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1. Introduction

The compartmental models play an important role in the mathematical
description of biological processes, chemical reactions, economic and himan inter-
actions [1, 2, 8. I. GY&Ri [3, 4] used nonlinear integrodifferential equations to describe
compartmental systems with pipes and propounded the question whether the bounded
solutions of the model equation have limits as t—<-. If the transit times of material
flow between compartments are zero, then the model equations are ordinary differen-
tial equations. In this case there are known results on the existence of the limit of
solutions [9, 12]. But these methods are not applicable if the transit times are not
zero. The existence of the limit of solutions is also known in the case of nonzero
transit times if the model equation is linear [5] or if the so-called transport functions
are continuously differentiable [11]. But there occur compartmental systems in the
applications such that the transport functions do not satisfy even the local Lipschitz
continuity. For example, in hydrodynamical models, where the free outflow of
water through a leak at the bottom of a container has a rate proportional to square
root of the amount of water in the container. If the transport functions are continu-
ous, monotone nondecreasing and the model equation has exactly one equlhb-
rium state then the solutions tend to this one as ¢-—co [4].-

In this paper we examine stationary compartmental systems with pipes, which
are described by nonlinear autonomous integrodifferential equations, and the transit
times of material flow through pipes are characterized by distribution functions.
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We show that the model equations have equilibrium states if and only if their solu-
tions are bounded (the equilibrium points need not be unique). The main result
of this paper guarantces the existence of the limits of the bounded solutions if the
transport {unctions are continuous, striclly increasing functions.

2. Tiie model equation, notations and definitions

Consider a stationary n-compartmental system with pipes. It is well-known
(see e.g. [3, 4]) that the state vector x(7) is the solution of the following system of
integrodifferential equations:

€)) ,"c,-(l‘)=—j§";hj,(x,(t))-l—j§";jh,j(xj(t——s))dFij(s)—l—], (i= Lysen ),

where

(@) hy: R—R is a continuous, monotone nondecreasing function, #;;(0)=0
(=0,1,...,n; j=1, ..., n);

(b) =>0;

(c) Fy:[0, 7]-[0, 1] is continuous from the left, monotone nondecreasing and
F;;(0)=0, Fj;(v)=1 @, j=1,...,n);

@ =0 (i=1,...,n).

Denote by Ci,...,C, the compartments and by C, the environment of the
compartmental system. In equation (1) the function h; is called the transport func-
tion, which is the rate of material outflow from C; in the direction of C; (i=0, 1, ..., n;
j=1, ...,n). The nonnegative number I; is the inflow rate of material flow from
environment C, into compartment C; (i=1, ..., n).

Since in equation (1) the components of the solution vector denote material
amounts, it is a reasonable claim that solutions corresponding to nonnegative initial
conditions should be nonnegative, and the model equation (1) should have a unique
solution for any given initial condition. In Section 3 we prove that (1) has these
properties.

Let R and R" be the set of real numbers and the n-dimensional Euclidean space,
respectively, and |- | denotes the norm in R". Denote by C([a, b], R") the Banach
space of continuous functions mapping the interval [a, b] into R" with the topology
of uniform convergence.

It is natural to consider the space C([—7, 0], R") for the state space of (1).
Let r=2nt. Obviously, without loss of generality, C=C(—r,0], R") may also
be regarded as a state space of (1). In this paper we use C for the phase space of (1).

Denote the norm of an element ¢ in C by |¢l= _r}}gets)é0|¢(s)|. If t,€R, A=0
and x:[ty—r, t,+A)—~R" is continuous, then for any #€[t,, f{,+A4) let x,€C be
defined by x,(s)=x(t+s), —r=s=0.
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A function x:I--R* is said to be a solution of (1) on the interval 7 if x is con-
tinuous on I and x(¢) satisfies (1) for every ¢€I such that t—ré€l. For given ¢€C
we say that x(¢) is a'solution of (1) through (0, ¢) if there is an 4>0 such that
x(¢) is a solution of (1) on [—r, 4) and x,(p)=0.

