Norm convergence of generalized martingales in L^{p}-spaces over von Neumann algebras

CARLO CECCHINI and DÉNES PETZ
Dedicated to Professor Károly Tandori on his 60th birthday

Introduction

After scattered partial results the norm convergence of martingales in L_{p}-spaces over von Neumann algebras has been proved by Goldstein [10]. The main difference between his approach and our one is twofold. While in [10] (as well as in [3], [6], [7], [15]) the martingale sequence is formed by means of conditional expectations (i.e. state preserving projections of norm one onto subalgebras) we use ω conditional expectations introduced in [1] (which are not projections in general but they always exist). On the other hand, the L^{p}-norm we shall use is different from the L_{p}-norm used in [10] when restricted to L^{∞}. So [10] does not cover our results even in the case in which all the conditional expectations involved are norm one projections.

All the theorems are proved for a von Neumann algebra with a faithful normal state on it. The framework is the theory of $L(p)$ spaces as complex forms rather than operators developed in [4] which are, very roughly speaking, representations of the spaces of Terp [18], and so closely connected to the spaces of Connes and Hilsum [5], [14].

The results of this paper are contained in Theorem 9 and Theorem 10. Their forerunner (the strong convergence of bounded martingales with ω-conditional expectations) was obtained in [16], [17] and independently in [13].

Preliminaries

Let M be a von Neumann algebra acting on a Hilbert space H. We denote by M^{\prime} the commutant of M and by ω^{\prime} a faithful normal state on M^{\prime}. The triple ($\pi_{\omega^{\prime}}, H_{\omega^{\prime}}, \Omega^{\prime}$) is the result of the GNS-construction with ω^{\prime}.

We summarize some results and notations contained in [5]. As usually we set
$D\left(H, \omega^{\prime}\right)=\left\{\xi \in H:\|a \xi\| \leqq c \omega^{\prime}\left(a^{*} a\right)^{1 / 2}\right.$ for all $a \in M^{\prime}$ and some $\left.c>0\right\}$. The space $D\left(H, \omega^{\prime}\right)$ is a dense vector space in H and for each $\xi \in D\left(H, \omega^{\prime}\right)$ there is a unique bounded linear operator $R_{\omega^{\prime}}(\xi): H_{\omega^{\prime}} \rightarrow H$ such that

$$
R_{\omega^{\prime}}(\xi) \pi_{\omega^{\prime}}(a) \Omega^{\prime}=a \xi
$$

The correspondence $\xi \mapsto R_{\omega^{\prime}}(\xi)$ is linear and for all $\xi, \eta \in D\left(H, \omega^{\prime}\right)$ the operator $R_{\omega^{\prime}}(\xi) R_{\omega^{\prime}}(\eta)^{*}$ is in M. If $\varphi \in M_{*}^{+}$then the equality

$$
q_{\varphi}(\xi)=\varphi\left(R_{\omega^{\prime}}(\xi) R_{\omega^{\prime}}(\xi)^{*}\right)
$$

defines a lower semicontinuous positive form on $D\left(H, \omega^{\prime}\right)$ to which a positive selfadjoint operator $(\mathrm{d} \varphi) /\left(\mathrm{d} \omega^{\prime}\right)$ (the spatial derivative of φ with respect to ω^{\prime}) is associated ([5]).

Now we are in a position to define the spaces $L^{p}\left(M, \omega^{\prime}\right)$ for $1 \leqq p<\infty$ as in [14]. $L^{p}\left(M, \omega^{\prime}\right)$ is the set of all closed densely defined operators on H with polar decomposition $T=u|T|$ such that

$$
u \in M \quad \text { amd } \quad|T|^{p}=\frac{d \varphi}{d \omega^{\prime}}
$$

for some $\varphi \in M_{*}^{+}$. If $\psi \in M_{*}$ has a polar decomposition $\psi=u|\psi|$ then we define

$$
T_{\omega^{\prime}}(\psi)=u \frac{d|\psi|}{d \omega^{\prime}} \quad \text { and } \quad T_{\omega^{\prime}}(\psi) d \omega^{\prime}=\psi(1)
$$

The spaces $L^{p}\left(M, \omega^{\prime}\right)(1 \leqq p<\infty)$ are Banach spaces endowed with the norm

$$
\|T\|_{p}=\left(\int|T|^{p} d \omega^{\prime}\right)^{1 / p}
$$

if by sum (and later by product) of unbounded operators we take the strong sum (and strong product).

