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Convergence of solutions of a nonlinear integrodifferential 
equation arising in compartmental systems 

T. KRISZTIN 

In honour of Professor Béla Szőkefalvi-Nagy on his 70th birthday 

1. Introduction 

The compartmental models play an important role in the mathematical 
description of biological processes, chemical reactions, economic and human inter-
actions [ 1 , 2 , 8]. I . GYŐRI [3 ,4 ] used nonlinear integrodifferential equations to describe 
compartmental systems with pipes and propounded the question whether the bounded 
solutions of the model equation have limits as t-*•<*>. If the transit times of material 
flow between compartments are zero, then the model equations are ordinary differen-
tial equations. In this case there are known results on the existence of the limit of 
solutions [9, 12]. But these methods are not applicable if the transit times are not 
zero. The existence of the limit of solutions is also known in the case of nonzero 
transit times if the model equation is linear [5] or if the so-called transport functions 
are continuously differentiable [11]. But there occur compartmental systems in the 
applications such that the transport functions do not satisfy even the local Lipschitz 
continuity. For example, in hydrodynamical models, where the free outflow of 
water through a leak at the bottom of a container has a rate proportional to square 
root of the amount of water in the container. If the transport functions are continu-
ous, monotone nondecreasing and the model equation has exactly one equilib-
rium state then the solutions tend to this one as <-»» [4]. 

In this paper we examine stationary compartmental systems with pipes, which 
are described by nonlinear autonomous integrodifferential equations, and the transit 
times of material flow through pipes are characterized by distribution functions. 
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We show that the model equations have equilibrium states if and only if their solu-
tions are bounded (the equilibrium points need not be unique). The main result 
of this paper guarantees the existence of the limits of the bounded solutions if the 
transport functions are continuous, strictly increasing functions. 

2. The model equation, notations and definitions 

Consider a stationary «-compatrtmental system with pipes. It is well-known 
(see e.g. [3, 4]) that the state vector x(t) is the solution of the following system of 
integrodiiferential equations: 

(1) *,(') = - J J f hu(xj(f-s)) dFiJ(s) + ]l (i = 1, ..., n), 

where 
(a) htJ: R-rR is a continuous, monotone nondecreasing function, hu(0)=0 

(/=0,1,...,«; j= 1,...,«); 
(b) T > 0 ; 
(c) Fif. [0, T]->[0, 1] is continuous from the left, monotone nondecreasing and 

i?y(0) = 0, F,j(T)=1 0, 7 = 1 , . . . , « ) ; 
(d) 0 ( /= 1, . . . ,«) . 
Denote by C1 ( . . . ,C„ the compartments and by C0 the environment of the 

compartmental system. In equation (1) the function h^ is called the transport func-
tion, which is the rate of material outflow from C j in the direction of C ; ( /=0,1 , ..., n; 
j— 1, . . . ,«). The nonnegative number lt is the inflow rate of material flow from 
environment C„ into compartment C-t (/=1, ..., n). 

Since in equation (1) the components of the solution vector denote material 
amounts, it is a reasonable claim that solutions corresponding to nonnegative initial 
conditions should be nonnegative, and the model equation (1) should have a unique 
solution for any given initial condition. In Section 3 we prove that (1) has these 
properties. 

Let R and R" be the set of real numbers and the «-dimensional Euclidean space, 
respectively, and | • | denotes the norm in R". Denote by C([a, b], R") the Banach 
space of continuous functions mapping the interval [a, b] into R" with the topology 
of uniform convergence. 

It is natural to consider the space C([—t, 0], R") for the state space of (1). 
Let r=2m. Obviously, without loss of generality, C=C([—r, 0], R") may also 
be regarded as a state space of (1). In this paper we use C for the phase space of (1). 

Denote the norm of an element (p in C by ||c/>|| = max |c/>(,s')|. If t0dR, A>0 
and x:[t0—r, t0+A)-+R" is continuous, then for any /£[/„,/„+.4) let xtdC be 
defined by xi(,s,)=x(/+,s'), —rg^sO. 
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A function x: I—R" is said to be a solution of (1) on the interval / if x is con-
tinuous on I and x(t) satisfies (1) for every t€J such that t—r£I. For given <p£C 
we say that x(cp) is a'solution of (1) through (0, <p) if there is an A > 0 such that 
x((p) is a solution of (1) on [—r, A) and x0((p)=(p. 