It follows from conditions (a), (b), (c), (d) that for every @€C there is a solution
x(¢) of (1) through (0, @) and if x is a noncontinuable, bounded solution of (1) on
the interval [—r, A), then A=< [7, Theorems 2.2.1, 2.3.2].

We prove in Section 3 that if ¢€C, then equation (1) has at most one solution
x(¢) through (0, ¢).

Let x(¢) be a solution of (1) on the interval [—r, =), @€C. Define the w-limit
set Q(p) of the solution x(¢p) as follows: Q(p)={y€C :there is a sequence {t,}
such that #,—~< and ]W—x,ﬂ((p)l] -0 as n—»oo}. The set McC is said 1o be
invariant if for every Y €M equation (1) has a solution y on R such that y,=y
and y,£M for all t€R. If x(¢p) is a bounded solution of (1) on [—r, =), then
Q(¢p) is nonempty, compact, connected, invariant and x,(¢)—Q(p) as {—>oo
[7, Corollary 4.2.1].

Let Nc{1,2,...,n} and define the directed graph Dy=(V(Dy), A(Dy)) to
equation (1) as follows: V(Dy)={v;: i€N} is the set of vertices, A(Dy)=
={a;: h;(+)#0, (i,/))ENXN} is the set of arcs, where the arc a;; is said to join
v; to vy, v; is the tail of @;; and v, is its hcad. A directed (v;, v;)-walk W from v; to
v; is a finite non-null sequence W=(a;;,a,;,....4;, ), where a,;,a,;, ..
sy €A(Dy) and dy=i, h=j. If io, iy, ..., 0 are distinct, then the walk
W=(ay;,» @yi5 o5 Gy, ) is called a directed (v, v,)-path. Two vertices
v;,v; are di.connccted in Dy if there are a directed (v;, v;)-path, and a directed
(v;,v;)-path in Dy. The diconnection is an equivalence relation on set N. The direc-
ted subgraphs DNl, DNz, . DN,, induced by the resulting partition (Ny, Ny, ..., Ny)
of N are called the dicomponents of Dy. It is easy to see that there exists a dicom-
ponent DNio of Dy such that if /€N, and jEN\N,, then a;¢V(Dy).

Y

3. Uniqueness, boundedness and some technical lemmas

In this section we prove some easy lemmas, which are necessary to the proof

of the main result. i
Define the functional U:CXC~[0, o) as follows:

n

0@, = 210 @ =601+ 3 [ [ ost—0) =y~ )] awar, o).

t

¢ = ((pl’ sie 09 (/)n), '70 = (l//15 rawy l//")EC.

14
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Lemma 1 claims the monotonicity of functional U along the solutions of (1).

| Lemmal. -If x and y are solutions of (1) on the interval [—r, A) then U(x,, y;)
as a function of t is monotone nonincreasing on [0, A).

Proof. Let u()=U(x,,y,), t€[0, 4). Since x and y are solutions of (1) on
[—r, A), we have

2 5O -5 =

== Z (A (@)= Ry ()] + Z f Chsy Gy (1= )= by (v, (1= )] dF3(5)

P (2€[0, 4), i=1,...,n).
Thus, from the monotonicity of functions h;; it follows that

D x()-y()] = A
= 2l =)+ 3 [ Iy =)=y, =9)] 4y 0

- (1€[0,4), i=1,...,n)
Hence it is easy to see that S -
' ' ' D¥u(l) =

= 2 o~|‘h_>ii(:xi(t))'_hji(yi(t)')l+j§; j|hij(xj(t;s))—hij(y;'(’_;s))l dFij(S)q'

+ 3 @)=y = 3 [ i 6=9)=hi 0= aFy 9] =
- _g",; ot (x: () —ha(n (D) = O (€10, 4)),

which, by using differential inequality [10, p. 15], completes the proof.

