\Theta_{* e} v\right)= \\
=P\left(e^{i t} \Theta_{* e} \Omega f\right)-P\left(\Theta_{* e} \Omega e^{i t} f-\Theta_{* e} \Omega \Theta_{T} u-\Theta_{* e} \Omega \Theta_{* e} v\right)= \\
=P\left(\delta \Theta_{T} u-\delta \Theta_{* e} v\right)=P\left(\delta \Theta_{* e} v\right)
\end{gathered}
$$

On the other hand,

$$
\delta\left(T_{1}\right) R f=\delta\left(T_{1}\right)\left(\Theta_{* e} v\right)=P\left(\delta \Theta_{* e} v\right)
$$

Hence $T_{1} S-S T_{2}=\delta\left(T_{1}\right) R$ as asserted. Now define $Z: H \rightarrow H_{1} \oplus H_{2}$ and $W: H_{1} \oplus$ $\oplus H_{2} \rightarrow H$ by

$$
Z=\left(\begin{array}{ll}
\delta\left(T_{1}\right) & S \\
0 & 1
\end{array}\right) \quad \text { and } \quad W=\left(\begin{array}{ll}
1 & V-S \\
0 & \delta\left(T_{2}\right)
\end{array}\right)
$$

where V is the operator appearing in $\delta(T)=\left[\begin{array}{cc}\delta\left(T_{1}\right) & V \\ 0 & \delta\left(T_{2}\right)\end{array}\right]$ on $H=H_{1} \oplus H_{2}$. The proof that Z and W intertwine T and $T_{1} \oplus T_{2}$ and that $Z W=\delta\left(T_{1} \oplus T_{2}\right)$ and $W Z=\delta(T)$ follows exactly the same as the one for Theorem 2.1 in [12]. We leave the verifications to the readers. This completes the proof.

We remark that the proof of $(3) \Rightarrow(1)$ in the preceding theorem is valid even when $d_{T^{*}}=\infty$. Recall that for an arbitrary operator $T, \operatorname{Alg} T,\{T\}^{\prime \prime}$ and $\{T\}^{\prime}$ denote the weakly closed algebra generated by T and I, the double commutant and the commutant of T; Lat T, Lat" T and Hyperlat T denote the lattices of invariant subspaces, bi-invariant subspaces and hyperinvariant subspaces of T, respectively.

Corollary 3. Let T be a $C_{\cdot 0}$ contraction with finite defect indices and let $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ be the triangulation of type $\left[\begin{array}{cc}C_{0} . & * \\ 0 & C_{1} .\end{array}\right]$. If T is quasi-similar to its Jordan model, then Lat $T \cong \operatorname{Lat}\left(T_{1} \oplus T_{2}\right)$ and $\operatorname{Lat}^{\prime \prime} T \cong \operatorname{Lat}^{\prime \prime}\left(T_{1} \oplus T_{2}\right)$.

Proof. Since a $C_{.0}$ contraction T with $d_{T}<\infty$ satisfies Alg $T=\{T\}^{\prime \prime}$. (cf. [10], Theorem 3.2 and [9], Theorem 1), we have Lat $T=\operatorname{Lat"} T$ and Lat $\left(T_{1} \oplus T_{2}\right)=$ $=\operatorname{Lat}^{\prime \prime}\left(T_{1} \oplus T_{2}\right)$. Hence we only need to prove Lat $T \cong \operatorname{Lat}\left(T_{1} \oplus T_{2}\right)$. It is easily
verified that the lattice isomorphisms can be implemented by the mappings $K \rightarrow \overrightarrow{Z K}$ and $L \rightarrow \overline{W L}$ for $K \in \operatorname{Lat} T$ and $L \in \operatorname{Lat}\left(T_{1} \oplus T_{2}\right)$, where Z and W are the quasiaffinities given in Theorem 2.

