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Parameter estimation and Kalman filtering in noisy background 
MÁTYÁS ARATÓ 

Dedicated to Professor Károly Tandori on his 60th birthday 

The parameter estimation (identification) problem will be discussed in the pre-
sence of additive coloured noise for multidimensional stochastic processes with con-
tinuous time. We shall investigate the case when the signal and noise both are Orn-
stein—Uhlenbeck processes. To obtain the main tool in such investigations, the 
Radon—Nikodym derivative, we use the method of Kalman filtering and the im-
portant remark that the Riccati equation can be solved explicitely. Some asymptotic 
results for the white noise case will be discussed (the reader may compare with BALAK-

RISHNAN [ 6 ] — [ 8 ] ) . 

1. Introduction. Let us have an observed process ^(i) in the form 

(1) S(0 = e ( í , a ) + e ( í , p ) , 0 ^ / s r , 

where a , ft denote the unknown parameters, generally vector valued, which one wi-
shes to estimate. The 8(f, a) process means the signal, while z(t, p) models the error 
and both they are completely specified once a and P are given. When the time, t, 
is continuous the basic tool in statistical theory is the Radon—Nikodym derivative 
of the probability measures induced by the processes and 9(/), with respect to 
a standard measure, e.g. the Wiener measure in the Gaussian case. It turns out that 
the derivatives even in the most simple cases have complicated form. For the statio-
nary Gaussian process case the reader can find different methods in HAJEK [ 1 0 ] , 

IBRAGIMOV a n d ROZANOV [ 1 3 ] , PISARENKO [ 1 9 ] — [ 2 Í ] , P I S A R E N K O a n d ROZANOV [ 2 2 ] , 

while for diffusional type Gaussian processes we may mention ARATÓ [ 2 ] — [ 4 ] , 

BALAKRISHNAN [ 6 ] — [ 8 ] , KUTOJANC [15 ] , LIPSTSER and SHIRYAEV [ 1 6 ] . In these works 
mostly the scalar case was studied. 

In this paper we assume that 0(i, a) and s(t, P) both are first order multidimen-
sional, autoregressive processes, the so-called Ornstein—Uhlenbeck processes, i.e., 
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they satisfy the stochastic differential equations 

(2) de (0 = - ct8 (0 dt+cp dwx (0, t — o, 

dz(t) = -pc(0dt+cll2dw2(t), t S 0, 

where w^t ) , w2(/) are standard, independent Wiener processes and —a, — (J have 
eigenvalues with negative real parts, c1=c}/2(c}'2)* and c2=c]l2(cl12)* are positive 
semidefinite symmetrical matrices. The e(t) process is called coloured noise. 

In the mathematical literature it was customary to take e(f) as a Wiener process. 
In the earlier engineering literature the white noise process was introduced for e( t) 
in a formal way as a stationary stochastic process with constant spectral density. 
For more rigorous treatment of the white noise case Balakrishnan introduced the 
Radon—Nikodym derivative of weak distributions, see [6]—[7]. 

In the present paper we are motivated by statistical considerations more than 
control theoretical, to develope some practically useful and computationally efficient 
closed-form expressions for estimators of the drift parameter a in (2). The expressions 
are developed for some limiting values in terms of the spectral characteristics of the 
processes for the purpose to obtain approximations in the white noise case too. First 
of all we remark that the Riccati equations of Kalman filtering can be solved explici-
tely and so one can get the Radon—Nikodym derivatives. With limiting it is possible 
to obtain those formulae derived earlier in the one dimensional case by Balakrishnan. 
The result that the filtering equations can be solved explicitely in the case of stochastic 
equations with constant coefficients may have other practical and theoretical conse-
quences. 

