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1. Introduction. This paper is concerned with a generalization of the classical 
Lindeberg—Trotter operator-theoretic approach to the central limit theorem (=CLT) 
(see e.g. [24], [15, p. 113], [10, p. 248], [20, p. 223], [18, p. 207]), so far restricted to 
independent random variables (=r.v.'s), to the general case of arbitrary dependent 
r.v.'s. One of the great advantages of the classical Trotter approach is that it can also 
cover the weak law of large numbers ( = WLLN), indeed any limit theorem dealing 
with convergence in distribution of r.v.'s and, above all, it can even cover limit theo-
rems equipped with O-rates or o-rates of convergence, all in the case that the r.v.'s 
are independent (see e.g. [6], [11, p. 157], [19], [22], [5], [21]). A further advantage of 
the method is that it is elementary in the sense that it does not use Fourier analytic 
machinery at all. 

Any attempt to generalize the Trotter approach to the situation of dependent 
r.v.'s leads to principal difficulties. Already in the „resctrictedly" dependent case of 
martingale difference sequences (MDS) and arrays (MDA) did the Trotter approach 
have to be modified considerably in order to cover the particular type of dependency 
in question (see e.g. [1], [23], [9], [2], [7], [8]). In order to comprehend these difficulties 
let us íecall the basic principles of the Trotter approach. 

If (X t ) t £ N is a sequence of independent r.v.'s a n d / any function belonging to 
the space CB (see Section 2 for definition), the Trotter operator CB—CB 

associated with Xk is defined (cf. (3.1)) for each >>€R as the expectation of the r.v. 
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Rxk+y), 

VXJ(y) = E[f(Xk+y)] (k£N). 

One of the basic properties of this operator, the proof of which rests upon the rela-n 
tion P z " = l x = % P x > valid for the distributions Px of independent r.v.'s Xk, is 

k~ 1 k k 

(1.1) V£lmiXJ=VXlVXt..yXnf (f£CB; n€N). 

If (Zk)kiN is a further sequence of r.v.'s which are independent not only amongst 
themselves but also of the Xk, then (1.1) leads to the basic inequality 

d-2) U ^ - ^ f ~ V L l ^ J \ \ c B ^ 2 \\VXJ-VZJ\\CB n = l 

valid for any / € C B , where | |£ | |C B=sup \g(j) | . 

Now an equivalent formulation of the CLT for independent, identically distri-
buted r.v.'s states that 

(1.3) | £ ( / ( n - ^ 5 „ ) ] - £ | / ( Z * ) ] | = o ( l ) (n 
n 

for any f£CB, where Sn= 2 Xk, and X* is a standard normally distributed r.v. 
t = i 

This is a particular case (j>=0!) of 

||Vn-^sJ-Vs.f\\CB = o( l ) (n - « , ) 

for any f£CB. In order to be able to include such limit theorems under (1.2), X* 
must be (n~ 1/2)-decomposable in the form 

(1-4) P X ^ P N - ^ Z I . ^ 

where the decomposition components Zk are <r2)-distributed r.v.'s with 
<7^=Var [Xk] which may, without loss of generality (see [3, p. 164]), be chosen to be 
independent amongst themselves as well as of the r.v.'s Xk. In that case one has by 
(1.4), noting that the Trotter operator just involves the distribution of the associated 
r.v., 

K P / = F „ - 1 / ! ^ i Z t / (fecB). 

So establishing (1.3) just amounts to showing, noting (1.2) with all r.v.'s multiplied 
by the factor n~1/2, that 

(1.5) \\Vn-r»xJ-Vn-^zJ\\cB = o [ ^ ( /€CB ; n ->-°°). 

Assertions for single differences of type (1.5) can easily be estimated by assuming 
that the moments of the r.v.'s Xk and Zk coincide up to the order 2. 
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If one would wish to equip the CLT in the form (1.3) or other weak limit theo-
rems with rates, it would suffice to supply (1.5) with rates better than o( 1 /«), which is 
possible if the corresponding moments of higher orders are equal to another. However, 
the whole procedure is only applicable to independent r.v.'s since the basic properties 
used, namely (1.1) and (1.2), are only valid for such r.v.'s. 

A first indication that cognate methods of proof could possibly be applicable 
to dependent r.v.'s is the paper [12] by Z. Govindarajulu who established the WLLN 
for triangular arrays of dependent r.v.'s. Foi this purpose he used a property corre-
sponding to (1.1), one tailored to the situation of dependent r.v.'s; but he had to 
replace inequality (1.2) by estimates of a different type. 

The chief aim of this paper, however, is to present an operator-theoretic approach 
that allows one to generalize the Trotter operator-technique, one that has stood the 
test, to dependent r.v.'s. The development of the present approach may in some sense 
be compared with that of Trotter's: similarly as did Lindeberg's proof of the CLT 
of 1922 (cf. [17]) serve Trotter as the basis for his operator approach, so did Govin-
darajulu's paper give the impulse to our definition of a „conditional Trotter opera-
tor" (cf. Def. 1 in Section 3). However, its applicability is not only confined to a 
proof of the CLT or WLLN. These theorems will, much more, be deduced as partic-
ular cases of a very general limit theorem, which can even be supplied with o-rates 
or O-rates of convergence, as will be shown in Section 5 and 6. 

