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On the convergence of eigenfunction expansions in H°-norm
S. A. ALIMOV and L JOO

Dedicated to Professor K. Tandori on the occasion of his 60th birthday

1. Let S,cR" (n§3;' k=1,...,1) be submanifolds of dimension dim S,=
=m,=n—3 having smooth projection to R™, i.e. there exist coordinates (&, y)=
=1y s &3 V1o s Puop JER” and functions k€ CY(R™—~R""™) such that

S, ={(& YIER": y; = o%(®), |Voh(O)] = C¥)
and

Let gcC=(R™\S) be such a real valued function for which

lg(x)] = c/dist (x, S)
is fulfilled. Consider the Schrodinger operator L,=—A4+4¢(x)- with domain
D(Ly)=C; (R"). Such operators occur as the Hamiltonian of many body problem
(cf. [7, XI]). E.g. in the case of two particles we have H= —4 +q-, DH)=C; (R,

Ca C3

n=6, m=3, q(x, y)=ﬁ-+ ; x€R® yeR3. In the case of homogene-

Ixt Il ix—i _
ous and izotropic spaces the manifolds S, are subspaces in R".

It is easy to see that the assumptions m,=n—3 implies g(x)¢ Li>*(R"). Indeed;
it is enough to prove this for §,=S, dim S=m=n-3,

S={¢ »)ER": y; = @;(&); Vo, &) =C;; j=1,2,...,n—m}.

Using the coordinata-transformation (&, y)—+(¢, 2); z;=y;—¢;(£) we have for
the Jacobian D(¢, z)/D(¢, y)=1 and for any 0=#€Cy(R")

[la@Pneydx= [dz [ g z+e@)Pn(E z+9©) dx,
R" R™ R-m
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where

¢ = (@1 > Pp-m)ECR™ —~ R"™7).
On the other hand, for any x=({ »)€R" and u=(¢ @(&))ES, |y—o)|=
=|ly—0@l+10O—e©@I=ly—0@|+IVeE) - 1E-E=c(ly— @) +]E ().
Hence |y —@(OIP=2(|y — o (O +1E L) =2¢c%x—ul, ie. [y—@(E)|=cdist(x, S),
consequently

|9(& z+0(©)| = c/dist{(¢, z+ (@), S} =

¢ _ <
lz+0@—e@| ~ 2|
We have

[lg@Pnxdx= [d¢ [ g z+0@)n(s z+0®)dz =
R" RrR™ RA~-m

= [dt [ e s+o@)dz <.

R™ Rr-m

1t follows from the Lemma 1 of the present work that the operator L, is bounded
below, i.e. for any f€C;(RY)

(Lo, N =41 N+, H=VLEIN+@f, ) z=—c(f ), (c=0),
and hence by K. O. Friedrichs’ theorem [6] we obtain: L, has selfadjoint extension L

further L= —cl{c=0). Denote L= f JdE; the spectral expansion of L and for

0
any f€L,(R") consider the expansion E,f.
In [8] is proved: for any f€H*(R") (0=s=1) |E,f—fllys—~0 as A—o. H®
denotes the space of functions from L,(R") with the norm

1 1as = T~ AP | = IA+ED Ol (), 23.3).
The aim of the present note is to prove the following

Theorem 1. For any feH*(R") (0=5=2) we have
) VE.f—~flus ~0 as A —oo.

A theory of general orthogonal series was developped by K. Tandori in the last
twenty years (Cf. e.g. [2—4]). At the same time IL’IN [5] found a new theory of spec-
tral expansions which is a special case of the general orthogonal expansions, further
proved in [5] the Theorem 1 in the specail case when ¢g=0 and s is integer.

From Lemma 2 below it follows, among others, by the well known Kato—Rellich
theorem [7, X.2] that the operator L, considered is essentially selfadjoint, further
NL)=2(L)=H"
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2. For the proof of the Theorem 1 we need some lemmas. Define
o(x) = [dist (x, S) 7.