2. Explicite Kalman filtering. We assume that in (2) the processes 8 (t, a) and 
e(/, P) are /^-dimensional and the Wiener processes Wj(i), w2(i) are independent, 
p-dimensional and standard, i.e., 

where asterisk means the transposed and l p is the p-dimensional unit matrix, wx(i) 
and w2(t) are independent of 0(0), e(0) and further 0 ( i ) and e(t) are stationary, 
which means that for the covariance functions (assuming E 0 ( / ) = E E ( / ) = 0 ) 

Ew{(0 = 0, E(w,.(/)w,.(/)*) = J P - / , w,(0) = 0, i = l , 2 , 

B,(t) = E 9 ( / + s ) E * ( s ) , Bt(i) = E E ( / + S ) E * ( S ) , 
we have 
(3) « ^ ( O H ^ O ) « * = Cl5 Be(t) = e-°MBe(0), 

pfl t(0)+5 £(0)p* = c2, Bc(t) = e-MBe(0) 
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From (1) and (2) we get 

(4) ¿70 (0 = - «9 (0 dt+c}/2 dv/1 (/), 

(5) d^(t) = d%(t)+dz(t) = 

= - fa - P) 9 (f) d t - (0 dt+c\/2 i/Wi (?)+d/2 dw2 (/), 

where ^( i ) is the observable, while 0(/) is the unobservable component of the vector 
process (£,*(/), 0*(O). The Kalman filtering equations for m(t)=E(Q(t)\^t

i) and 
7 ( I ) = E ( 0 ( I ) - m ( ? ) ) ( 8 ( I ) — M ( 0 ) * are given by (see LIPTSER and SHIRYAEV [ 1 6 ] 

Th. 1 2 . 7 ) 

(6) dm(t) = - am(/) A + [q + y (t)(p - a)*][cx + c j ( 0 ~ 

- ( ( p - a ) m ( O - P ^ ( O ) ^ ] , 

(7) K 0 - = ~ «V ( 0 ~ 7 ( 0 «* " [Ci + r ( 0 (P - a)*] K + c J X 

X t C a + y ^ i P - ^ T + C ! = - [ a + C j f e + c ^ - H P - a ) ] ? ( 0 -

- K O t a + C j f e + c ^ - H P - a r - K O C P - a r i c i + c ^ - H P - a i K O -

- c ^ c i + c j ^ c i + c i = 

= ay (0 + y (t) a* - y (0 A* (c, +c 2 ) " 1 Ay(0 + bb*. 

The solution of the Riccati equation (7) may be given in the form (see A R A T O 

[4], Lemma 2 in section 1.8) 
< 

(8) y(t) = e i ' [ c 0 + f e**"A* (cx + c 2 ) A e i u rfwj _ 1 e5*' + c 
0 

where c is the positive semidefinite solution of the "algebraic Riccati equation": 

(9) ac+ca*-cA*(c 1 +c 2 ) - 1 Ac+bb* = 0, 

and the constants c0, a, a* are given by 

(10) Co"1 = y ( 0 ) - c , 

a = a — cA* (c2+c2) _ 1 A, a* = a ^ A ^ + c ^ A c . 

In the scalar case we have the special form 

(8 ' ) y(t) = e-*>[c0+B(l-e-*<)/A]-i+c, 

where from the stationarity 

(9') A = b = 
C]. + C2 Ĉ  + C 2 Cj + C2 

-A + VA2+4Bb 
C = 2 B 
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and 

( 1 0 0 HO) A=A+2cfi. 

From (6)—(10) by integration we can prove the following statement. 

T h e o r e m 1. The conditional expectation of Q(t) under condition O â j g f , 
given in (4)—(5), has the form 

t t s 

E ( 9 ( 0 I ^ ) = m(i) = exp { - / g{u)du} {m(0)+ / exp ( /g(«)dn)[ l i (s)pÇ(s) ds + 
0 0 0 

+ h ( s ) ^ ( s ) ] } = e x p { - / g(M)d«}{m(0) + e x p ( / g ( « ) d « ) h ( 0 S ( 0 + 
o o 

(11) 