For the sake of clarity let us present a particular case of the "conditional Trot-
ter operator" tailored to MDS. If ( Z t \ € N is a MDS, i.e., = 0 a.s., k£N, 
where tyfc_1 = W(A'1, ..., Xk_ 1) is the c-algebra generated by the r.v.'s X, , ..., Xk_L, 
then the conditional Trotter operator is defined for each / £ CB and 
as the conditional expectation of the r.v. f(Xk+y) relative to i.e., 

(Vlr/Ky) •= E[f{Xk+y)I&-J 
If the r.v.'s Xk are independent, then the properties associated with conditional ex-
pectation yield that 

Vil'V = E[f(Xk+ . ) | & _ J = E[f(Xk+.)\ = VXJ, 

so that the conditional Trotter operator coincides with the classical Trotter operator. 
Furthermore, the operator has all of the basic characteristics of VXk, so that it 
is possible to establish with its help the counterparts of the properties (1.1) and (1. 2) 
for dependent r.v.'s (see (3.6) and (3.7)). For this reason it is not only possible to 
extend all of the limit theorems established by means of Trotter operators for inde-
pendent r.v.'s to the case of arbitrary dependent r.v.'s — whereby the dependency 
structure just depends upon moment conditions of type (4.1) — but also to extend 
them to particular types of restrictedly dependent r.v.'s, namely to MDS and MDA, 
without having to modify the proofs as has been necessary so far (see e.g. [7, 8]). 



40 Paul L. Butzer and Dietmar Schulz 

Concerning a comparison with the literature existing in the field, let us first note 
that apart from the paper [12] cited for the WLLN as well as another [13] by P. Gudy-
nas, no further papers are known to the authors that deal with assertions on conver-
gence in distribution without restricting the dependency structure in some way or 
other. The r.v.'s are either assumed to be independent or dependent in the sense 
of MDS, MDA, or inverse martingales. Whereas the WLLN without rates is also 
a particular case of our results (see Theorem 3), direct comparisons with the results 
of Gudynas are hardly possible since he is concerned with inequalities for metrics of 
vector-valued r.v.'s. Points of comparison with other papeis devoted to independent 
r.v.'s or to MDS or MDA will be gone into in the course of the paper. 

Part I of this paper consists of five sections, the second of which is concerned 
with the preliminary results needed from approximation and probability theory. 
Section 3 deals with the definition of the conditional Trotter operator and its basic 
properties, while Section 4 is devoted to the general limit theorem, namely Theorem 1, 
which is then applied to give the CLT and WLLN. Section 5 contains the general 
approximation with o-rates, Theorem 4, together with applications. The second and 
last part of the paper, covering Sections 6 to 8, begins with two general approxima-
tion theorems with Orates for convergence in distribution (Theorems 7 and 8) which 
are applied to yield to O-error estimates for assertions of Berry—Esseen-type, i.e. 
for the uniform convergence of distribution functions (Theorem 11 and 12), dealt 
with in Section 7. Section 8 is concerned with the particular case of MDA as well as 
with the existing literature in the matter. 

2. Notations and preliminaries. In the following, C B =C g (R) will denote the 
vector space of all real-valued, bounded, uniformly continuous functions defined on 
the reals R, endowed with norm [|/ | |c : sup | /(x) | . For r£P:=NU{0} we set 

B x £ R 

Cb := CB, CI := {g€ CB; g ( j )6 C B , l S j g r}, 

the seminorm on CB being given by |g[cv= ll£(r)llcB- For any f£CB and t^O the 
^-functional, needed in Part II, is defined by 

K ( f , f ; CB, C£) := inf { | | / -g | | c B + i|glcs}-
Cb 

This functional is equivalent to the rth modulus of continuity, defined for f£CB by 

wr(f, f \ CB): = sup || i ( - 1 ) ' / ( „ + kh)\\Cg, 

in the sense that there are constants c1(..c2 r > 0 , independent of / and t ^O, 
such that (see [4, pp. 192, 258]) 

(2.1) cUr(or(tllr-, / ; CB) ^ K(t; /; CB, C'B) ^ c2,rcor(tV; /; CB). 
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Lipschitz classes of index r£N and order a, will be needed in Part I. 
They are defined for f£CB by 

(2.2) Lip (a; r ; CB) := {(or(f,f, CB) Lft% 

Lf being the so-called Lipschitz constant. Note that for a = r ' + p , r ' S r - 1 , 0 < / ? S l 
(see [14]) 
(2.3) /<''>€ Lip(j?; r — r'; CB)=> / € L i p ( r ' +/?; r ; CB). 