For the hyperinvariant subspace lattice, more is true. If T is a $C_{.0}$ contraction with $d_{T}<\infty$ and $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ is of type $\left[\begin{array}{cc}C_{0} . & * \\ 0 & C_{1}\end{array}\right]$, then T and $T_{1} \oplus T_{2}$ have the same Jordan model (cf. [11], Lemma 2.7) whence Hyperlat $T \cong \operatorname{Hyperlat}\left(T_{1} \oplus T_{2}\right)$ (cf. [8], Theorem 2). This is true even without the quasi-similarity of T to its Jordan model.

If T is as above and $K \in \operatorname{Lat} T$, then, unlike the case for the more restrictive class of C_{10} contractions (cf. [13], Corollary 4 (2)), the quasi-similarity of T to its Jordan model does not imply that $T \mid K$ is quasi-similar to its Jordan model. The next example suffices to illustrate this.

Example 4. Let T be the $C_{.0}$ contraction $S(u v) \oplus S$, where u is the Blaschke product with zeros $1-1 / n^{2}, n=1,2, \ldots, v$ is the singular inner function $v(\lambda)=$ $=\exp ((\lambda+1) /(\lambda-1))$ for $|\lambda|<1$, and S is the simple unilateral shift. Then the characteristic function of T is $\Theta_{T}=\left[\begin{array}{c}u v \\ 0\end{array}\right]$. Let $K \in \operatorname{Lat} T$ correspond to the regular factorization $\Theta_{T}=\Theta_{2} \Theta_{1}$, where

$$
\Theta_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
v & u \\
v & -u
\end{array}\right) \quad \text { and } \quad \Theta_{1}=\frac{1}{\sqrt{2}}\binom{u}{v} .
$$

Note that T is itself a Jordan operator, but $T \mid K$ is not quasi-similar to its Jordan model (cf. [5], pp. 321-322).

Since it is known that if T is a C_{10} contraction with finite defect indices which is quasi-similar to its Jordan model or T is a C_{0} contraction, then Lat $T=\mathrm{Lat}^{\prime \prime} T=$ $=\left\{\overline{\operatorname{ran} S}: S \in\{T\}^{\prime}\right\}$ (cf. [13], Corollary 8 and [1], Corollary 2.11), we may be tempted to generalize this to $C_{.0}$ contractions. As it turns out, this is in general not true. The counterexample is provided by the operator T and its invariant subspace K in Example 4. Indeed, if $K=\overline{\operatorname{ran} S}$ for some $S \in\{T\}^{\prime}$, then, by the main theorem of [7], there exist bounded analytic functions $\Phi=\left[\begin{array}{cc}\varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22}\end{array}\right]$ and $\Psi=[\psi]$ such that $\Phi \Theta_{T}=\Theta_{1} \Psi$ and $H_{2}^{2}=\left(\Phi H_{2}^{2}+\Theta_{1} H^{2}\right)^{-}$. From the first equation we have $\varphi_{11} v=$ $=(1 / \sqrt{2}) \psi$ and $\varphi_{21} u=(1 / \sqrt{2}) \psi$. Thus $v \mid \psi$ and $u \mid \psi$. Since $u \wedge v=1$, these imply that $u v \mid \psi$. Say, $\psi=u v w$ for some $w \in H^{\infty}$. We obtain $\varphi_{11}=(1 / \sqrt{2}) u w$ and $\varphi_{21}=$ $=(1 / \sqrt{2}) v w$. For $\left[\begin{array}{l}f \\ g\end{array}\right] \in H_{2}^{2}$ and $h \in H^{2}$,

$$
\Phi\binom{f}{g}+\Theta_{1} h=\binom{(1 / \sqrt{2}) u w f+\varphi_{12} g}{(1 / \sqrt{2}) v w f+\varphi_{22} g}+\frac{1}{\sqrt{2}}\binom{u h}{v h}=\left(\begin{array}{cc}
u & \varphi_{12} \\
v & \varphi_{22}
\end{array}\right)\binom{(1 / \sqrt{2})(w f+h)}{g}
$$

Since these vectors are dense in H_{2}^{2}, we conclude that $\left[\begin{array}{ll}u & \varphi_{12} \\ v & \varphi_{22}\end{array}\right]$, together with its determinant $u \varphi_{22}-v \varphi_{12}$, is outer (cf. [4], Corollary V.6.3). The latter contradicts the main result proved in [2].