R. M. Lewis and B. D. O. ANDERSON [11] proved similar result provided that
functlona h;; are contmuously differentiable.
The umqueness for the initial-value problem of (1) follows easily from Lemma 1.

Corollary 1. For every @€C equatzon (1) has a unigue solution x(¢) through
©, 9). ,

By using Lemma 1 and the properties of the w-limit set one éan readily verify
that: ‘
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Corollary 2. If @€C and Y€ Q(¢) then there exists a sequence {t,} such
that t,~< and

sup [x(9) (1 + )= x()(W)] ~0 as n o=

Define the functions H;: R"~R by

Hi(zl, vy Zy) = — _Zohij(zi)+ %hij(zj)+h (i=1,..,n),
i= i=

where (z;, ..., z,)ER". If z*¢R" and H/(z*)=0, i=1,...,n, then the constant
function z* is a solution of (1) on R, i.e. z* is an equilibrium point of (1).

- From Lemma 1 it is clear that the existence of an equilibrium point of (1) guar-
antees the solutions of (1) to be bounded.

Corollary 3. If there exists z€R" such that
(2) Hi(z) = O (i = 1, veey n)3
then every solution of (1) is bounded on [—r, o).

Corollary 3 is reversible in the following sense: if equation (1) has a bounded
solution on [—r, =) then equation (2) has a solution.

Lemma 2. If x is a bounded solution of (1) on [—r, =) and M,-=!i_rﬁ x; (),
m;=lim x;(t), i=1,...,n, then

t—co

(i) HI(MI’ ceey Mn)=0 (i=1, ceey n);

(ll) Hi(mh L] mn) =0 (l = 1’ b n)’

(i) ho;(m) = huy(M) (i=1,..,n).

Proof. We first prove that H;(M,,...,M,))=0, i=1,...,n. Supposé this
is not true. Then there is an i€ {l,...,n} such that H; (M, ..., M,)<0. Let
a=H,.°(M1, ..., M,). Since functions h;; are continuous, there exists e>0 such
that ’ : :

3 = 2 hu (M —e)+ 5 by j(M+e)+ 1, < %~
j=0 i=1 _
Let T be chosen so that if t=T, then
C)) s1T1p x;=M;+¢ (j=1,..,n).
t=T~¢

By using relations (3), (4) and the monotonicity of functions h;; we have

)'c,-o(t) = _jgo hﬂo(Mio_s)‘*‘j;]'. hio](Mj+8)+Iio - % - 0

14*
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on the set {=T:x, (DE(M; —¢, Mio+s]}. Thi$ contradicts the definition of M, ,
proving the statement. By similar arguments we obtain H;(m,, ..., m,)=0, i=

=1,...,n. From the above and the equality > Hi(z, ..., z)= > Ui—hoi(z)] it
i=1 . i=1
follows that

= 3 H (M, . M)~ ; H(my, ... m,) =—2 [os (M) — hoy (m)] = 0,

which proves the lemma.
The proof of Lemma 2 is based on the 1dea of [4, Th 321}

Corollary 4. If-equation (2) has exactly one solution, then for every solution
x of (1) the limit !Ln; x(?) exists.

Corollary 5. If there exists io€{l, ..., n} such that function hy, is strictly
monotone increasing, then for every bounded solution of (1) the limit }irg x, (1) exists.

Lemma 3. If M;, m;,i=1, ..., n, are real numbers and
Q) Mi>m; (i=1,..,n),

Gi) H(M,,...M)=0 (=1, ..,n),

@) H;(my, ..., m))=0 (i=1,...,n), _
then for every sE(O mm (M m,)) there exists z*(e)=(zy,...;2;)ER" such
that

(iv) Mi—e=zi=M; (i=1,...,n),

(v) thereis an i€ {l, ..., n} such that  z; =M, —e,

i) Hi(z}, ..., z)=0 (i=1,...,n).

