Acta Sci. Math. 47 (1984), 457-459

a the fit of the second second

An elementary minimax theorem

ZOLTÁN SEBESTYÉN

A recent simple proof for von Neumann's minimax theorem by I. Joó [2] urged us to formulate a minimax principle as a direct property of the function in question. In consequence our approach omits the usual convextity requirements. However, our proof is simple by applying a finite dimensional separation result concerning convex sets. In fact we use a modified version of a proof taken from BALAKRISHNAN [1]. Our theorem generalizes some of the known results of this type.

Theorem. Let f(x, y) be a real-valued function on $X \times Y$ with the following three properties:

(1^x)
$$\min_{y \in B} \sum_{x \in A} \lambda(x) f(x, y) \leq \sup_{x \in X} \min_{y \in B} f(x, y),$$

where $A \subset X$ and $B \subset Y$ are finite subsets and $\lambda: A \rightarrow \mathbb{R}_+$ is a discrete probability measure on A.

(2^y)
$$\inf_{y \in Y} \sup_{x \in X} f(x, y) \leq \sup_{x \in X} \sum_{y \in B} \mu(y) f(x, y),$$

where $B \subset Y$ is a finite subset and $\mu: B \to \mathbb{R}_+$ is a discrete probability measure on B. (3) There exist $y_0 \in Y$ and $c_0 \in \mathbb{R}$, $c_0 < \inf_{y \in Y} \sup_{x \in X} f(x, y) = c^*$ such that if $D \subset C$

 $\subset (c_0, \infty) \times Y$ is a subset with the property that for any $x \in X$, $f(x, y_0) \ge c_0$, there exists $(t_x, y_x) \in D$ with $f(x, y_x) < t_x$ then there exists a finite subset in D with the same property.

Then

(4)
$$c_* = \sup_{x \in X} \inf_{y \in Y} f(x, y) = \inf_{y \in Y} \sup_{x \in X} f(x, y) = c^*$$

Proof. Since $\inf_{y \in Y} f(x, y) \leq f(x, y)$ holds for any $x \in X$, $y \in Y$, the inequality $c_* \leq \sup_{x \in X} f(x, y)$ follows for any $y \in Y$, showing that $c_* \leq c^*$. To prove (4) we start with $c_* < c^*$ and for a c, max $\{c_*, c_0\} < c < c^*$, write $H_y = \{x \in X: f(x, y) \geq c\}$ for

13

Received December 14, 1982

any $y \in Y$. Showing that some $x_0 \in X$ belongs to $\bigcap \{H_y : y \in Y\}$ we get a contradiction:

$$c \leq \inf_{y \in Y} f(x_0, y) \leq \sup_{x \in X} \inf_{y \in Y} f(x, y) = c_*.$$

To do this let first $B = \{y_1, ..., y_n\}$ be a finite subset in Y, and suppose that $\bigcap \{H_y: y \in B\}$ is empty. Then for any $x \in X$ there exists a $y \in B$ such that f(x, y) < c. As a consequence, the function $\varphi: X \to \mathbb{R}^n$, given by

$$\varphi(x) = (f(x, y_1) - c, ..., f(x, y_n) - c)$$

has the following property: $\varphi(A) \cap \mathbb{R}^n_+ = \emptyset$, where $\varphi(A)$ is the range of φ and \mathbb{R}^n_+ is the positive cone of vectors with nonnegative coordinates in \mathbb{R}^n . But then $\operatorname{Co}\varphi(A)$, the convex hull of the range of φ , does not meet int \mathbb{R}^n_+ , the interior of \mathbb{R}^n_+ . There were otherwise a discrete probability measure $\lambda: X \to \mathbb{R}_+$ with finite support A, $A = \{x_1, \ldots, x_m\} \subset X$, such that $c < \sum_{j=1}^m \lambda_j f(x_j, y_i)$ holds for any $i = 1, \ldots, n$. But (1^n) implies then

$$c < \min_{1 \leq i \leq n} \sum_{j=1}^{m} \lambda_j f(x_j, y_i) \leq \sup_{x \in X} \min_{1 \leq i \leq n} f(x, y_i),$$

contradicting the assumption that $\bigcap \{H_y : y \in B\}$ is empty. As a result we have a nonzero separating linear functional $\mu = (\mu_1, ..., \mu_n) \in \mathbb{R}^n$ (see e.g. [2, 2.5.1]) such that

$$\sum_{i=1}^{n} \mu_i f(x, y_i) - c \sum_{i=1}^{n} \mu_i \leq \sum_{i=1}^{n} \mu_i t_i \text{ for any } x \in X, \quad t = (t_1, ..., t_n) \in \mathbb{R}^n_+.$$

In this case $\mu \in \mathbb{R}^n_+$ is obvious so that we may assume that $\sum_{i=1}^n \mu_i = 1$ also holds. As a consequence

$$c^* = \inf_{y \in Y} \sup_{x \in X} f(x, y) \leq \sup_{x \in X} \sum_{i=1}^n \mu_i f(x, y_i) \leq c;$$

a contradiction follows by (2^{y}) and the choice of c. Summing up, we have proved that $\bigcap \{H_{y}: y \in B\}$ is nonempty for any finite subset B in Y. For B=Y we get the same conclusion if we topologize X by chosing the subsets $\{x \in X: f(x, y) < t\}$ $(t \in \mathbb{R}, y \in Y)$ in X as a subbase for open sets such that $\{H_{y}\}_{y \in Y}$ are closed sets and $\{x \in X: f(x, y_{0}) \ge c_{0}\}$ is compact by (3). Indeed, the finite intersection property of F. Riesz implies the desired conclusion. The proof is thus complete.

Corollary. Let f(x, y) be a real-valued function on $X \times Y$ with finite X such that (1^x) (with A=X) and (2^y) hold. Then (4) also holds.

458

References

A. V. BALAKRISHNAN, Applied Functional Analysis, Springer (1976).
I. Joó, A simple proof for von Neumann's minimax theorem, Acta Sci. Math., 42 (1980), 91-94.

1

II. DEPARTMENT OF ANALYSIS EOTVÖS LORÁND UNIVERSITY MÚZEUM KRT. 6—8 1088 BUDAPEST, HUNGARY