However, in such a situation, we still have something to say.
Theorem 5. Let T be a $C_{.0}$ contraction with $d_{T}<\infty$ on H. Then Lat $T=$ $=$ Lat $^{\prime \prime} T=\left\{S_{1} H \vee S_{2} H: S_{1}, S_{2} \in\{T\}^{\prime}\right\}$.

Proof. Let $K \in$ Lat T and let $J=S\left(\varphi_{1}\right) \oplus \ldots \oplus S\left(\varphi_{n}\right) \oplus S_{p}$ on H_{1} and $J^{\prime}=$ $=S\left(\psi_{1}\right) \oplus \ldots \oplus S\left(\psi_{m}\right) \oplus S_{q}$ on K_{1} be the Jordan models of T and $T \mid K$, respectively. Since $J^{\prime} \stackrel{i}{<} T \mid K \stackrel{i}{<} T \prec J$, we infer that $m \leqq n, q \leqq p$ and $\psi_{j} \mid \varphi_{j}$ for $j=1, \cdots, m$ (cf. [5], Theorem 4). Say, $\varphi_{j}=\psi_{j} \eta_{j}$ for each j. Note that $S\left(\varphi_{j}\right) \operatorname{ran} \eta_{j}\left(S\left(\varphi_{j}\right)\right) \cong S\left(\psi_{j}\right)$. (cf. [5], pp. 315-316). For each j, let Z_{j} be the operator which implements this unitary equivalence and let $Z: H_{1} \rightarrow K_{1}$ be the operator

$$
Z_{1} \eta_{1}\left(S\left(\varphi_{1}\right)\right) \oplus \ldots \oplus Z_{m} \eta_{m}\left(S\left(\varphi_{m}\right)\right) \oplus \underbrace{0 \oplus \ldots \oplus 0}_{n-m} \oplus P
$$

where P denotes the (orthogonal) projection from H_{p}^{2} onto H_{q}^{2}. Then Z intertwines J and J^{\prime} and has dense range. Let $X: H \rightarrow H_{1}$ be the quasi-affinity which intertwines T and J and let $Y_{1}, Y_{2}: K_{1} \rightarrow K$ be the injections which intertwine J^{\prime} and $T \mid K$ and are such that $K=Y_{1} K_{1} \vee Y_{2} K_{1}$. Let $S_{1}=Y_{1} Z X$ and $S_{2}=Y_{2} Z X$. Then S_{1} and S_{2} are in $\{T\}^{\prime}$ and

$$
K=Y_{1} K_{1} \vee Y_{2} K_{1}=Y_{1} Z H_{1} \vee Y_{2} Z H_{1}=Y_{1} Z X H \vee Y_{2} Z X H=S_{1} H \vee S_{2} H
$$

This completes the proof.
It is interesting to know whether the converse of Lemma 1 is true. It may turn out that a stronger assertion is true.

Open problem: If T is a $C_{.0}$ contraction with $d_{T}<\infty$ and $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ is the triangulation of type $\left[\begin{array}{cc}C_{0} & * \\ 0 & C_{1}\end{array}\right]$, is $T \sim T_{1} \oplus T_{2}$?