+ h(0)Ç(0) + / exp ( / g (u) du) [h (s) P - h' (s)] Ç (s) ds -
0 0 

t s 

- f g(s) exp (J* g (M) D M) h (s) £ (s) d s j , 
o o 

where 

g (M) = a + h ( « ) ( P - « ) , 

b(u) = [ c 1 + y (W)(P-*)*](<:,+c2)"\ 

and y (t) is given in (8)—(10). 
Specially in the scalar case we have 

m{t) = exp ( - hx(t)) {m(0) + ( / ? - 1 exp (h,(t))[j+By (0 - a] £ (i) + 

(110 -(P-ar^All+ByM-aim + iP-*)-1 f exp(fcx(s)) \A(P-a)/2 + 
0 1 

-pabB+By(S)(p-2A+oi)-B2y\S)\ f ( s )ds} , 

where 

fti(0 = f [AI2+By(s)]ds = {AI2+Bc)t+log(c0+B(i-e-*)/À)/c0. 
0 

To calculate m(O)=E(0(O)|Ç(O)) and y(0)=cov (0(0), 0(0)|Ç(0)) one can use 
the Gaussianness and stationarity of the process (0(0, £('))• Let ®=0(0)> £=£(0) 
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be a Gaussian random vector, then 

(12) m(0) = 

y(0) = D0B-DHD£Di0, 
where 

R(0\ = {
 COV (6' 9) C°V (G' ̂  1 = ( D°° D * \ 

" W { cov & 0) cov & JQ ) { Di0 Dtt ) 

is the joint covariance matrix. From stationarity we obtain 

(13) A$(0)+.g(0)A* = - B w , 
where 

I _ f - a 0 ) ft _ f C1 c i ^ c P + c r T ) 

1 ) 3 - A - P ) ' I(CI/ 2+C^ 2)(CP)* CL + C2 ) ' 

and the unknown B{0) may be gotten from the linear relations 

aiDeg-Dgea.* = c l5 

*Dei-Dn®-*y+DvF = c P ( c r + c \ ' T , 
( a - P)Z> e 4+pZ>B 4+Z> i 4(P-<x)*+jDwp* = (ci + cz). 

Explicite solution of (13) is not known in the general case. 

To find different approximations for the maximum likelihood method one has 
to dicuss special cases and find simple forms for m(r) and its integral. Below we shall 
investigate two problems: a) the realization of ^(J) is given in b) the 
white noise approximation, when 

(14) Pca-M»*~Po, if P — , 

where the convergence of matrix A is understood in the norm || A||2 = Sp A A*, and 
P has full rank, p. 

a) Taking the observation interval —T^s^t, 0), we obtain from (12) that 

m T(-T) = \ (— T), yT(-T) = b1; 

with constant matrices ax and b^ Assuming that the matrix 

g = [ « - ( c i + c i p - a r f e + c , ) - 1 » - « ) ) ] 

has eigenvalues with positive real parts from (8) and (11) one can obtain 

(15) 7t(0 — c> if T - o = , 
t 

- f e(u) du 
e -T = e x p { - g . ( / + r ) } - 0 , if r - o o . 

So we proved. 

2 
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T h e o r e m 2. The limit function of mT(t), when T — u n d e r the condition (15) 
has the from 

t t 
(16) m ( r ) = h - £ ( 0 + / e^" '> [h -p ]^ ( s )ds - f ge^ -»h^( s ) ds, 

— oo — oo 

where 
h = [ c 1 +c(p-« )* ] [c 1 +cj - 1 . 

R e m a r k . In the special case when <x=p we have g=a, h=ci[cl + c^~1 and 

m(/) = c ^ + c J - H i O , 

as it could be expected. 

b) If pc^1p*->p0, when P — and p0 is positive definite we obtain from (7)—(10) 

(17) bb* — cx , a — — a, 
A*(c1-t-c2)_1A — po, 

further, c is the solution of the equation 

(18) —ac—ca* —CPqC+CX = 0 

and 
(19) a — — a—cp0, 

c0
_ 1 ^ ¿ o 1 = y ( 0 ) - c . 