Proof. From the equality Z"'H(zl,. ,z,,)—Z[I —hg(z;)), the mono-

tonicity of functions hy; and (ii), (iii) it follows that Z'H (z3, ..y Zp)= 0 for

z€[m;, My, i=1,...,n. Let BE(O mm (M- —m;)) be given. Define the sequence

{29, ..., 20, as follows
(@) z0=M,—¢ (i=1,...,n), :
(b) assume that (z(l"+ D, 2840, 2P, 2B is defined such that M;—e=
=40=M,, i=1,..,j-1, M-—eézf")SM i=j,...,n. Let z{*Y be chosen
according as H; (z("+1) . zg-kfll), 29, ., z2¥)=00r =0.1f H;(z¢*Y, ..., 2$4D, zS."),
s 20)=0 then let 2$+9=20. If H;¢*, ..., 2840, 20, .., 28>0 then choose
("“) such that z(")<z("+l)SM and H; (z("“) 2§"+11), zg"“) 2§ -, 29 =0.
Smce H, 2%+, .. 5"+11>, M;, 25'21;. "")SH (Ml, ...,M))=0, the number

Z$+D exists.

Since the sequence {z®};>, is monotone nondecreasing and bounded, z*(e)
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can be defined by .z=lim 2, i=1,...,n, z*@E)=(, ..., 2z}). We now prove
that z*(¢) has properties (iv, (v), (vi). By the definition of z*(g) (iv) is obviously
satisfied. If (vi) is not true, then from Z’H (zf, ..., z))=0 it follows that there is

an i€ {l, ...,n} such that H, (2}, ---, 2;)>0. Since H is contmuous one can
find a number N such that H, (z("“) z"‘*l),z,("lrl,.. z("))>(1/2)H N ,25>0
for k=N. But this contradicts the deﬁmtlon of z("“). If (v) is not true, then we
can choose a number k; for every ic{l, ..., n} “such that 24D 0= M e,
Let kg=max {ky, ..., k,} and j=max {i€{1, ..., n}: k;= ko} The definition of the
sequence  {z®} implies H,(Z%Y, ..., 2 ("'“), 28 28>0,  i=1,

From the structure of H;, the monotonicity of functlons h and the constructlon of
{zP} it follows that H(z{*?, ..., z{e3?, 20, ... ("0))>0 for i#j. Thus

n
> Hy(z¢tD, ., 23, 249, z¢0)>0, which:is a contradiction.
i=1 . R

The following lemma includes the nonnegativity of trajectories and a compari-
son result.

Lemmzt 4 [713,‘ Théotems 1,3 If o, l//EC, i//,-(s)é(p,-(s)zo for s€[—r, 0],
i=1,...,n, and x(@)(-), x(W)(-) are solutions of(l) on [ r, =) through (0, ¢),
o, lﬁ), then x;(¥ )()=xi(9)()=0 for €0, =), i=1,

Lemma 5 [6, Theorem 3.1]. Assume that <pEC and x(¢) is a bounded solu-
tion of (1) on [—r, ). If there exists a nonempty set Hc(0, r] such that

(i) % (V)(©)=0 for all Y€Q(@) such that Y, (0)= max y:(s); '

(i) {Y1(—uw): ucH}={1(0)} for all YeQ(p) such that xl(xﬁ)(O) 0- and

¥1(0)= _max 'ab1(s)
(iii) either there exzst r, rzeH such that ryfry is irrational or these set H is
- infinite;

then for any Y€ Q() . the limit tl_i.rorl x1 (Y)(t) exists.