Several preliminaries from probability theory will be noted. Let (i2, 21, P) denote a 
probability space with set Q, c-algebra 91 and probability measure P, SB the <x-
algebra of Borel sets in R, 3(i2, 21):= {X\ fl-R, X is 21, SB-measurable} the set of 
all real r.v.'s on Q, and £((2, 21, i>):= {X€3(i2, 21); Xis P-integrable} the set of all 
real P-integrable r.v.'s on Q. 

The general convergence theorems of this paper will be formulated, as indicated 
in the introduction, for ^-decomposable r.v.'s. If tp: N-«-R+ is a positive normalizing 
function, then 51) is called ^-decomposable, if for each n€N there exist 
n independent r.v.'s Zk = Zk n, l^k^n, such that the distributions of the r.v. 

n 
Z and the normalized sums cp(n) coincide, i.e., if 

k = 1 

An important concept needed for the proofs will be the conditional expectation (see 
e.g. [3, p. 292]), to be denoted for X£2(Q, 21, P) and each sub-<7-algebra © c 2 1 
by E[X|©]. If Yalso belongs to 2(Q, % P), and ©' is a further sub-d-algebra of 2i, 
then there hold the properties (see e.g. [3, p. 293f.]) 

(2.5) E\E[X\®]-\ = E[X}-, 

(2.6) E[X\(S>0] = E[X\ a.s. for ©0 = {4>, £2}; 

(2.7) X ^ Y a.s. implies E[X\<S>] ^ E[Y |©] a.s.; 

(2.8) X = c a.s., some c£R, implies £ [ Z | © ] = c a.s.; 

(2.9) E[aX+0Y\<5] = ocE[X\(5]+pE[Y\®] a.s. (a, 06R); 

(2.10) E[XI©] = E[X] a.s. provided the <r-algebra 2I(X), generated by X, is 

independent of ©; 

(2.11) £ ^ [ Z |©] |© ' ] = £ [ £ p r | © ' ] | © ] = E[X |©] a.s. 

The aim now is to represent the conditional expectation as an integral. For this pur-
pose two concepts need be recapitulated. If ©cz2I is a <x-algebra and 20, 
a function Px: i2X2l—R is said to be a regular conditional probability distribution 
of X relative to ©, if it satisfies the conditions (see e.g. [16, p. 372ff.]): (i) For every 
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fixed co£Q, the set function Px(oo, •), defined on 91, is a probability measure; 
(ii) for every fixed Ae% Px(-,A)e3(Q, ©); (iii) for every and 6 g ( 5 , 
there holds 

/ Px(co, X~\A))dP = P(Gf]X~\A)). 

G 

The function F z : R X i 3 - R , defined by 

FrOtl©) = /*(*!©)(«) = Ps(w, ( - « , , *]) a.s. (x6R); 
is called a conditional distribution function of X with respect to ©. [Note that if 
(Q, 9i, P ) is an arbitrary probability space, and © an arbitrary sub-cr-algebra of 91, 
then for each X £ 3 ( Q , there always exists a regular conditional distribution (and 
so also a conditional distribution function) of X with respect to © (see e.g. [16, 
P- 373])]. 

Now to the integral representation. Let X£ 2(Q, 91, P), © be a sub-cr-algebra 
of 21, g: R—R a Borel-measurable function with E[g(X)}<&=, and Fx(X\d>) 
be a conditional distribution function of X relative to ©. Then there exists a G€© 
with P(G) = 0 such that for all co£Q\G (sdee [16, p. 375]) 

(2.12) £ [g(X) |©](«) = / g(x)d(Fx(xm(co)). 

For the proofs an (ordinary) Lindeberg condition of order s, 0 — generalized to 
the situation of a ^-decomposable limiting r.v. (cf. [5]) — and sometimes the usual 
Feller condition will be needed. Both will be formulated for X k d3(Q, 91). If 
X£d2(Q, 91, P) for some s€(0, «>) anda l l f c£N, then the sequence (Xk)kiN satisfies 
a Lindeberg condition of order s, if for every 5 > 0 

(2.13) ( 2 f \x\sdFXk(x))l{2El\Xk\*)~0 (n-co). 

If 0<<r2<oo, where ol:=E[Xi\, &(EN, and i „ = ( 2 ^ ) " ! , then (Xk)kiN satisfies 
fc=i 

a Feller-condition, if 
_2 

(2.14) lim max — = 0. isfcan sn 

3. A generalization of the Trotter-operator for dependent r.v.'s. As already 
mentioned in the introduction, the Trotter-operator plays an important role in 
establishing rates of convergence for independent r.v.'s. For the development of 
corresponding assertions in the instance of dependent r.v.'s a new operator concept 
— closely related to the usual Trotter-operator — will be introduced in this paper. 
To elucidate the connections, let us first recall the definition of the Trotter-operator 
and its most important properties. 
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For any 3(^5 31) having distribution function Fx the associated Trotter-
operator Vx: CB — CB is defined for f£CB by 

(3-1) Vxf(y):= f f(x+y)dFx(x) = EifiX+y), (y£ R). 
R 

Lemma 1. Let X, Y£3(Q, 21). Let Xu ..., X„, Zu ..., Z„, n£N, be inde-
pendent r.v.'s belonging to 3(Q, 21). Then 

a) Vx is a positive, linear operator satisfying inequality 

(3.2) \\Vxf\\cB^\\f\\cB (/€ CB); 

b) Vx = Vy provided X and Y are identically distributed; 
c) Vx and VY are commutative provided X and Y are independent; 

(3.3) d) VSJ= VX1VX,:.VXJ (/€CB); 

(3.4) e) WsJ-v£5_iZkf\\Ca^ 2\\VXJ-VZJ\\CB ( / e c g ) . 
k = i 

The Trotter operator may be generalized as follows by using the concept of condi-
tional expectation. 