In this case we have 

T h e o r e m 3. In the "white noise" case approximation 

t 
(20) yf (0 ~ y ( 0 = exp [ ( - a - £p0) t] [£0 + f exp [ - (a+¿p0)* u] p0 exp [ - (a + 

0 

+ C P 0 ) M ] du] - 1 exp [ ( - a -cp o )* i ] +c , 
and 

t t 
(21) m< ((0~m(0 = e x p ( - a i + f K " ) M " ) { m ( 0 ) + f e x p ( - a s + 

o o 

+ f Ku)kdu)Ks)Pomds}, 
0 

when P—00, and pc^"1p*—p0 is positive definite. 

R e m a r k . In the same way can be treated the case when the noise power/signal 
power, i.e., B ^ - B ^ i O ) tends to 0. 

3. Parameter estimation. The parameters CJ, c2 can be determined in two steps, 
if we want to handle them separately. Using the fact that !;(/) is a diffusional type 



Parameter estimation and Kaiman filtering 19 

process we obtain (with probability 1) 

(22) - C c i + O T ; 

when max ( f £ — — 0. On the other side in representation (6) the process 

(23) dw(i) = dh, (t)—[(P—a) m (i)—PS (01 dt 
is a Wiener process with parameters 

Evt(t) = 0, £iv(i)vv+(0 = (Ci+Ca)?. 

This gives (see e.g. Th. 7.17 in [16]) that (with probability 1) 

(24) i f r n W - m f t . ^ t i n W - m f t J ) ^ 
T 

- f [ C i + i i P - ^ y ^ f e + c J - M c r + H ^ i P - a n ^ , 
o 

if max (/¡—ii_1)-<-0. The last relation could be used if a and P were known. 
To get separately cx and c2 one can use (22), (24) and some preliminary estima-

tion of a and p. For this purpose let us use that the covariance matrix function and 
the spectral density function have the form 

(25) BT[I) = ES(f+s)S*(s) = e-W'l* f (0)+e-Ma 0 (0) , 

/«(A) = ( M p + a) Cl [ ( - M p + « ) * ] - 1 + 

+ +P) - 1 c2 [ ( - M p +p)*] 

with condition (3). 
Let B(t) denote the empirical covariance function 

T ~ l i 

then equating at the points tit t2 to the theoretical values we have 

(26) B(h) = e*\h\.Be(0) + «&',!• 5,(0), 

B(t2) = e~al<J • B0(0)+e»M -Be(0) 

which give, together with (3) a system for the estimators a and p. We note here that 
these estimators are not efficient. 

To improve estimators a and p, the solutions of system (26), one can use the 
sequential estimation, proposed by LIPTSER and SHIRYAEV [ 1 6 ] (chapter 1 2 ) in a 

2* 
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modified form. E.g. let us assume that a is a random vector variable with 

Ea = á and ya(0) = cov (a, a). 

Further, from (6), with the approximation only in the diffusion coefficient a = a 
and P = P we get 

(27) dm(t) = - a m í O r f í + k + r í í K P - a M c i + c J - 1 [ ^ ( í ) -

- ( ( j i - « ) m ( 0 - R ( 0 ) ^ ] 

where y(t) is given by (8)—(9) with parameters á , p. Assuming that P (a<« |m(0 ) ) 
is Gaussian and the fourth moment of a exists from theorem 12.8 in [16] we obtain 
for 
(28) « ( 0 = E ( A | ^ M ) , ? A (0 = E ( ( a ( 0 - a ) ( a ( 0 - A M M ) , 

« ( 0 = { l + y.(P) / m*(s)[cl+ y(s) (p - « ) ] ( C l + C,) [Cx + 
0 t 

+ y ( s ) ( p - i ) r m ( s ) d s } - i { i + 7a(0) f m*(s)[c1+y(s)(p — 
o 

- ¿)](Ci + C,)-1 [ c 1 + y ( s ) ( p - á ) r dm(s)}, 
(29) 

? , ( 0 = {l+y.(0) / m (s) [ C l +y (s) (P - ¿)] ( C l + c 2 ) - 1 [ C l +y (s) ("p -<*)]* m (s)ds] ^ ya (0). 
0 

To improve p one can use (5) with p and a ( f ) and the same sequential procedure. This 
approximation may be compared with those which were proposed by LJUNG [17], 
see also HANNAN [11, 12], in the discrete time case. The derivation here seems 
more simple, but no optimality is proved. 