Let us now fix a faithful normal state ω on M and shorten $(\mathrm{d} \omega) /\left(\mathrm{d} \omega^{\prime}\right)$ in d. For $1 \leqq p<\infty$ we define $H\left(p, \omega, \omega^{\prime}\right)$ as the Hilbert space completion of the domain of $d^{-1 / 2 p}$ under the inner product

$$
\langle\xi, \eta\rangle_{p}=\left\langle d^{-1 / 2 p} \xi, d^{-1 / 2 p} \eta\right\rangle
$$

and $H\left(\infty, \omega, \omega^{\prime}\right)=H$. There is a unique unitary operator $V\left(\omega, \omega^{\prime}, P_{2}, P_{1}\right)$: $H\left(p_{1}, \omega, \omega^{\prime}\right) \rightarrow H\left(p_{2}, \omega, \omega^{\prime}\right)$ such that

$$
V\left(\omega, \omega^{\prime}, P_{2}, P_{1}\right) \xi=d^{-\left(P_{1}^{-1}-p_{2}^{-1}\right) / 2} \xi
$$

for $\xi \in D(H, \omega)$ and for $1 \leqq p_{1}<p_{2} \leqq \infty$. (Here $D(H, \omega)$ is defined and has the same properties as $D\left(H, \omega^{\prime}\right)$ above by reversing the roles of M and M^{\prime}.)

When ω and ω^{\prime} are fixed we shall shorten our notation to $H(p)$ for the Hilbert spaces and to $V\left(p_{2}, p_{1}\right)$ for the unitaries introduced above.

Let $1 \leqq p<\infty$. We set $L\left(p, M, \omega, \omega^{\prime}\right)$ for the set of all complex forms (i.e. complex linear combinations of positive forms) defined on $D(H, \omega)$ and having the form

$$
\left.q(T)(\xi)=\left.\langle | T\right|^{1 / 2} V(p, \infty)^{*} u^{*} V(p, \infty) \xi,|T|^{1 / 2} \xi\right\rangle_{p}
$$

when T is a closed densely defined operator on $H(p)$ with a polar decomposition

$$
V(\infty, p)^{*} u V(\infty, p)|T|
$$

such that u is a partial isometry in M and

$$
V(\infty, p) T V(\infty, p)^{*}
$$

is in $L^{p}\left(M, \omega^{\prime}\right)$.
For $p=\infty$ we set $L\left(\infty, M, \omega, \omega^{\prime}\right)=\{q(a): a \in M\}$ where $q(a)(\xi)=\langle\xi, a \xi\rangle$ $(\xi \in D(H, \omega))$.

We define a norm on $L\left(p, M, \omega, \omega^{\prime}\right)$ by requiring the linear bijection $\lambda_{p}: L\left(p, M, \omega, \omega^{\prime}\right) \rightarrow L^{p}\left(M, \omega^{\prime}\right), \lambda_{p}: q(T) \mapsto V(\infty, p) T V(\infty, p)^{*}$ to be an isometry for $1 \leqq p \leqq \infty$. In [4] it was shown that the spaces $L\left(p, M, \omega, \omega^{\prime}\right)$ do not depend on the auxiliarly state ω^{\prime} used in their construction (ω^{\prime} can even be taken to be a normal semifinite weight).

We note so that $L(1, M, \omega)$ is isometrically isomorphic to M_{*} and we denote this isomorphism by \boldsymbol{t}_{ω}. Explicitely,

$$
t_{\omega}(\psi)(\xi)=\psi\left(\left|R_{\omega^{\prime}}\left(d^{-1 / 2} \xi\right)^{*}\right|^{2}\right) \quad\left(\psi \in M_{*}, \xi \in D(H, \omega)\right)
$$

since $d^{-1 / 2} \xi \in D\left(H, \omega^{\prime}\right)$.
If $1 \leqq p_{1}<p_{2} \leqq \infty$ then $L\left(p_{2}, M, \omega\right) \subset L\left(p_{1}, M ; \omega\right)$ and $L\left(p_{2}, M, \omega\right)$ is norm dense in $L\left(p_{1}, M, \omega\right)$. For $q \in L\left(p_{2}, M, \omega\right)$ we have

$$
\|q\|_{\left.L^{\prime} p_{2}, M, \omega\right)} \geqq\|q\|_{L\left(p_{1}, M, \omega\right)} .
$$