Lemma 6. Assume that @€C, x(¢) is a bounded solution of (1) on the interval
[—7, =) and Y€ Q(p). If the limit ,l.i.T x(Y)(t) does not exist, then there are subsets
Ny, N, of {1,...,n} and real numbers c;, i€ {l, ..., n}\N,, such that

(1) N.ENy;

(1) x; ()X )=c; for i€{l; ..., n\Ny;

(iii) the limit tlirl] x;(Y)(¥) does not exist for all iEN,,;’

(iv) Dy, is a dicomponent of Dy ;

(v) for every i€ N,

®  wWO=- > EEGOF > [ B (x,(0) (e =) dFy () +1,
- (t€R),
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where ﬁi;(')=hij(')s f,jéNz, Eoi(')=h0i(')+ Z hji(‘)’ Ii=1i+ 2 hij(cj)s
. JENNN, JENNN,
i€N,. '

“Proof. Let No={ic{l,...,n}: the limit limx,(/)(1) exists} and ¢=
="Er2'xi(|k)(t), i€ Ny. From the definition of Q2(¢) and Corollary 2 it fbllows that
"l‘irﬂ'x,-'((p)(t)=b, and x;(Y)(-)=c;, i€N,. Let Ny={1,...,nN\N, and define

the set N, as follows: Dy, is a dicomponent of Dy, such that if i€N, and jE N\N,
then a;;¢V(Dy ). Clearly (iii), (iv), (v) are satisfied.

4. Convergence of the bounded solutions

In this section we give a sufficient condition for the existence of the limit of
-bounded solutions of (1).

Theorem. Iffor every i,j€{l, ..., n} either function h;;(-) is strictly monotone
.increasing or h;;(-)=0, then, for each @€C such that x(¢) is a bounded solution
.of (1) on [—r, «); .the limit ‘l_i’rg x(@)(t) exists.

Proof. Assume that p€eC, 3c((p) is a bounded solution of (1) on [—r, )
"and ‘l_ijl} x(@)(H) does not exist. By Corollary 2 if y€Q(¢) then ‘lirg x()(#) does
not exist, either. Using Lémma 6 one can construct the equation (5), which has a
bounded solution on [—r, ) such that its components do not tend to constant
"as t-oo. Our aim is to show that equation (5) has not such a solution. This contra-
- diction will prove Theorem. )

Since (5) is a special case of (1), without loss of generality we can assume that
N;=N,={l, ...,n} in Lemma 6, i.e. x(¢) is a solution of (1) on [—r, =) such
that for every i€{l, ..., n} the limit tlirg xi(p)(#) does not exist.

- Let Mi=tT_'1§ x;(p)(®) and m,-=t];ﬂw xi(pX1), i=1,...,n. By Corollary 2 and
the definition of Q(g), for every Y€ Q(p) ‘

©) M, = Tmx ) (), m; = lm () () (=1,...n)
and - o 4
@) . m=x WO =M, ((€R; i=1,..,n).
We now show that for every Y€ Q(p) -
¥ _max i@ =M; (i=1,..,n
and ,
9 min y,(s)=m (i=1,..,n)

~r=s=0
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If (8) is not true for Y€ Q(p), then without loss of generallty one can assume
that there exists g,>0 such that

(10) max Wl(s) = M1"80

—rSS
Let i€{2,...,n} in the case n>1. Since v;,v; are dlconnected in Dg,.n,

there exists a directed (v, v,)-path W= (@15 Q15 -5 4y ) in Dy ny, Where
ip,=1, i,=i. Suppose that for some k€ {0, 1, ..., m—1} therq is an g,>0 such that

(11 max ~ Y, (s) = M, —¢,.

. —rtkr=ss0

From the strict monotonicity of function A
it follows that on the set

b v b

(+), (M, (11) and Lemma 2

S = {tE[—‘T+(k+ 1)71 0]' ‘pi,,”(’) = Mik&x}
we have

lk+1(¢) (t) =— 2 hJ'k+l( lk+1)+1§ hiu+1J(Mi)+hikuik(]”ik—a")_*-[fkn =<
Jwi,
-Z Hik+1(M1’ caey M) = 0

On the other hand, (7) and X, (t) =M, .. imply x,k“(lp)(t) 0 ie. S is
an empty set. Thus, there exists sk+1>0 such that ,

. (12) ) ‘pz,‘ﬂ(s) ;k” —Ek+1-

—'+(k+1)tssso .
Since (10) is satisfied and (12) follows from (11), by using mathematical induc-
tion it can be seen that for some ¢=>0

max  ¥;(s) = M;—g;.