D e f i n i t i o n 1. Let 21, P) and (5 be an arbitrary sub-c-algebra of 21. 
The conditional Trotter operator Vx: CB-CBX(3(Q, ©)) of X relative to © is 
defined for f£CB by 

Vxfiy) := E[f(X+y) |©] <>eR). 

The most important properties of this operator, which is uniquely determined up to 
a set of measure zero by definition, are collected in the following lemma; below one 
has set ( ( V x f ) (y) )(co) = ( V x f ) (y, co). 

L e m m a 2. Let X£Q(Q, 21, P), © be an arbitrary sub-o-algebra of and f 
and g belong to CB. Then 

a) {v*f){y, - ) € 3 ( « , ©) 0 * R ) ; 
b) there exists a set G^G© with P(G1) = 0 such that 

sup \(Vxf)(y, «)! ^ | | /IcB (®€ i3 \C i ; f£CB)-

c) there exists a set G26© with P(G2) = 0 such that (K®/)(- , ca)£CB for all 
(o€Q\G2; 

d) there exists a set G36© with P(G3) = 0 such that ( F ® ( a / + f e ) ) ( •, a>) = 
= « ( K ® / ) ( - , «)+/?№)(•,«) for all (oeO\G3 and A , J ? 6 R ; 

e) (V%f)(y)=E[f(X+y)\(S\ = {Vxf){y) a.s. provided 2I(X) is independent of ©. 

P r o o f a). An immediate consequence of Definition 1. 
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b) In view of (2.7), (2.8) one has 

sup\VX f ( y , ct))| sup|£[/ |(^+>OII©](«)l ^ £ [ | | / | | c j © ] = ll/llcfl a.s. 

c) Since K ® f ( y ) is bounded a.s. by part b), it remains to show that V x f i s uni-
formly continuous a.s. Let e > 0 be arbitrary. Since /£C B (R) , there exists a ¿ > 0 
such that | / ( j > j ) - / 0 > 2 ) l < £ for all j>I,j>2£R with \yi—y-A<<>, so that 
sup !/(*+>>!)-/(X+;>2) |<£. But (2.9) and (2.7) yield 

\Vxf{yi,co)-V%f(y2,<a)\ = | £ № + J 1 ) | © ] ( o ; ) - £ [ / ( ^ + ^ ) | © ] ( « ) | S 

=? E[\f(X+yd-f(X+yJ\| ©](<») == sup \Xx+yi)-f(x+y2)| < s a.s. 

establishing c). 
d) and e) follow directly from (2.9), (2.10), respectively. 

From Lemma 2 b)—d) one obtains 

C o r o l l a r y 1. Let (£2, 91, P), ©, X and fbe given as in Lemma 2. There exists 
a set G€© with P(G) = 0 such that ( V x f ) ( - , oi) is a linear operator of CB into 
itself for all a)£Q\G satisfying \\(Vxf){ •, ©)||Cb^||/||Cb. 

P r o o f . With G1 ; G,, G3 given as in Lemma 2 b)—d), then ( F ® / ) ( •, to) is a 
contraction endomorphism on CB for each co£Q\G, where G : = G 1 U G 2 U G 3 

with P(G)=0. 

Basic for the main convergence theorem of this paper is the counterpart of ine-
quality (3.4) for the operator Vf for partial sums Sn of not necessarily independent 
r.v.'s. For this purpose two lemmas will be needed. 

L e m m a 3. Given (Q, P) and any X£2(Q, 91, P), there exists a set 
A=A(X)£$l with P(A)>0 such that 

\E[X]\ |AT(o>)| (wtA). 

Take ^ : = { f t ) € 0 ; i F ^ l s l Z i c t j ) ! } and show that assumption P(A)=0 leads 
to a contradiction. 

L e m m a 4. Let X, Y£2(Q, 91, P), f£CB and © be any sub-a-algebra of 91. 
To each ,v€R there exists a set Gy=G"(f X, F)6© with PiG*)^0 such that 

(3.5) \Vx+yf(y)\^\Vx{V?f)(y,a>)\ (a>€ Gy). 