These properties will be used without reference.
Let M_{0} be a subalgebra of M and $\omega_{0}=\omega \mid M_{0}$. The ω-conditional expectation $E^{\omega}: M \rightarrow M_{0}$ defined in [1] is an ω-preserving completely positive contraction and it turns out to be the dual of the embedding of M_{0} into M when suitable embeddings of the algebras into their preduals are considered (see [2] and [17]). In [4] it was proved that there exists a contraction $\varepsilon^{\omega}: L(1, M, \omega) \rightarrow L\left(1, M_{0}, \omega_{0}\right)$ such that

$$
\varepsilon^{\omega} q(a)(\xi)=\left\langle\xi, E^{\omega}(a) \xi\right\rangle
$$

$\left(\xi \in D\left(H, \omega_{0}\right), a \in M\right)$. Interpolation techniques give that the restriction of ε^{ω} to $L(p, M, \omega)$ is also a contraction into $L\left(p, M_{0}, \omega_{0}\right)(1<p<\infty$, see [4] and [18]). Later we define a natural mapping $x: L\left(p, M_{0}, \omega_{0}\right) \rightarrow L(p, M, \omega)$ and we form the composition $x \circ \varepsilon^{\omega}$ in order to have a selfmapping of $L(p, M, \omega)$.

Results

The elements of the spaces $L(p, M, \omega)$ are complex forms on $D(H, \omega)$ so the pointwise convergence of forms can be defined in a natural way. We deal with the relation of this convergence to the norm convergence in $L(p, M, \omega)$. We need also the connection between the strong operator topology on M and the norm topology of $L(p, M, \omega)$.

Lemma. Let $\left(q_{n}\right) \subset L(1, M, \omega)$. If $i_{\omega}^{-1}\left(q_{n}\right) \rightarrow 0$ weakly then for any $\xi \in D(H, \omega)$

$$
q_{n}(\xi) \rightarrow 0 .
$$

Moreover, if $\left(q_{n}\right)$ is bounded then the converse also holds.
Proof. Since

$$
q_{n}(\xi)=\left(l_{\omega}^{-1} q_{n}\right)\left(\left|R_{\omega^{\prime}}\left(d^{-1 / 2} \xi\right)^{*}\right|^{2}\right)
$$

the first part of the statement follows immediately. To get the converse it suffices to note that the linear hull of the set

$$
\left\{\left|R_{\omega^{\prime}}\left(d^{-1 / 2} \xi\right)^{*}\right|^{2}: \xi \in D(H, \omega)\right\}
$$

is dense in M.
Proposition 2. Let $\left(q_{n}\right) \subset L(p, M, \omega)$ and $1 \leqq p<\infty$. If $q_{n} \rightarrow q$ in norm of $L(p, M, \omega)$ then

$$
q_{n}(\xi) \rightarrow q(\xi)
$$

for every $\xi \in D(H, \omega)$.
Proof. $q_{n} \rightarrow q$ in the norm of $L(1, M, \omega)$ and so in the weak topology. Lemma I can be applied.

Now we prove technical lemmas on different norms. To simplify formulas we shall shorten $d^{1 / 2 s}$ in D.