—r+mr=s=0

Since i€{2,...,n} was arbitrary and W was a path, we have m=n—1 and
for some £>0 ' ’

(13) ‘max Yi() =Mi—e (i=1,..,n). " -

Apply Lemma 3: there exists z*=(z}, ..., zX)ER" such that H,(z%, ..., z,’f)=z0
and M;—e=zi=M, for every i€ {1,‘...-, n}, 22;=M,o—a for some i€{l,...,n}
By (13) and Lemma 4 it follows that . - L

x, WO =M,—¢ (t=0),

which contradicts 6). Thus (8) is proved. By similar arguments one can show. (9)
Let T;;C[0,] denote the support of the Lebesgue——SneltJes type measure
induced by the distribution function Fj;, i,j=1,
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. -Define the set -
H = (0, r]n {k@l I}kik—lz (a,'“'o, a,-z,‘l,...., a,-m,—m_l) iS a
directed (v,, v,)-walk in D(l,..,_,,)}.

See a special case at the end of this section. Since every two vertices are diconnected
in. Dy, ., forevery a;€A4(Dy,.. ) there exists a directed (v,,v)-walk W in
Dy, ...» such that a;;€¢W and the length of W is at most 2n—1. Thus, if H is
empty, then T;;={0} for every (/,j) such that h;;(-)0, ie. equation (1) is an
ordinary differential equation. In this case T can be an arbitrary small positive num-
ber. From this and (8), (9) it follows that M;=m;, i=1, ...,n, which is a contra-
diction. Further on let us suppose that the set H is nonempty.
As regards the structure of set H we distinguish two cases:

Case. 1. Either there exist ry, r,€ H such that ry/r, is irrational or the set H is
infinite. : '

Case 2. H={p,r*, p,r*, ..., pxr*}, where r*=0, O<py<...<pg=rir*, p; is
an integer for each i=1,..,K and (p,....,px)=1 (( )} denotes
the greatest common divisor). : :

Case 1. Set H jﬁst satisfies condition (iii) of Lemma 5. (8) implies condition (i)
of Lemma 5. To verify condition (ii) of Lemma 5 it will be sufficient to show that
for each Y€ Q(¢), from X,(Y)0)=0, ¥,(0)=M,; it follows that ¢, (0)=y,(—u).

for all uwcH. Let u= Zm't,.k,.k €H, where 1, €T,, , k=1,..m If
k=1 -1 ) k-1 k*k—-1

%, ()(0)=0 and ,(0)=M; then by equation (1) - '

14 0=-— Z;hjl(Ml)'{"jZi f hlj(xj(‘p) (—5)) dFlj(3)+ L.

. j= =1lg .

From Lemma 2 '

(15) 0=— 2 hu(M)+ 3 [ (M) dFy () + .
1= J=1lg

From (8), (14), (15) and the monotonicity of functions hy;(-) with the notation i,,=1
(16) 0= [ [hipis (M ) =hi i, (i, ) (S )] AF, ().
0

Since function h; ; () is strictly increasing and ¢t ; €T, ;

(17) Vi (i ) =M, .

Using (8), (17) it is easy to see that X, _(Y)(—¢, ; _)=0. Continuing this proce-

m

_,» (16) implies
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dure we get

(18) Vi s [—- Zm’ t,-j,-j_l) =M, , (k=1,..,m).
Jj=k

In the case k=1 relation (18) gives just ¥,(—u)=M,, which was to be proved:
From (6) and Lemma 5 it follows M,;=m,;, which is a contradiction.