It follows from conditions (a), (b), (c), (d) that for every <p£C there is a solution 
x((p) of (1) through (0, cp) and if x is a noncontinuable, bounded solution of (1) on 
the interval [—r, A), then J = [7, Theorems 2.2.1, 2,3.2]. 

We prove in Section 3 that if cpfC, then equation (1) has at most one solution 
x(<p) through (0, <p). 

Let x((p) be a solution of (1) on the interval [—r, (pdC. Define the co-limit 
set Q((p) of the solution x((p) as follows: Q((p) = {ij/£C : there is a sequence {/„} 
such that and \\^—xtn(cp)\\—0 as The set MczC is said to be 
invariant if for every ij/£M equation (1) has a solution y on R such that y0=tp 
and yt£M for all t£R. If x(cp) is a bounded solution of (1) on [—r, then 
Q(cp) is nonempty, compact, connected, invariant and xt((p)-^Q((p) as ° 
[7, Corollary 4.2.1]. 

Let Nc{ 1,2, ...,n} and define the directed graph DN= (V(DN),A(DN)) to 
equation (1) as follows: V(DN)= {vt: i£N) is the set of vertices, A(DN)= 
= {aiJ\hu( •) P^O, (i, j)^NXN} is the set of arcs, where the arc au is said to join 
Vj to Vi, Vj is the tail of a,j and vt is its head. A directed (vj, «¡)-walk W from vt to 
Vj is a finite non-null sequence ( \ t a , a ^ , •••, a ^ J , where a l i lo, a ^ , . . . 
•••>ai,i, ^^CAv) and i0=i, ik=j. If z'0, h, ..., ik are distinct, then the walk 
W=(a i i i o , a i s i i , . . . , ai<lk ^ is called a directed ( i^ , v(o)-path. Two vertices 
vi, Vj are diconnccted in DN if there are a directed (vhVj)-path, and a directed 
(VJ, «;)-path in DN . The diconnection is an equivalence relation on set N. The direc-
ted subgraphs Dn,Dn, . . . ,DN j induced by the resulting partition (Nx, N2, ..., Nk) 
of N are called the dicomponents of DN. It is easy to see that there exists a dicom-
poncnt Dn. of Dn such that if idN,o and j£N\Nlo, then atJ§ V(DN). 

3. Uniqueness, boundedness and some technical lemmas 

In this section we prove some easy lemmas, which are necessary to the proof 
of the main result. 

Define the functional [/: CXC->-[0, as follows: 

u(v, >A) - i [|<M0)-<M0)| + 2 f f «))|du dFu(M> ' 
I=L L ] = I 0 O J 

<P = (<Pi, • • <P„), >A = OAi, •••> >A„)6 c. ; 
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Lemma 1 claims the monotonicity of functional U along the solutions of (1). 

Lemma I, If x and y are solutions o/( l ) on the interval [—r, A) then U{x„yt) 
as a function of t is monotone nonincreasing on [0, A). 

Proof . Let u(t)=U(x,,yt), t£[0,A). Since x and y are solutions of (1) on 
[—r, A), we have 

^F[xi(t)-ym = 

= - 1 [hji(xi(t))-hJi(yi(t))-]+ 2 S [hii{xj(t-s))-hij{yj(<t-s))-] dFu(s) 
j=o j=i0 

( / € [ 0 , A), i = l,...,n). 

Thus, from the monotonicity of functions htJ it follows that 

' D*\xt(t)-yt«)\* 

^ - 2\hji(xt(t))-hj,(yi(.t))\+ 2 f H M - s ) ) - M y j O - s ) ) \ d F u ( s ) 
j=o j=og 

( / € [ 0 , A), i = 1, . . . , .N) . 

Hence it is easy to see that 
D+u(t) s 

^ i f - i \hJi(xl(t))-hJl(yl(t))\ + 2 f\hu(xJ(t-sj)-hiJ(yJ(t-s))\dFiJ(sY+ 
•=i L v'=o J=i o 

+ ¿ M * ; ( 0 ) ~ M M 0 ) | - i / j iy{xj( t —s))— hjj(yj(t — s))| dFjj(s) 1 = 
J—i J-1 o ' • • • 

= - i K F R COMoiUO))! ^ 0 ( / € [ 0 , A)), 

which, by using differential inequality [10, p. 15], completes the proof. 