In this respect, we have the following partial result.
Theorem 6. If T is a $C_{.0}$ contraction with $d_{T}<\infty$ and $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ on $H=H_{1} \oplus H_{2}$ is the triangulation of type $\left[\begin{array}{cc}C_{0}, & * \\ 0 & C_{1} .\end{array}\right]$, then $T_{1} \oplus T_{2} \stackrel{c^{\mathrm{c}}}{<} T<T_{1} \oplus T_{2}$:

Proof. Let $J=J_{1} \oplus J_{2}$ be the Jordan model of T, where $J_{1}=S\left(\varphi_{1}\right) \oplus \ldots \oplus S\left(\varphi_{k}\right)$ and $J_{2}=S_{m-n}\left(m=d_{T^{*}}, n=d_{T}\right)$. Then $J \lll \ll$. Since J_{1} and J_{2} are the Jordan models of T_{1} and T_{2}, respectively (cf. [11], Lemma 2.7), we have $T_{1} \sim J_{1}$ and
$J_{2}{ }^{\text {ci }}<T_{2} \prec J_{2}$. It follows that $T_{1} \oplus T_{2} \prec J_{1} \oplus J_{2} \stackrel{\text { ci }}{<} T$ and $T \prec J_{1} \oplus J_{2} \sim T_{1} \oplus J_{2}$. Let X be a quasi-affinity which intertwines T and $T_{1} \oplus J_{2}$. Then it is easily verified that on the decompositions $H=H_{1} \oplus H_{2}$ and $H_{1} \oplus H_{m-n}^{2}, X$ can be triangulated as $X=\left[\begin{array}{cc}X_{1} & X_{3} \\ 0 & X_{2}\end{array}\right]$. Consider the operator $X^{\prime}=\left[\begin{array}{cc}X_{1} & X_{3} \\ 0 & 1\end{array}\right]$ on $H=H_{1} \oplus H_{2}$. It is easily seen that X^{\prime} intertwines T and $T_{1} \oplus T_{2}$. Moreover, since T_{1} is a $C_{0}(N)$ contraction and X_{1} is an injection in $\left\{T_{1}\right\}^{\prime}, X_{1}$ must be a quasi-affinity (cf. [6], Theorem 2). It follows that X^{\prime} is a quasi-affinity. This shows that $T \prec T_{1} \oplus T_{2}$, completing the proof.

We would like to thank the referee for keeping us from making a foolish mistake. The arguments before Theorem 5 are due to him.

References

[1] H. Bercovici, On the Jordan model of C_{0} operators. II, Acta Sci. Math., 42 (1980), 43-56.
[2] E. A. Nordgren, The ring N^{+}is not adequate, Acta Sci. Math., 36 (1974), 203-204.
[3] B. Sz.-NAGY, Diagonalization of matrices over H^{∞}, Acta Sci. Math., 38 (1976), 223-238.
[4] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North HollandAkadémiai Kiadó (Amsterdam-Budapest, 1970).
[5] B. Sz.-NaGy and C. Foias, Jordan model for contractions of class C.0, Acta Sci. Math., 36 (1974), 305-322.
[6] B. Sz.-NAGY and C. FoiAs, On injections, intertwining operators of class C_{0}, Acta Sci. Math., 40 (1978), 163-167.
[7] R. I. Teodorescu, Factorisations régulières et sous-espaces invariants, Acta Sci. Math., 42 (1980), 325-330.
[8] M. Uchiyama, Hyperinvariant subspaces for contractions of class C.0, Hokkaido Math. J., 6 (1977), 260-272.
[9] M. Uchiyama, Double commutants of C.0 contractions. II, Proc. Amer. Math. Soc., 74 (1979), 271-277.
[10] P. Y. Wu, Commutants of $C_{0}(N)$ contractions, Acta Sci. Math., 38 (1976), 193-202.
[11] P. Y. Wu, C. ${ }^{0}$ contractions: cyclic vectors, commutants and Jordan models, J. Operator Theory, 5 (1981), 53-62.
[12] P. Y. Wu, Approximate decompositions of certain contractions, Acta Sci. Math., 44 (1982), 137-149.
[13] P. Y. Wu, When is a contraction quasi-similar to an isometry?, Acta Sci. Math., 44 (1982), 151-155.