Case 2. Define the nonempty sets Aq, 4, ..., 4,, as follows:

i) U A,={1,...,n};

(i1) Ao— {1} .

. -1 . :
(i) A,={i:i€{l,...,n}\U 4, and there exists j€A4,_; such that a;€
k=0 .
EA(D(I,...,n))}a P=1, ey M
Let the function S:{2,3,...,n}—~{1,2,...,n} eb defined in the following way:
S(@)€Ad,-, and asu€A(Dyg,..,,) whenever i€4,, p=1,...,m. Let ¥€Q(p),
y=x(y) and define the function
V(t) = ;; Zi(t)’

where z,(f)=y,(f) and

T T k
Zi(t)z f fyi[t_ le ] ixcipe— 1(sk) lllo(sl)
0 0 m=
for i=2,3,...,n, where iy, 1, ..., are defined by iy=i, iy=1 and S(,)=in11

for m=0,1, ..., k—1. Obviously iy, iy, ..., i, may depend on i. Let My= Z"'M,
i=1

and m;= Zn’ m;. Itis clear from (7) and the definition of V' that

= me=V(@® =M, (tlER).
From the invariance of set 2(¢) we have y,EQ((p) for all t¢R. By 51m11ar argu-
ments as in Case 1, for every t€R from y,(f)=M, it follows that y,(t— s,,,) M;

whenever s ET ,m=1, ..., k; moreover y,(¢—u)=M, for each ucH.

-1

Clearly, V()= M0 implies yl(t) M,. Thus, from V()=M, it follows that
V(t—u)=M, for ucH. Similarly, from V()=m, we obtam V(t—u)=m,y, ucH.
Hence and from (8), (9), (19) we have

(20) max V(t+s) Mo, mm V(t+ ) =my (1ER).
Since (p4, ..., px)=1, from elementary number theory, there exist integers
K . B

n, ..., ng such that > mp,=1. Let
- k=1

K . K
N= 2 nfp—1 (= Z,nk‘pk),
k=1 k=1

. where " and n" are the positive and negative parts of .
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K
If h= 2 a, p;, where g, is nonnegative integer, k=1, ..., K, then hr* is the
k=1

sum of the elements of set H. Thus, from V(f)=M, and V(f)=m, it follows that
V(t—hr*)=M, and V(t—hr*)=m,, respectively. For every integer I/, which is
not less than NZ, the number Ir* is the sum of the elements of H. This is evident from
the following: "

l=N*+k=N*+aN+b=(N+a)N+b =

= (N+a) Znh Ptb Z By px = 2[(N+a)"k +b"k]Pk,

Whefe k, a, b are nonnegative integers, k=aN+b, b<N.
Thus, from (20) it follows that there exist numbers ¢,, 1,6 R such that

Qn V(t—ir') = My, V(g—iry=m, (i=0,1,2,..).

From Lemma 2, (7) and the monotonicity of functions hy; we have

_2 [~ (7)) +1] =0 (€R).

Thus, by using that y is a solution of -(1), one gets

VO = Za0 = 3 3w,

where

wn(t) = fhn()’l(t—s))dFu(s)_hu(J’1(t)),
wy () = fhli(yi(t—s))dFli(s)_
- f f h(lt- 3 Z sa))dFyi, (50 - da,.,(sl) (i=2),

wll(t) = f fhfl(yl(t—s—' =, m))d l(s)d Jiit- 1(51)"' Jx.io(sl)
_hjl(yl(t)) (=2,

wy (1) = f f hy(r(t—s— 3 S 5 )AE ) dFy_(5) - dFgo (5D~

- f f hu (yj(t— = M))df:hh x(sl) 1Io(s1) (i,jz2),
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where jo, ji, ..., j; aredefined by jy=/, ji=1and S(j,)=jus1 for m=0,1,...,I-1.