. , R . M . LEWIS and B . D . O . ANDERSON [11] proved similar result provided that 
functions hij are continuously differentiable. 

The uniqueness for the initial-value problem of (1) follows easily from Lemma 1. 

Coro l l a ry 1. For every <p£C equation (I) has a unique solution x(<p) through 
(0, <P). 

By using Lemma 1 and the properties of the co-limit set one can readily verify 
that: 
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C o r o l l a r y 2. If <p£C and \j/aQ((p) then there exists a sequence {/„} such 
that tn-*°° and 

sup\x((p)(tn + u)-x(il/)(u)\ — 0 as n — oo. 
ugO 

Define the functions Hi:Rn-*R by 

H f a , ..., z„) = - 2 + 2 hiJ(zJ) + Ii (i = 1, ..., n), 
j'=o 

where (zu ..., zn)£Rn. If z*eRn and Ht(z*)=0, /=1 , . . . ,«, then the constant 
function z* is a solution of (1) on R, i.e. z* is an equilibrium point of (1). 

From Lemma 1 it is clear that the existence of an equilibrium point of (1) guar-
antees the solutions of (1) to be bounded. 

C o r o l l a r y 3. If there exists z€R" such that 

(2) Ht(z) = 0 (i = l, . . . ,n), 

then every solution of (1) is bounded on [ — r, 

Corollary 3 is reversible in the following sense: if equation (1) has a bounded 
solution on [—r, then equation (2) has a solution. 

L e m m a 2. If x is a bounded solution of (1) on [—r, and Mj=IIm Xj(t), 
t-+ oo 

mi=UmXi(t), i=l,...,n, then 
"(i) Hi{M1,...,Mn) = Q (i = 1 »); 
(ii) Hi(mx , . . . , mn) = 0 (i = 1, ..., n); 

(iii) hoi(mi) = hoi(Mi) (i = l , . . . ,«). 

P roo f . We first prove that H^M-i,..., A Q s O , i=\,...,n. Suppose this 
is not true. Then there is an I0£ {1,..., «} such that H, (M1,:..,MN)-<0. Let 
A=HT (M1} ..., M„). Since functions /i,̂  are continuous, there exists e > 0 such 
that 

(3) - i hjio(Mj—e)+ 2 ht j(Mj+e) + It < y . 
j=o 1 -i 

Let T b e chosen so that if t^T, then 
(4) s u p XJ(T) MJ+B 0 = 1, . . . , « ) . 

IST-t 

By using relations (3), (4) and the monotonicity of functions htJ we have 

*«.(') ^ - Z hjh(Mi0-e)+ 2 hi0j(Mj+e) + Il0 < ± < 0 
j=0 J=1 4 

14* 
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on the set {t^T: xia(i)d[Mio-e, Mio+e]}. This contradicts the definition of M,o, 
proving the statement. By similar arguments we obtain #,( /«! , . . . , m„)s0, / = 

n R 
= \,... ,n. From the above and the equality ¿ ' / / ¡( z i> ..., z„)= 2Ui~h<a(zi)] it ¡=1 ¡=i 
follows that 

O s j Ht(Mi, ..., M„)-2 H-Xm,, ..., mn) = - 2 [ha(Md-h„{m,)] ^ 0, 
¡=i ¡=i i=i 

which proves the lemma. 
The proof of Lemma 2 is based on the idea of [4, Th. 3.2.1]. 

Coro l l a ry 4. If equation (2) has exactly one solution, then for every solution 
x of (1) the limit Jim x(t) exists. 

Coro l l a ry 5. If there exists z'0£ {1, ..., n) such that function /i0,o is strictly 
monotone increasing, then for every bounded solution of (1) the limit lim xig(t) exists. 

