An elementary minimax theorem

ZOLTÁN SEBESTYÉN

A recent simple proof for von Neumann's minimax theorem by I. Joó [2] urged us to formulate a minimax principle as a direct property of the function in question. In consequence our approach omits the usual convextity requirements. However; our proof is simple by applying a finite dimensional separation result concerning convex sets. In fact we use a modified version of a proof taken from Balakrishnan [1]. Our theorem generalizes some of the known results of this type.

Theorem. Let $f(x, y)$ be a real-valued function on $X \times Y$ with the following three properties:

$$
\begin{equation*}
\min _{y \in B} \sum_{x \in A} \lambda(x) f(x, y) \sup _{x \in X} \min _{y \in B} f(x, y), \tag{x}
\end{equation*}
$$

where $A \subset X$ and $B \subset Y$ are finite subsets and $\lambda: A \rightarrow \mathbf{R}_{+}$is a discrete probability measure on A :

$$
\begin{equation*}
\inf _{y \in Y_{x \in X}} \sup _{x} f(x, y) \leqq \sup _{x \in X} \sum_{y \in B} \mu(y) f(x, y), \tag{y}
\end{equation*}
$$

where $B \subset Y$ is a finite subset and $\mu: B \rightarrow \mathbf{R}_{+}$is a discrete probability measure on B :
(3) There exist $y_{0} \in Y$ and $c_{0} \in \mathbf{R}, c_{0}<\inf _{y \in Y} \sup _{x \in X} f(x, y)=c^{*}$ such that if $D \subset$ $\subset\left(c_{0}, \infty\right) \times Y$ is a subset with the property that for any $x \in X, f\left(x, y_{0}\right) \geqq c_{0}$, there exists $\left(t_{x}, y_{x}\right) \in D$ with $f\left(x, y_{x}\right)<t_{x}$ then there exists a finite subset in D with the same property.

Then

$$
\begin{equation*}
c_{*}=\sup _{x \in X} \inf _{y \in Y} f(x, y)=\inf _{y \in Y} \sup _{x \in X} f(x, y)=c^{*} \tag{4}
\end{equation*}
$$

Proof. Since $\inf _{y \in Y} f(x, y) \leqq f(x, y)$ holds for any $x \in X, \cdots y \in Y$, the inequality $c_{*} \leqq \sup _{x \in X} f(x, y)$ follows for any $y \in Y$, showing that $c_{*} \leqq c^{*}$. To prove (4) we start with $c_{*}<c^{*}$ and for a c, max $\left\{c_{*}, c_{0}\right\}<c<c^{*}$, write $H_{y}=\{x \in X: f(x, y) \geqq c\}$ for

[^0]any $y \in Y$. Showing that some $x_{0} \in X$ belongs to $\cap\left\{H_{y}: y \in Y\right\}$ we get a contradiction:
$$
c \leqq \inf _{y \in Y} f\left(x_{0}, y\right) \leqq \sup _{x \in X} \inf _{y \in Y} f(x, y)=c_{*}
$$

To do this let first $B=\left\{y_{1}, \ldots, y_{n}\right\}$ be a finite subset in Y, and suppose that $\cap\left\{H_{y}\right.$: $y \in B\}$ is empty. Then for any $x \in X$ there exists a $y \in B$ such that $f(x, y)<c$. As a consequence, the function $\varphi: X \rightarrow \mathbf{R}^{n}$, given by

$$
\varphi(x)=\left(f\left(x, \cdot y_{1}\right)-c, \ldots, f\left(x, y_{n}\right)-c\right)
$$

has the following property: $\varphi(A) \cap \mathbf{R}_{+}^{n}=\emptyset$, where $\varphi(A)$ is the range of φ and \mathbf{R}_{+}^{n} is the positive cone of vectors with nonnegative coordinates in \mathbf{R}^{n}. But then $\operatorname{Co} \varphi(A)$, the convex hull of the range of φ, does not meet int \mathbf{R}_{+}^{n}, the interior of \mathbf{R}_{+}^{n}. There were otherwise a discrete probability measure $\lambda: X \rightarrow \mathbf{R}_{+}$with finite support A, $A=\left\{x_{1}, \ldots, x_{m}\right\} \subset X$, such that $c<\sum_{j=1}^{m} \lambda_{j} f\left(x_{j}, y_{i}\right)$ holds for any $i=1, \ldots, n$. But $\left(1^{x}\right)$ implies then

$$
c<\min _{1 \leqq i \leqq n} \sum_{j=1}^{m} \cdot \lambda_{j} f\left(x_{j}, y_{i}\right) \leqq \sup _{x \in X} \min _{1 \leqq i \leq n} f\left(x, y_{i}\right)
$$

contradicting the assumption that $\cap\left\{H_{y}: y \in B\right\}$ is empty. As a result we have a nonzero separating linear functional $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbf{R}^{n}$ (see e.g. [2, 2.5.1]) such that

$$
\sum_{i=1}^{n} \mu_{i} f\left(x, y_{i}\right)-c \sum_{i=1}^{n} \mu_{i} \leqq \sum_{i=1}^{n} \mu_{i} t_{i} \quad \text { for any } \quad x \in X, \quad t=\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{R}_{+}^{n}
$$

In this case $\mu \in \mathbf{R}_{+}^{n}$ is obvious so that we may assume that $\sum_{i=1}^{n} \mu_{i}=1$ also holds. As a consequence

$$
c^{*}=\inf _{y \in \mathbf{Y}} \sup _{x \in X} f(x, y) \leqq \sup _{x \in X} \sum_{i=1}^{n} \mu_{i} f\left(x, y_{i}\right) \leqq c
$$

a contradiction follows by $\left(2^{y}\right)$ and the choice of c. Summing up, we have proved that $\cap\left\{H_{y}: y \in B\right\}$ is nonempty for any finite subset B in Y. For $B=Y$ we get the same conclusion if we topologize X by chosing the subsets $\{x \in X: f(x, y)<t\}$ ($t \in \mathbf{R}, y \in Y$) in X as a subbase for open sets such that $\left\{H_{y}\right\}_{y \in Y}$ are closed sets and $\left\{x \in X: f\left(x, y_{0}\right) \geqq c_{0}\right\}$ is compact by (3). Indeed, the finite intersection property of F. Riesz implies the desired conclusion. The proof is thus complete.

Corollary. Let $f(x, y)$ be a real-valued function on $X \times Y$ with finite X such that (1^{x}) (with $A \doteq X$) and (2^{y}) hold. Then (4) also holds.

References

[1] A. V. Balakrishnan, Applied Functional Analysis, Springer (1976).
[2] I. Joó, A simple proof for von Neumann's minimax theorem, Acta Sci. Math., 42 (1980), 91 -94.
II. DEPARTMENT OF ANALYSIS EOTVOS LORAND UNIVERSITY
MUZEUM KRT. 6-8
1088 BUDAPEST, HUNGARY

[^0]: Received December 14, 1982