P r o o f . According to Lemma 2 c) there is a set GJ€© with P(G£)=0 such 
that (Vyf)( •, w)£CB for all o)£Q\Gl. Since £ [ / ( Z + r + j ) | © ] < E £ ( i 2 , 91, P ) , 
on account of Lemma 3 to each v€R there exists a set G\=Gl(f X, F ) € © with 
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P (<?£)>() such that, noting (3.1), Definition 1 and (2.5), 

\Vx{(V?f)(y, co))00 - | f(V?f)(x+y, w)dFx{x)\ = 
R 

- | £ [ F [ / ( Z + 7 + ^ ) | ( 5 ] ( a ) ) ] | = 

= |[F[/(X+F+j)]|©](a))| S \E\E[f(X+Y+y)\(S\]\ = 

= \E[f(X+Y+y)]\ = \Vx + vf{y)\ 

for all <»€<?':=fl \ (GjnGp. Since Gy£(5 and P(G") =0 by definition of G", 
the proof is complete. 

Now to the fundamental lemma of the paper, namely the counterpart of asser-
tions (3.3) and (3.4) for the operator Vx. 

L e m m a 5. Given £(Q,91, P) , let (Xn)n€N be a sequence of r.v.'s from 
£(i2, 91, P) , (©„),,€N a sequence of sub-a-algebras from 21, ©0= {<P, Q}. 

a) For each f£CB one has 

(3.6) (Vx°...V®"'1 / ) ( y ) = Vs„f(y) as. (yCR; n6N). 

b) y/(Z„)„6 N is a further sequence from £(£2, 21, P ) it being assumed that the Z„, 
for each n£N, are independent amongst themselves as well as of the Xn, then there 
exist for each jfER, N and I S f c S n sets 

G U - W i t h P(G>tk-J>0 

such that for each co = co(n, k, y)£Gy
n 

(3-7) \\VSJ-V£„ iZ f\\^ Zsuv\(V*xl-lf)(y,oS)-VzJ(y)\ (n€N). 
* *=IJ>6R 

P r o o f . Now E[Xk\<$>Q]=E[Xn1 a.s., all by (2.6). So a repeated applica-
tion of (2.11) as well as (3.3) yield for n£N and j £ R 

(v^v%;...vl"-*f)(y) = 

= E[E...E[f(X1 + ...+Xn+y)\&n.1]...\®1]\&0\ = 

= F f / i ^ + . - . + ^ + ^ I S o ] = EMX^.-.+X.+y)] = 

- (VXl--VxJ)(y) = (VsJ)(y) a.s., 
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establishing (3.6). Concerning part b), one has by (3,6), (3.2) and Lemma 1 c), 

( 3 - 8 ) W S J - V £ ^ z J \ \ C b = 

= sup 1 2 ( V x ° • • • V ^ [ V ? r - V 2 k ] r £ „ Z j f ) ( y ) \ -
Y€R * —1 

S ¿ s u p • k £ - ' - f z j / ) 0 0 | . 
k=I YE 

According to Lemma 4 applied to the r.v.'s Sk_r and Xk, there exists to each j>£R 
a set Gy

k_xe&k~i with P ( G J _ j ) > 0 . Associating to each a fixed (on keGy
k_1 

for which inequality (3.5) holds, one deduces by applying (3.6) and (3.2) the estimate 

. . . r z j / ) G 0 | ^ 

^ \Vsk^(V^f)iy, (0„tk) — (VSk_ 1 V Z k f ) ( j ) | 

== sup \(Vx*~lf)(y, ffl„,*)-rZfc/00|. 
J>€R 

If one now takes the supremum over all j £ R on the left side of this inequality and 
then sums over k, the proof of (3.7) follows in conjunction with (3.8). 

4. Convergence theorems for dependent random variables. This section is 
concerned with weak convergence theorems in the case of arbitrary dependent r.v.'s. 
The basis is a general limit theorem which yields both the CLT and WLLN by special-
izing the limit r.v. Since the results of this section deal with convergence.without 
rates, it is possible to formulate them also for uniform convergence of distribution 
functions or for stochatic convergence. The hypotheses are, apart from the usual 
Lindeberg conditions for the sequences of r.v.'s (Xk)k e N and the decomposition com-
ponents (Zk)keN, the positivity and the uniform boundedness of the second moments 
of the Xk, as well as the moment condition (4.1). The latter reduces to the coincidence 
of the first and second moments of Xk and Zk provided the r.v.'s are independent. 
Since the ff-algebras <5k, k£P, occurring in (4.1) may, apart f rom ©0 , be chosen 
freely, distinct forms of dependency are admitted. 