"Let W be a (v;,v)-path in Dy, .. Then (W,aq; Jo> Bighys s @y; . ) and
W, ay;, Ay 0> Bigiys oo a,; ) are (a,a)walks in Dy ., such that their
lengths are at most 2n—1. Thus, from the definition of H it follows that there:
exists a nonnegative ¥ such that

k [ .
uts+ > s, =pr* and u+ 3 1,=p;r*
m=1 m=1

for all s€T;;, Sm€T; i s m=1, ..k, wel; ; _,» m=l, ..., 1, for some non-

negative integers p;, p;, where p; and p; may depend on s,,, s; 7,,- That is, for i, j€
€{l, ..., n} functions w;;(#) have the following structure ‘

K K.
wi; (1) = kgi apo(t—b, r*+u)— g’l c,v(t—d,r*+u),

K K.
where j a,= Z" cn=1, u€R, b, and d,, are nonnegative integers for k=1, ..., K;,
k=1 m=1

m=1, ..., K,, and the function »: R—~R is bounded on R. See a special case
at the end of this section.
If [v(#)|=a for 1€R and b=, max =~ {bi,d,}, then
= sm=1,..., K3

=1,...,K;
1 L K ' Ky
7 Z(Z'akv(t—bkr*+u_flr*)— 2> cmru(t—d,,,r*+u—-lr*))| =
1=0 k=1 m=1
1 K, L - o . K R L . .
THT kS Z’v(t+u—(bk+l)r_*)— S en So(t+u—(d,+hr¥)| =
k=1 =0 .m=1 . ]=0
1 & L . w . 2ab
éf’ﬁ"gl g'v(t—f—u sr )—Z'c Zv(t+u sr )|+L+1
1 2ab 2ab
=50 LZ v(t+u—-sr*)(2'ak 2 ,,,)|+ s k7
as L-oo uniformly in # on R. Hence we have -
@ ' 1 SV ~0 as L
. L+1 5 7 -
uniformly in ¢ on R.
On the other hand from (21) it follows that
1 . 1 L Hh—lr*
V(@)dt =
fL+112V(t Irtydt = L+Izo,_‘/,:t @ —ma =0

for all L=0,1,2, ..., which-contradicts (22).
This completes the proof.

a
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Remarks: The proof of Theorem for Case 2 is based on the idea of [6, Theo-
rem 3.2]. '

We remark that the monotonicity conditions for functions h;; cannot be omitted:’
if the functions are not monotone nondecreasing, then the equatlon 4)) may have
periodic solution [10].

We do not know whether the strict monotonicity conditions for h iS a neces-
sary condition for the convergence of solutions of (1).

To illustrate the above proof we give a special case. Let us consider the system

X, (t) =- hy (xl (’)) —hy (xl (1)) —hy (xl (’)) +hyy (x1 (B 1)) +hyy (Xs @ '_12))
%9(f) = —hgy(x2 (D) + hn (2 (t—1))
%5(f) = —hya(x5(2)) + hgy (a(t—2)+ % hgs(x2 (D) + % hga(x, (f D)+ 711‘ hga(xa(1—2)),

where functions: hyy, by, hay, Mas, hsy are strictly increasing. Here : directed graph
Dy 5.9y, 7,7, Tij, H, A, V(£) and V() are the following:

t=3;, r=18;
Ta={1}, Tu=1{2 Tu={) Tu=1{2 Tu=1{0,12}
H=1{1,2,3,..,18);
A={1}, 4=0) A=),
V(D) = 31O+ ps(t= D+ pa(t— )2+ o (= D)4+ 3, (1= 4)/4;
V() = [ hn(0h (D) +hn(n (0= D))+ [— b (1) +huy (1 -9+
+[_h21(yl(t))+h21(y1(t_3))]/2+[—h21(y1(t))+h21(yl(t H)l/4+
4 [=ha(rh @)+ ha(n (= 5)]/4.
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