Lemma 3. If Mi,ml,i=l, ...,n, are real numbers and 
( i ) M , > w i , (i = 1, ..., n), 

(ii) Hi(M1,...,Mn) = 0 (f = l, . . . ,»), 
(iii) H^mx, ..., m„) = 0 (i = 1, ..., n), 

then for every e£(0, . min (M; — m,)) there exists z*(e) = (z*, ... , z*)£R" such 
that' 

(iv) M,—eSzfsMi ( /=1, . . . ,«) , 
(v) there is an /0€{1, ...,«} such that z*=Afio—e, 

(vi) H z*n)=0 ( /=1, . . . ,«) . 
n n 

Proof . From the equality 2 #i(zi> ••• > zn)— 2 the mono-
¡=i ¡=i n 

tonicity of functions h0i and (ii), (iii) it follows that 2 •••> z»)=0 for 
i = l 

z^m,-, MJ, /=1 , . . . , n. Let e£(0, _min (Mf—m,)) be given. Define the sequence 
{ z f , . . . , ^ as follows: 

(a) zf=M(-e (i=l, ...,»), 
(b) assume that (z f + 1 ) , . . . , zf,..., z f ) is defined such that M i - e m 

^ z f + u ^ M t , /=1, . . . , 7 -1 , Mi-E^zf^Mi, i=j,...,n. Let z(/+1) be chosen 
according as Hj(zf+i\ ..., z f , Oor >0.If ^ ( z f + 1 ) , ...,zf+>\ z f , . . . 

0 then let zf+1)=zf. If Hj(z?+1\ ..., z<f+», z f , ..., z f ) > 0 then choose 
z<*+1) such that z f ^ z f + » s M j and //J-(z<"[+1), ..., z ^ « , z<k+1>, zf+1, ..., z<„fc))=0. 
Since //J(zf+1>, ...,zf+»,Mj, z f l l t ..., zf^HjiMx, ..., M„)=0, the number 
z(*+i) exists. 

Since the sequence {zf^jjl, is monotone nondecreasing and bounded, z*(e) 
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can be defined by ,z*= Hm zf^, i=l,...,n, Z*(E)=(Z*, . . . , Z*). We now prove 
that z*(s) has properties (iv, (v), (vi). By the definition of z*(e) (iv) is obviously 

n 
satisfied. If (vi) is not true, then from 2 Ht(.z*> •••, z*)=0 it follows that there is 

>=i 
an /0€ {1,..., n) such that Hio(z*, ..., z*)>0; Since /7, is continuous, one can 
find a number N such that Hio(zf+1\ ... ,z£+ 1 ) , z®+1 , . . . , z<f>)>(l/2)//io(z*, ...,z„*)>0 
for k^N. But this contradicts the definition of z^+1). If (v) is not true, then we 
can choose a number kt for every /€{1,. . . ,«} such that zfl+^>zfi)=Mi—e. 
Let &„=max {kx, ..., k„} and / = m a x {1, ...,«}: ki=k0}. The definition of the 
sequence { z f } implies Hi(zp+1\ ...,zfi+1), z?<\ . . . , z^ ' )>0, /=1, ... ,«. 
From the structure of Hh the monotonicity of functions hij and the construction of 
{z?°} it follows that //¡(zfo+y, ..., zfl^, zf°\ ..., z ' ^ s O for i ^ j . Thus 
2 H i ( z f " + i \ z£o+» z f o \ z y ) > 0 , which is a contradiction. 
i=i 

The following lemma includes the nonnegativity of trajectories and a compari-
son result. 

Lemma 4 [13, Theorems 1,3]. If (p,\]/£.C-, ¡/'¡(^^(p.-^SO for 0], 
/=1 , . . . , « , and x(q>)( •), x(\p)( •) are solutions o / ( l ) on [—r, through (0,q>), 
(0,^), then *fGA)(0s*,fa>)(0S0 /or /€[0, ~>), /=1, 

Lemma 5 [6, Theorem 3.1]. Assume that <p£C and -x((p) is a bounded solu-
tion of (1) on [ — r, If there exists a nonempty set H<z(0, r] such that 

(i) x1(i/*)(0)^0 for all ij/£Q((p) such that >¡/,(0)= max^ij/^s); 

(ii) {<K(-«):«€^}={^i(0)} for all >p<iQ(<p) such~that x1(^)(0)=0 ¿md 
"Ai(0)=_maxo^(j); 

(iii) eiV/zer //¡<?re <?x«/ r l5 r2€// such that, rjr2 is irrational or these set H is 
infinite; 

then for any \j/£Q((p) the limit Hmx1(i/')(i) exists. 