Now let us return to the maximum likelihood estimators. It is known that gen-
erally no finite system of sufficient statistics exists if a and P are unknown. 

From a Girsanov's type theorem (see [16] Th. 7.19) and (6) we obtain for the 
Radon—Nikodym derivative (assuming ^ (0 )=0) 

j p ' 

(30) ^ - m ) = exp { - / [ ( a - p ) m ( s ) + p ^ ( s ) ] * ( c 1 + c 2 ) - i ^ ( s ) -
a t r * o 

- j f [ (a -p)m( s )+p^( s ) ]*(c 1 +c 2 ) - 1 [ (a -p)m(s)+p^(s ) ]ds} . 

To find the distribution of the exponent in (30) in special cases has a very short 
history see ARATÓ and BENCZÚR [5], NOVIKOV [18], KONCZ [14]. 
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E x a m p l e . In the approximate "white noise" case (see case b) in §2.) we 
obtain for the Radon—Nikodym derivative (30) that it equals to 

(31) e x p { - y j [—p0m(s) + p0S(s)]*[—P0nii(s)] + PoSCO] 

where m(s) and y(s) are given by (20) and (21), respectively. Neglecting in m( i ) 
with the term m(0), i.e., assuming that 

(32) m ( 0 = / exp {—<*(/ —s)— / - / / ( / , s)^(s)ds, 
0 0 0 

and taking y(t) = c we obtain for the log likelihood function 

(33) ¿ ( a , p0) = - ! / [ - / ¿c«+cPo)(—0£PoS(w) ¿w + i ;(s)]*p0*p0x 
0 0 

s 

o 

From (33) the system of transcendental equations for the maximum likelihood 
estimators of a and p is given in the following way 

dL(a,p 0 ) = Q ax(« ,p 0 ) _ Q 

da ' dp 

Specially in the scalar case one gets 

c0
 1 = j ^ - c , Äo = cc+ß0c, 

Ht) = [c0+/?„ (1 - e2jo')/2A0] 

and this gives with y ( t ) ^ c 

£(«, Po) = ~ j P l f [£(s)~ / e*#-->£(u)cdu]* ds. 
2 o . o 
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T h e m a x i m u m l ike l ihood e q u a t i o n s a re t h e fo l l owing 

Po / [ £ 0 ) - f e^~'^(u)du]*ds+Pi / [ « , ) - f e ^ - ' ^ u ) du] { / e x p ( - i " 0 . 9 + 
0 0 0 0 0 

(34) + A 0 u ) c ± - c 1 № + c J 0 ) - 1 ' z l ; ( u ) d u - P i * / > . < » - > X 
2 o 

X [ Y CT (A 2 + C L /?0) " ^ / ? „ - ( - « + ( A 2 + ^ 0 O ) 1 / 2 ) ] ^ = 0 

f S 5 

(35) f [ Z ( s ) ~ f e W — 1 c Z ( u ) d u ] [ f e ^ - » ) a ( a 2 - f - c 1 / ? 0 ) - 1 / 2 ( - a + 
0 0 

+ (a2+Cl/?o)1/2)a«) «?«] ds = 0 . 

I f /?„ is ap r io r i given ( k n o w n ) a n d only a mus t be e s t ima ted f r o m (35) we o b t a i n t h e 
e q u a t i o n 

( - a + f ( / e x p (u-s)}au)duf ds = 

= / ( / e x p ( « - * ) } £ («) du) H (s) ds. 

A similar equa t i on , der ived in a n o t h e r way, w a s given b y PISARENKO [ 1 9 ] , [ 2 1 ] . 
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