Lemma 1. We have for any fe€H*

) Je®fo)Pdx = el flr,- | flur.

R?

Here and below ¢ denotes a constant, which is independent from fand not neces-
sarily the same in each occurences.

Proof. Using polar coordinates and the identity

h(r) =—2 fw h@) R () dt

we obtain

f%{zdy= ffwrn—‘m_2|g(r, 9)|2d,.d9:_2ff°°[f°°g,(t’ B)Q%ﬂdt 9
o °e 6 0 -

2 98(’3 )
. n—m-—2 —_ n—m—1
. Xr drd@——l 5/‘0’/' g(r, 9)———ar 1“ . dr do

whence for g(3)=g(¢, »)=f(¢, y+¢(¢)) we obtain

[e@lfepax=c fae [YEIHo@OF

RY  Reim 54

=c Ja . [ &y +0@) N & y+o@)]dy =

=c [If@V,f®)]dx = c]fle, | lm-
o

Lemma 1 is proved.
Lemma 2. We have for any fcH?
©) [ e@U@PRdx = c] fli.
. B T B R"

Proof. Using polar coordinates and the notation

o

I=1¢0= [ rmm3|f¢r,0Pdr (ER)

0
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we obtain

I=2 jmwm-af‘f(c, t, O)W dtdr =
0 r

=2 f” (If(é, AL (5(; t" o)l of' r’"""“’dr] dt =

t,0) -——3f(65 tt’ 6) ’t"-"'-2dt =

o0 1/2 ; o 2 1/2
= c(f i F (3 0)|2dt] (f T t"'"'—ldt] s
[}] 0

hence

oo

=c |

[ [1d6de = c|Vflt,mn = | flar

R™ ¢

tB)

"t dt = e[V, flLmn-m,

ie.

Lemma 2 is proved.

Corollary. The operator L, with D(Ly)=Cg (R") is essentially selfadjoint
and D(L,)=D(L)=H>

Proof. It follows from Lemma 2 and (8) (below)

191, = clflm = el fllaz+e@1f . = elT=V) [, +e (@) fl .-

Because /—4 is essentially selfadjoint and D(I—A4)=H?, the Corollary follows by -
Kato—Rellich theorem ([7], X.2.).

Lemma 3. For any fcH?
@ 14z, = el a2
Proof. Using Lemma 1 we have for any f€H? o
[ ey = |- 4+ ¢S, = 14 |, +19S 12, = [ flae+ el fler = el f{ae-

Lemma 3 is proved.
Lemma 4. There exist constants ¢,>0 and c,>0 such that for any fcH?

©) 1L 1%, = el flEs—cal f12,-
Proof. Using the identity

1LA1E, = 14712, —2(af, 49 +]af L.
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the ingequality a-b=ea®+(1/4¢)-b? (a, b, €>0), the Cauchy—Bunyakovski. ine-
quality and Lemma 2, we have

Wgfs AN = lafley - 14, = SIIAflliﬁzl&: lafiz..

hence
1LA1Z, = 14712, —21(af, AN +Nafli, =
. = |Af | —eldf 1L, —c@laflL, = A~ |Af]E, —c @)l qfE.
Using
lgfli, = clflfn = &l flh+cE)fIL.
we obtain

1Lf12, = (1—&) [ 4f 12, — c(@)er| f i —c(e)e (e | F1E, -

On the other hand
1f—4f12, = | fl&e,

14fl, = 1Af~f+f e =N = 1 L = 1 L= | fl -

At last we obtain

whence

I1Lf 12, = (1 —e—c(@e) | flh—c (e e I,
and from this (5) follows if ¢=1/2 and g is small enough. Lemma 4 is proved.
Define L,=L+pul.
Lemma 5. There exists p,>0 such that for every fcCy(R")
©® 1Luf e = cull fllae-

The constant C, does not depends on f.