Lemma 6. Assume that <p£C, x(q>) is a bounded solution of (I) on the interval 
[ — r-> and \j/ZQ((p), If the limit lim x(>{/)(t) does not exist, then there are subsets t-+ oo 
Ni, of {1,...,«} and real numbers ct, {1, ..., n}\N1, such that 

(i) N ^ N , ; 
(ii) Xim-)=Ci for /€{1, ..., n}\Ni; 

(iii) the limit limxi(i/')(/) does not exist for all i^N,; t-+ oo 
(iv) DNi is a dicomponent of 
(v) for every i£N2 

(5) * , № ) ( ' ) = - Z hji(xi(iP)(t))+ Z f hij(x• (\p) (t — s)) dF]j(s)+ 

(KR), 
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where )=*,/•). hoi(-)=hoi(-)+ 2 M' )• Ji = h+ 2 hu(cj), 
J£N\NT J€N\NT 

i£N2. 

Proof . Let 7V0={/£{1, . . . ,«}: the limit \imxi(\j/)(t) exists} and c,-= 
= lim'Xj(^)(/), z'GN0. From the definition of Q(<p) and Corollary 2 it follows that 
l\mxi((p)(t)=ci and x,(i/0(-)==ci, KN0. Let Nx= {1, ..., n}\N0 and define 
the set N2 as follows: DNt is a dicomponent of such that if i£N2 and j(LN{\N2 

then atJ$V(DNi). Clearly (iii), (iv), (v) are satisfied. 

In this section we give a sufficient condition for the existence of the limit of 
bounded solutions of (1). 

Theorem. If for every i,j£{l, ..., n} either function /ifj (•) is strictly monotone 
, increasing or /ifj-( • )=0 , then, for each (p£C such that x((p) is a bounded solution 
of (1) on [ —r, oo)^ the limit h'm x(cp)(t) exists. 

Proof . Assume that <p€C, x(<p) is a bounded solution of (1) on [—r, 
and hm x(cp)(t) does not exist. By Corollary 2 if ip£Q((p) then \imx (ij/)(t) does 
not exist, either. Using Lemma 6 one can construct the equation (5), which has a 
bounded solution on [—r, «>) such that its components do not tend to constant 
as t—°o. Our aim is to show that equation (5) has not such a solution. This contra-
diction will prove Theorem. 

Since (5) is a special case of (1), without loss of generality we can assume that 
Ni=N2={1, . . . ,«} in Lemma 6, i.e. x(q>) is a solution of (1) on [—r, oo) such 
that for every {1, . . . ,«} the limit hmXi(<p)(t) does not exist. 

Let M f = limXi{(p){t) and m.-= limx,(<p)(f). z'= 1, ...., n. By Corollary 2 and f-*"00 t—oo 
the definition of i2(<p), for every \j/£Q((p) 

4. Convergence of the bounded solutions 

(6) Mi = hm Xi(\j/) (t), m, = UmXiWU) (z = 1, ..., n) 
t — OO 

and 

(7) m^XtMM^M, (t£R; i = 1, ..., n). 

We now show that for every \j/£Q((p) 

max ^¡(s) = Mt (i = 1 , . . . , « ) —r̂ ŝ O (8) 

and 

(9) min ^ ( s ) = mt (/ = 1, n). -rSsS 0 
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If (8) is not true for il/£Q((p), then without loss of generality one can assume 
that there exists e0>0 such that 

(10) max ^ ( s ) ^ Afj-eo. 
-rSsSO 

Let /€{2, ...,n} in the case «=-1. Since vltvt are diconnected in D(1 n}, 
there exists a directed (vt, Wj)-path W f l j j i j » •••, i ) in Z)^ ,„}, where 
/0=1, im=i- Suppose that for some {0,1, ..., m—\) there is an £¿>0 such that 

(11) 

From the strict monotonicity of function ^¡I(+1iIi(')> (?)> (11) and Lemma 2 
it follows that on the set 

5 = №-r+(k + 1)t, 0]: ^ + 1 ( 0 = MlkJ 
we have 

* * f c + 1 0«(0 i K ^ m + h^iM^-eJ + I ^ < r 

< fffctl(Mlf ..., M„) = 0. 