4.1. General limit theorem. 

T h e o r e m 1. Let (Xk)kiN be a sequence of dependent r.v.'s such that 0 < m S 
°° for k£N, and some constants m, M > 0 . Let (©t)t€N be a se-

quence of sub-a-algebras of 91, © 0 = {<P, i2}, and Z a (p-decomposable r.v. with decom-
position components Zk, /c£N. If 

(4.1) E[Xi\®k_1] = E[Zi] (fc£N; ¿€{1,2}) 

and the sequences (X^)keN, (Zk)kfN both satisfy Lindeberg conditions of order 2 (cf. 
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(2.13)), then there holds for each f£C% in case 

(4.2) <p(n) = 0(n-1'2) (n - °o ) 

(4-3) \V9WSJ-Vzf\CB = of{\) (n 

If the distribution function FzofZ is continuous, one has in addition 

(4.4) sup |F„ („ ) S„(*)-Fz(x) | = o(l) (n 

P roo f . Firstly, one can ensure that the r.v.'s Zk, k£N, are independent of the 
Xk as well as of the sub-cr-algebras © t , N by means of an appropriate choice of the 
probability space. According to Lemma 5b) to each j € R , w€N and l ^ k ^ n there 
exists sets G y

n w i t h P(Gy
n>k_x)>0 such that for each a>=co(n, k, y)£G„Jc_1 

by (2.4) 

(4-5) \KMSJ-Vzf\\cB = ¡Kp(,l)sJ~V<p(n)ZZ=iZkflcB si 

^ 2 sup \(VXx\f)(y, - (V9lnyz J)(y)\-
k=1y€R 

Now choose co€Gy
 k_1 such that condition (4.1) is satisfied for it. An application of 

(2.12) plus Taylor's formula to both f(q>(n)Xk+y) and f(<p(ri)Zk+y) then gives 

K f o x \ f ( y , ^ - V ^ J i y ) | = 

(4.6) = | f f(.x+y)d(F<pMXk(x\&k_1))(co)- Jf(x+y)dFvMXk(x)\ = 
R 

/ { ^ /o>(j , ) + 1 ^ (n)® ̂ [ / « ( i , ) © » - ^ ( a S ) ) -
R v=o J- 2 J 

- / {.2 < H n . [ X l fU\y) + J<P (n) w ( 2 ) 0?) ~ / ( 2 ) GO]} dFZk(x) 

where \rj—y\s.(p(n)\x\. S ince / ( 2 ) £C B , to any e=-0 there is a <5=<5(e) such that 
l / ( 2 )(>/)--/0 ! )0 ;)l<e for But by (4.2) to each 5 > 0 and x€R there is an 
n£ N with \r)—y\^(p(n)\x\<5. So splitting up the range of integration in (4.6) into 
{x£R; \x\<8/<p(ri)} and its complementary set, one obtains by (2.12) and (4.1) the 
expression 

( / + / ) i y ( n Y x * v ( * K n ) - f 2 K y ) ] d { F x M ® k - № ) ) -
|x|-=dMn) 1*1 s«Mn) 2 

-( / + / )^9infx2\f(Hn)-fi2Ky)\dFZh{x) 
[ i | < » w WsiMn) 2 
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which can in turn be estimated by 

(4.7) V ^ { E ( E [ \ X k W ® k _ i m + E [ \ Z k \ * } ) + 

+ « / ( 2 ) l l c B ( / / x-dFZk(x))}. 
\x\SiMn) \x\^ilq,(n) 

Since £[X^M, (2.5) and (4.1) yield that E[Z^M as well as E[X£\®k_ J ^ A f 
a.s. for all k£N. Since further E[Xk]^m^0, there are constants MX,M2>0 
such that E W i ^ . J & M i E l X f i a.s., and 

E[Xk l{|xk|&iM«)}l©t-i] = M ^ E i X ^ x ^ , ^ a.s., 

1A , A i ' i i being the indicator function. Then one deduces from (4.6) and (4.7) that 
for each y€R, »€ N and l ^ k ^ n 

(4.8) \Kfox\f)(y, a>)-V9MZkf(j)| S 

S [z{M1E[Xft+E[ZZ\) + 

+ lf(i)\\cB{M2 f xidFXk(x)+ f x*dFZk(x))]. 

Taking now the supremum on the left side of this inequality for all j>€R, summing 
up over k from 1 to n, and finally dividing the result by the strictly positive expression 

(<K«)72) 2 ( M i E [ X ! ] + E [ Z l ] ), one obtains from (4.5) 
k = l 

(4.9) 2 1 | V ^ s J - Vzf\\cJ(<P(nf 2 (M^iXfi+ElZZ])) ^ 
k=1 

s + \ \ f 2 ) \ \ Cb 

M22 f *2dFXk(x) 2 J x*dFzJx) 
k=1\x\msi<pW | fc=i |x|s3Mn) 

Mx 2 E[XI] 2 E[Zk] 

Since the sequences (A'fc)(. e N , (Zk)k i i < are assumed to satisfy Lindeberg conditions of 

order 2, the term in square brackets converges to zero for « — °=> by (4.2). Since e > 0 
was arbitrary, assertion (4.3) follows by noting that the denominator on the left side 
of (4.9) is uniformly bounded in n because of (4.2) and the uniform boundedness of 
E[X2] and E [ Z H This in turn yields (4.4) since Fz is continuous (cf. [11, p. 140]). 