Proof. Obviously
1L f13, = Wf+ufs Lf+uf) = (LS, L) +2u(Lf, £, N+ N =
= (Lf, L) —2ul(af, N+2u|Vf 1L, +ulf1i,.
Using Lemma 1, we obtain

() Kaf, Nl = [Viglf[i. = el e 1/l = Bllfll?n+zlg A1,

Taking into account the definition of the H*norm and using the inequality

1
LHER = (L +EP)2+5—,
Il = en(L+ P+ -
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(which is a special case of a=¢a®+1/4e) we obtain

® 1/l = / li(¢)12(1+|c|2)2d<+— f If@rde =

= slllfllm+ IIfIIL,
From (7) and (8) it follows

I(gf, NI <881||f||m+ i Uflli,-

Let e=¢,=aff u, where a=0 will be choosen below. Summarising our estimates,
we obtain

L1 = el T el A1~ 25 1T A+

PP i) 11 = 26018

_(#2_% WVu ] 1£1%, = cl flhe,

if a is small enough and po=p,(x) is large enough. Lemma 5 is proved.
The following Lemma generalizes that of 2.4 in [11].

Lemma 6. Let 4 and B be strongly positive selfadjoint operators in the Hilbert
space H. Suppose

&) D(B) c D(A)

and

109) I4fla = clBflu (f€D(B))
are fulfilled. Then for any 6, 0=60=1

(¢8Y 14°f s = co|B°flu  (feD(B)).

Proof. Define
1f I &£ |4°f |5, O€C.
Acoording to the strong positivity of 4, this norm is equivalent with that of defined

in TRIEBEL [9]. We obtain from (10) (taking into account the definition of the Petree
functional)

K(1,f,H,D(4)) = cK(1.f, H D(B)) (feD(B)).

Hence, using 1.3.2 of [9], we obtain (11). Lemma 6 is proved.
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Lemma 7. For u=p,, 0=s=2 we have
(12 1L S e, = e fla=(fe H?), D(L?» = H*R").

Proof. (12) is trivial for s=0 and it is proved for s=2 in Lemma 3. Now
apply Lemma 6 for A4=L,, B=1-4, D(B)=H?@R"). We obtain:

L3S e, = U=’ fl, = clf

H29.

According to TRIEBEL [9], 1.18.10and using the Corollary after Lemma 2, we obtain:
D(L%)=H*(R"). Lemma 7 is proved.

Lemma 8. For u=y,, 0=s=2

(13) 1Lz f lne = e fl, (fELR).
Proof. First we prove that for every g€ H*®
a4 lglas = 1L gl O=s=2).

This estimate is trivial for s=0 and for s=2 it is proved in the Lemma 5. Use
Lemma 6 for B=L,, A=1—A4, D(4)=H? then (14) follows.

From Lemma 7 we obtain R(L;”z):D(L;’Z):H *(R™), whence for every
fEL,(R™) we have L;**fcH*. Now applying (14) for the function ggi—fL;s’zf
(f€L,(R")) we obtain (13). Lemma 8 is proved.

Proof of Theorem 1. Using (12) and (13) we obtain for any fc H®:

f=Eaflus = | Lz L (I- E)f |ne =
= c|LPUT—ENflr, = cfU—EDLFflr, -0 (A ~=).

Theorem 1 is proved.

Now consider the Schriédinger operator
Ly=—4+q(x)-, x€R% D(Ly) = C5(R®,

and suppose |g(x)|=c/|x]. Then the method of the proof of Theorem 1 gives

Theorem 2. The operator L, is essentially selfadjoint, D(L,)=D(L)=H?2(R?),
where L2 L,, further for O0<t<1/2 we have

(15) Eaf=flles =0 (2 >0, fEHYH(R)).
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Here E; is the spectral family of L and C' denotes the Hélder class of functions
(TrIEBEL [9], 2.7.1(2)), i.e.

If e sup [FGO]+ sup If(x)—f()’)|'

*yYER® lx—y[*

Proof of Theorem 2. Using the imbedding H3****cC* (cf. [9], 2.8.1(16),
p=2, n=3) (15) follows by the method of the proof of Theorem 1.
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