On the other hand, (7) and x i k + i(t)=M l k + t imply 0/0(0=0, i.e. S is 
an empty set. Thus, there exists e 4 + 1>0 such that 

(12) max lA/^.is) = Mi, ,—ek+1. 

Since (10) is satisfied and (12) follows from (11), by using mathematical induc-
tion it can be seen that for some £¡>0 

max ip:(s) ^ M:—E:. -r+mtSsSO 1 ' 

Since /£{2,...,«} was arbitrary and W was a path, we have m S n - 1 and 
for some £>0 

(13) max i^,(s) ^ M , - e (i = 1, ..., n). ' —»SsSO 

Apply Lemma 3: there exists z*=(z*, ..., z*)£.Rn such that H^z*, ..., z*)=0 
and Mi—eSz*^Mi for every {1, ...,«}, zfo=Mtg—e for some i0£ {1, ..., «}. 
By (13) and Lemma 4 it follows that 

xioW)(t)^Mio-e (t ^ 0), 

which contradicts (6). Thus (8) is proved. By similar arguments one can show (9). 
Let r^cfO, t] denote the support of the Lebesgue—Stieltjes type measure 

induced by the distribution function F{J, /,/= 1, . . . ,«. 
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Define the set 

H = (0, r]D | © Tikik_ : (fli i , a l V l , ..., is a 

directed ( ^ , i^-walk in Z)(1 n}}. 

See a special case at the end of this section. Since every two vertices are diconnected 
in „}, for every a ^ Z A ^ ^ n}) there exists a directed (i^, v1)-walk W in 
D{1 „} such that a-^W and the length of W is at most 2n— 1. Thus, if H is 
empty, then T^ = {0} for every (i,j) such that i.e. equation (1) is an 
ordinary differential equation. In this case T can be an arbitrary small positive num-
ber. From this and (8), (9) it follows that M^t r i i , /=1, ... ,«, which is a contra-
diction. Further on let us suppose that the set H is nonempty. 

As regards the structure of set H we distinguish two cases: 

Case. 1. Either there exist r l5 r2£H such that rjr2 is irrational or the set H is 
infinite. 

Case 2. H= {pxr*,p2r*, ...,pKr*}, where r*>0, 0 . . < p K S / y r * , pt is 
an integer for each i=\,...,K and (pi, ...,pK)=l (( ) denotes 
the greatest common divisor). 

Case 1. Set H just satisfies condition (iii) of Lemma 5. (8) implies condition (i) 
of Lemma 5. To verify condition (ii) of Lemma 5 it will be sufficient to show that 
for each \p£Q(cp), from (i//)(0)=0, \j/1(0)=Mt it follows that \p1(0)=il/1(-u) 

for all u£H. Let " = J U ^ . / E t f , where t^ i T ^ , k=\,...,m. If 

*i0/0(0)=0 and i / z ^ ^ M j , then by equation (1) 

(14) 0 = - Z hJ1(M1)+ % [h1J{xj(<l,)(-s))dFlj(s)+ix. J = 0 1=1 J 
From Lemma 2 

(15) 0 = - i hJ1(M1)+ 2 f KiMj) dF1J(s) + Jl. 
j=o j=1o 

From (8), (14), (15) and the monotonicity of functions h1}( •) with the notation im= 1 

(16) 0 = / [himim_l(MuJ-hiata_l{xim_1(ifr)(--s))\ dFimim_y(s). 
o 

Since function h, , ( • ) is strictly increasing and /.• , € T, , , (16) implies m tn • 1 mm — 1 m m — 1 

(17) = 

Using (8), (17) it is easy to see that x, timi„.1 ) = 0- Continuing this proce-
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dure we get 

(IB) K - i f - i = = m)-

In the case £ = 1 relation (18) gives just tpl(—u)=Ml, which was to be proved-
From (6) and Lemma 5 it follows which is a contradiction. 