4.2. The central limit theorem. A particular case of Theorem 1 is the following 
version of the CLT. 
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T h e o r e m 2. Let (A^keN and (©,), eP be given as in Theorem 1, denote 

<rk-=E[Xll kdN, and V=(IX)1/2-

a) If there holds 

(4.10) E[Xi\®k-J = oiE[X**] a.s. (/c£N; j£{ 1,2}), 

and if the sequences (Xk)k€N and (<rk)kiN satisfy a Lindeberg condition of order 2 and 
the Feller condition (2.14), respectively, then one has 

(4.11) lV,;iSnf-Vx.flCB = o,(l) ( / 6 C | ; n -+cx>) 
or, equivalently, 
(4.12) sup ( * ) - / i . ( x ) | - o( l ) (n ). 

b) If the r.v.'s Xk are in addition idetically distributed, (4.10) if valid with <rk = l, 
then one has for f£C% 

(4.13) \\Vn-«*sJ-Vx.f\\CB = of{r) („ —) 
or, equivalently, 
(4.14) sup |F„-i/2Sn(x) —Fx,(x)| = o(l) ( n - o o ) . 

xgR 

P r o o f , a) Choosing for the decomposition components Zk of Theorem 1 
the independent r.v.'s akX*, then condition (2.4) is satisfied with (p^'.—s'1. 
Further, Z=akX* implies that hypothesis (4.10) corresponds to (4.1). Since also 
£[X 2 ]s=M<°° for all fcfEN, (p(n) = s ~ 1 ^ M ~ l l \ and so (4.2) is satisfied. It can 
be shown (cf. [3, p. 268]) that the Lindeberg condition for (Xk)kiN plus the Feller 
condition for (ok)k£N yields the Lindeberg condition for (Zk)k(N. So assertion 
(4.11) follows from (4.3). Finally, (4.12) is a derivation of (4.4) in view of the conti-
nuity of Fx*. 

b) Assertions (4.13) and (4.14) are immediate consequences of (4.11) and 
(4.12), noting that conditions (2.13) and (2.14) are always automatically satisfied 
for identically distributed r.v.'s. 

4.3. The weak law of large numbers. Since the partial sums in the WLLN 
are normalized by nand not n~1/2 as for the CLT, just a Lindeberg condition of 
order one need be assumed for (Xk)kiN while the moment condition (4.1) reduces to 
the condition that the conditional moments of the Xk with respect to ©k_x be zero. 

T h e o r e m 3. Let (X,)keN and ( © J t 6 P be defined as in Theorem 1, let X0 be a 
r.v. taking on the value zero with probability 1, and let 

¿m®t_J = 0 a.s. (ke N). 

a) If the sequence (Xk)kiN satisfies a Lindeberg condition of order 1 with (p(n) = 

4 
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=n \ then (Xk)k € N Satisfies the weak law of large numbers, i.e., for each e > 0 

(4.15) lim />({|n_ 1 .S'n | ^ g}) = 0. 
n — 

b) If the r.v.'s Xk are just identically distributed, then (4.15) again holds. 

P r o o f , a) If one chooses the decomposition components Zk such that P7^=Px^ 
for all k£N, then (2.4) is satisfied with <p(n)=n~1. An application of the Taylor 
expansion of up to the order 1 yields, just as in the proof of Theorem 1, 

(4-16) \\V^SJ-VxJ\\Cb= of(\) (N - ° o ) . 

Since convergence in distribution is equivalent to stochastic convergence for the 
limit r.v. X0 (cf. e.g. [3, 220]), (4.16) implies assertion (4.15). Part b) is a particular 
case of a), Lindeberg's condition being satisfied automatically. 

5. Convergence theorems for dependent random variables with o-rates. It is 
possible to equip the limit theorems of Section 4 with rates without any larger modi-
fications of the proofs; just stronger assumptions upon the moments and higher-
order Lindeberg conditions will be needed. However, the assertions will now be 
restricted to the convergence in distribution of the normalized partial sums, since the 
equivalence of convergence in distribution with uniform convergence of the distri-
bution functions in case of the CLT and with stochastic convergence in the case of the 
WLLN is only valid for convergence without rates. 

5.1. A general approximation theorem. 

T h e o r e m 4. Let (X,)keN be a sequence of r.v.'s, r £ N \ { l } , and m, M be two 
positive constants with Q<m-^E[\XkY]-^M< oo for k£N. Let (®Jt6P be a sequence 
of sub-a-algebras ofSS. with (50= {<£, i2}. I f Z is a q>-decomposable r.v. with decomposi-
tion components Zk, /c£N, condition (4.1) is fulfilled for N, 1 and the 
sequence (X,)keN as well as (Zk)keN satisfy Lindeberg conditions of order r, then for 
f£Cg 

(5.1) \KwsJ-Vzf\\cB = of(n[<p(n)]r) (n — 

P r o o f . The proof of this theorem is based upon that of Theorem 1. Just as 
there one has inequality (4.5). For a suitable w (cf. the proof of Theorem 1), an appli-
cation of Taylor's expansion, this time up to the order r for / £ C B , yields 