Case 2. Define the nonempty sets A0,A1, ..., Am as follows: 
m 

(i) LM P ={1 , ...,«}; 

( i iMo °={ l} ; 
P - I 

(iii) ^ = { / : / € { 1 , . . . , « } \ U A and there exists j^A»-, such that a^d 
k = 0 

£A(D{ 1 „>)}, /7=1, ...,W. 
Let the function S: {2, 3, ..., n}— {1, 2, ..., n} eb defined in the following way: 
S(i)€Ap.1 and aS(0i€A(D{1 n)) whenever i£Ap, p=l,...,m. Let ^€i2(<p), 
y=x(ijj) and define the function 

m = i i = l 
where z1(t)—y1(t) and 

1 1 / t \ 
*<(') = f ... f y\t- 2 sm\dFlkik_1(sk)...dFilio(sl) 

0 0 V m= 1 J 
for /=2, 3, where z0,«i, ..., 4 are defined by /0=/, i*=l and 5'(zm) = /m+1 n 
for m — 0, 1, ..., k — l. Obviously /0, i1} ..., ik may depend o n / . Let M0— 2-Mi 

i = l n 
and m0— 2 mi- ^ is c ' e a r from (7) and the definition of V that 

m0^V(t)^M0 (tiR). 
From the invariance of set Q(cp) we have y,dQ(<p) for all t£R. By similar argu-k 
ments as in Case 1, for every t£R from y1(t)=M1 it follows that 2 s m )=Mj 

m= 1 
whenever sm£Tt , , m = l, ..., k; moreover y1(t-u)=M1 for each u£H. 
Clearly, V(t)=M0

m implies y1(t)=M1. Thus, from V(t)=M0 it follows that 
V(t — u)=M0 for H. Similarly, from V(t) = m0 we obtain V(t — u)-mQ, u£H. 
Hence and from (8), (9), (19) we have 
(20) max V(t+s) = Af0, min V(t+s) = m0 (t£R). -risSO — rSsSO 

Since (px, ... ,/>K)=l, from elementary number theory, there exist integers 
K 

n,,...,nK suchthat 2nkPk—^- L e t -
fc = l 

2"kPk-i = 2niPk\, 
k=l V fc=1 > 

where nk and nk are the positive and negative parts of nk. 
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K 
If h= 2akpk, where ak is nonnegative integer, k=\, . . . ,K, then hr* is the 

»=i 
sum of the elements of set if. Thus, from V(t)=M0 and V(t)=m0 it follows that 
V{t—hr*)=Ma and V(t—hr*) = ma, respectively. For every integer /, which is 
not less than N2, the number Ir* is the sum of the elements of H. This is evident from 
the following: 

/ = №+k = N2+aN+b = (N+a)N+b = 

K K K 
= (N+a) 2nkpk+b 2"kPk = 2KN+a)nk+bnk\pk, * = 1 k=1 * = 1 

where k, a, b are nonnegative integers, k=aN+b, b<N. 

Thus, from (20) it follows that there exist numbers tx, /2€ R such that 

(21) V(t1-ir*) = M0, V(t2-ir*) = mQ 0 = 0,1,2, . . . ) . 

From Lemma 2, (7) and the monotonicity of functions hoi we have 

i [ - A o . ( y i ( 0 ) + / , ] = 0 (/€*). 
<=i 

Thus, by using that y is a solution of (1), one gets 

n o = z m = 2 ¿ H - U ( O , 
1 = 1 i=lj = l 

where 
T 

Wu(0 = / /in Oi (' - s))dFn (s)-hn (yi (0), 
0 

T 
Wii(0 = / hu(yi(t~s))dFu(s)-

o 

- / - / M M ' " 2 SnfidF^isJ ... dFhia(Sl) (i S 2 ) , 0 0 m=l 

WA>) = ¡ • f h J 1 ( y 1 (t-s- Z sm))dFJ1(s)dFJlJ>_1(sl)...dFJlJo(s1)-0 0 m = l 

( j ^ 2), 

wv(0 = / - f h i j ( y j ( ' - s - 2 sm))dFij(s)dFikik l(sk)... dFMo(Sl)-0 0 Bl = l 