(5.2) r f e / X y , < y ) - ( r 9 ( n ) Z t / ) 0 0 | = 



Extension of the Lindeberg—Trotter approach. I 51 

Following the arguments in the proof of Theorem 1 with / ( 2 ) replaced by / ( r ) , one 
obtains after the range of integration has been split up and estimates analogous to 
(4.7) and (4.8) have been carried out, that for 1 ^ k ^ n , j>€R, the light side of (5.2) 
is bounded from above by 

+ l / ( r ) l l c B ( M 2 * / M ' d f o W ® * - i ) ( « ) ) + / M r d F Z k (*))}, 
mSMri) \x\&si<t>(n) 

where M* and M* are the constants corresponding to Mx and M2 in inequality (4.8), 
noting that the remaining terms of the Taylor expansion up to the order r vanish on 
account of (4.1). The Lindeberg conditions of order r for the sequences (Xk)kiN and 
(Z t)A€N then yield, as in Theorem 1, 

(5.3) r\\V9M5J-Vzf\/(<p(nY 2 (M*E[\Xkn+E[\Zkn)) = of( 1) (n -co) . 

4 = 1 

Since -E l l^ r ] is uniformly bounded by hypothesis, and so also E[\Zk|r] by (4.1), 

there exists a constant Af 3 >0 such that ( 2(M*E[|ATtn +E[Zk]r]")^ nMs. Insert-*=i ing this estimate into (5.3) gives statement (5.1). 

5.2. Applications to the CLT and WLLN with o-rates. By specializing the limit 
r.v. in Theorem 4 one obtains 

T h e o r e m 5. Let (Xk)kiN and (®t)fteP be given as in Theorem 1, ak, s„ as defined 
in Theorem 2, and let r£ N. 

a) 7/(4.10) is satisfied for 1 =j=r, and the sequences (Xk)kiN and (ok)kiN satisfy 
a Lindeberg condition of order r and the Feller condition (2.14), respectively, then 
fd Cr

B implies 
(5-4) \\Vs-^sJ-Vxtf\\CB = of(ns-0 (n -oo). 

b) If the r.v.'s Xk are identically distributed, (4.10) holds for ak = 1 and 1 =j=r, 
then for f£Cr

B 

( 5 . 5 ) \\Vn-r»sJ-Vx.f\\CB = of(nU-'»*) ( n — ) . 

Concerning the proof, assertion (5.4) follows from (5.1) just as does (4.13) from 
(4.3); (5.5) is immediate by (5.4). 

If one compares the rate in (5.5) with that known for independent r.v.'s and 
MDS (cf. [5] or [7]), it will be seen that the same approximation order could be 
achieved even though the Xk are now dependent. 

Now to the WLLN. Since a moment condition corresponding to (4.1) for 
/•£2, i.e., a condition of form E[X^\(5k.1] a.s., l ^ j ^ r would .now 

4» 
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mean that only those r.v.'s Xk can be admitted that take on the value zero with 
probability 1 just as does X0, since E[E\Xt\<&k-{\\=E[XZ\=E\X%\=Q, such a 
condition will now be replaced by the weaker (5.6). 

T h e o r e m 6. Let (X,)kiN and (®t)teP be defined as in Theorem 4, X0 as in 
Theorem 3. If (^)t€N satisfies condition 

(5.6) n'-J 2 № ! © * - , ] ! = o{2E[\Xk\']) a.s. (1 ~>), 
k=l k=1 

for some N as well as a Lindeberg condition of order r, then for f(LC\, n—°° 

l \ y n - ' s n f - V X o f i c B = of(n~r 2E[\Xk\>}). 
k=1 

P r o o f . Choosing the decompostion components Zk such that PZk=Px^ and 
sets cp(n)=n~l as in the proof of Theorem 3, a Taylor expansion up to the order r 
yields, by taking into account that E[\Z$]=0, 1 = / = r , that for j € R and suitable 
aJ (see (4.6) and (4.8)) 

\(V%-x\f)(y, co)-V„->Zkf(y)\ = 

f 2 f U \ y ) I / ( r ) f o ) ( j ' ) ] d ( F X k ( x \ ( 5 k ^ ) ( « > ) y f ( 0 ) 
£ i=« J- rl 

^ 2^\\fU)icBE[\Xk\l\®k-1](a>) + 
j=i J! 

+ + ! l / ( r ) lcB [ M i * J ! * № „ ( * ) ) } , 
1*1 Sdn 

M** and being the constants corresponding to M1 and M 2 from (4.8). As in 
the proof of Theorem 1 one has in view of (5.6) 

(5-7) | | V n - i s J - V X o f \ \ c J ( n ~ ' 2E[\Xk|']) - 0/( 1) (n —). 
k=I 

Note that the rate of approximation in (5.7) is a good as that given in [5] and [7] for 
the WLLN for independent r.v.'s and MDS, respectively. For r=3 the rate is o(n~2), 
provided the r.v.'s are identically distributed. Though the r.v.'s Xk are now arbitra-
rily dependent, no additional assumption was needed to obtain this rate of conver-
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gence. So Theorem 6 can be regarded as a true generalization of the corresponding 
assertions in [5] and [7]. 

The research of the second named author was supported by D F G grant Bu 
166/37—4. 
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