- /••• / 2 sm))dFjljl l(si) ... dFjljQ(sj) (i, j - 2), 
o o m=l 
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where /„ J i , ...,./, are defined by y0 = j , j , = 1 and S ( j J = j m + 1 for m=0, 1, . . . , / - 1 . 
Let W be a (»_,, ^)-path in £>{1 n}. Then ( f V , a J J o , a J t h , ..., a J t j ^ ) and 
{W,an,aijio,aitli, ) are (a l5 ^ - w a l k s in D(i n} such that their 
lengths are at most 2n—\. Thus, from the definition of H it follows that there; 
exists a nonnegative u such that 

k l 
M + S + 2 Sm = PJ* a n d u+ 2 = Pjr* 

m=l m=1 

for all s d T i j , sm€Ti i , m = l , . . . , k , xm£T.- , , m = \ , . . . ,/, for some non-» m m — 1 JmJm — \ 

negative integers P i , P j , where pt and p j may depend on sm, s , rm . That is, for /, 
€ {1, . . ,«} functions w^(/) have the following structure 

K K 
w ^ ( 0 = £ a k v ( t - b k r * + u ) - 2 c m v ( t - d m r * + u), k=1 m=l 

Ki K 2 
where 2 a k = 2 cm= 1> l t ^ R , bk and dm are nonnegative integers for k=l,..., K i t 

t=l m = l 
m= 1, . . . , K 2 , and the function v:R—R is bounded on R. See a special case 
at the end of this section. 

If \ v ( t ) \ ^ a for t £ R and b= max { b k , d m } , then 

- T T T \ 2 ( 2 a k v ( t - b k r * + u - l r * ) - 2 c m v ( t - d m r * + u - l r * ) ) \ = L,+l 'l = o * = 1 m= 1 ' 

= T Z r l ^ f l * 2 v { t + u - ( b k + l ) r * ) - f cm 2 v ( t + u - ( d m + I ) r * ) \ ^ 
i-'-ri fc = 1 (=0 m = 1 1=0 

1 , *t L Kt L 2a b 
^ T X T Z" a* 2 v ( t + u - s r * ) - 2 Cm 2 » ( ' + B- j r*) + 7 3 T = 

'k = 1 s=(, m=l J-> + I 

1 i £ , i i & m 2ab 2ab = T + T 1 5 " ~ s r ^ ~ m ? i + T + T = I T T - 0 

as L—<x> uniformly in t on R. Hence we have 

(22) —J— 2 V ( t - l r * ) ~ 0 as L 
Zv+l i=o 

uniformly in i on 
On the other hand from (21) it follows that / - T T T Z f ( . t - l r * ) d t = y ^ r - J 7 = ^ o - m 0 - 0 ^ L +1 /=o L + l i=o (j_r,r* 

for all L—0,1, 2, ..., which contradicts (22). 
This completes the proof. . 
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Remarks^ The proof of Theorem for Case 2 is based on the idea of [6, Theo-
rem 3.2]. 

We remark that the monotonicity conditions for functions cannot be omitted: 
if the functions are not monotone nondecreasing, then the equation (1) may have 
periodic solution [10]. 

We do not know whether the strict monotonicity conditions for /J£j- is a neces-
sary condition for the convergence of solutions of (1). 

To illustrate the above proof we give a special case. Let us consider the system 

*i(0 = - / i n (*i (0) -K (xi (0) -K (*i ( 0 ) + h 1 1 ( x 1 ( t - í ) ) + h13 (x3 (t - 2)) 

*2(0 - -M*2(0)+M*i c-1)) 

where functions hn, h21, h31, h13, h32 are strictly increasing. Here directed graph 
•̂ {1,8,3}) T> r> Tij, H, Ap, V(t) and V(t) are the following: 

t = 3; r = 18; 

Tu = {1}, T13 = {2}, T21 = {1}, T31 = {2}, T32 = {0, 1, 2}; 

/ / = { 1 , 2 , 3 18}; 

^0 = {1}, A, = { 3}, Az = { 2}, 

HO = yi (0 + y3(t~2) + y2 (I ~ 2)/2 + y2(t- 3)/4 + y2(t- 4)14; 

+ [ - K (yi (0) + h21 (y, (/ - 3))] /2 + [ - h 21 {yi (t)) + h21 (y, (t-4))]/4 + 

+ [-h21(yi(0) + h21(yi(t-5))]/4. 
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