Lemma 3. Let $a \in M$ and s, k be integers such that $s \geqq \mathbf{3}$ and $0 \leqq k \leqq s-3$. Then

$$
\|q(a)\|_{L^{2},\left(2^{s}, \omega\right)}^{2^{s}} \leqq\|a\|^{2^{s}+2^{s-2-k}+1}\left\|\left(D a^{*} D a\right)^{2 s-2-2^{k}} d^{2^{-s+k+1}}\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{2^{k-1}}
$$

Proof. We apply induction on k. First let $k=0$.

$$
\begin{aligned}
& \|q(a)\|_{L\left(2^{s}, M, \omega\right)}^{2^{s}}=\left\|D^{1 / 2} a D^{1 / 2}\right\|_{L\left(2^{s}, M, \omega^{\prime}\right)}^{2^{s}}= \\
& =\int\left(d^{1 / 2^{s+1}} a^{*} D a d^{1 / 2^{s+1}}\right)^{2^{s-1}} d \omega^{\prime}=\int\left(a^{*} D a D\right)^{2^{s-1}} d \omega^{\prime} \leqq \\
& \leqq\left\|\left(a^{*} D a D\right)^{2^{s-2}} a^{*}\right\|_{L^{2}\left(M, \omega^{\prime}\right)}\left\|D a D\left(a^{*} D a D\right)^{2^{s-2}-1}\right\|_{L^{2}\left(M, \omega^{\prime}\right)} \leqq \\
& \leqq\|a\|^{s-1}+1\left[\int\left(D a^{*} D a\right)^{2^{s-2}-1} D a^{*} D^{2} a D\left(a^{*} D a D\right)^{2^{s-2}-1} d \omega^{\prime}\right]^{1 / 2} \leqq \\
& \leqq\|a\|^{2 s-1+1}\left[\int a^{*} D a\left(D a^{*} D a\right)^{2^{s-2}-2} D a^{*} D^{2} a D\left(a^{*} D a D\right)^{2^{s-2}-1} d \omega^{\prime}\right]^{1 / 2} \leqq \\
& \leqq\|a\|^{2^{s-1}+1}\left[\int a^{*} D a\left(D a^{*} D a\right)^{2 s-2-2} D a^{*} D^{2} a D\left(a^{*} D a D\right)^{2 s-2-1} d \omega^{\prime}\right]^{1 / 2} \leqq \\
& \|a\|^{2^{s-1}+1}\left\|a^{*} D a\left(D a^{*} D a\right)^{2^{s-2}-2} D a^{*} D^{2} a\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{1 / 2}\left\|D\left(a^{*} D a D\right)^{2^{s-2}-1} D\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{1 / 2} \leqq \\
& \leqq\|a\|^{2^{s-1}+1}\|a\|^{2^{s-2}}\left\|D\left(a^{*} D a D\right)^{2^{s-2}-1} D\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{\| 1 / 2}= \\
& =\|a\|^{2^{s-2^{s-2}+1}\left\|\left(D a^{*} D a\right)^{2^{s-2}-1} D^{2}\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{1 / 2} .}
\end{aligned}
$$

Here we have used the Hölder inequality repetedly. Now we carry out the induction step. We have:

$$
\begin{gathered}
\|\left(D a^{*} D a\right)^{2^{s-2}-2^{k}} d^{2^{-s+k+1} \|_{L^{2}\left(M, \omega^{\prime}\right)}=}= \\
=\left(\int d^{2-s+k+1}\left(a^{*} D a D\right)^{2^{s-2-2 k}}\left(D a^{*} D a\right)^{2^{s-2}-2^{k}} d^{2-s+k+1} d \omega^{\prime}\right)^{1 / 2}= \\
=\left(\int\left(a^{*} D a D\right)^{2 s-2-2^{k}}\left(D a^{*} D a\right)^{2 s-2-2^{k}} d^{2^{-s+k+2}} d \omega^{\prime}\right)^{1 / 2} \leqq \\
\leqq\left\|\left(a^{*} D a D\right)^{2^{s-2}-2^{k}}\left(D a^{*} D a\right)^{2^{k}}\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{2} \\
\|\left(D a^{*} D a\right)^{2^{s-2-2^{k+1}} d^{2-s+k+1} \|_{L^{2}\left(M, \omega^{\prime}\right)}^{1 / 2} \leqq} \\
\|a\|^{2 s-2}\left\|\left(D a^{*} D a\right)^{2^{s-2-2} 2^{k+1}} d^{-s+k+2}\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{1 / 2} .
\end{gathered}
$$

So our hypothesis on k implies our claim for $k+1$.
Lemma 4. Let a and s be as in the previous Lemma. Then

$$
\|q(a)\|_{L\left(2^{s}, M, \omega\right)}^{2^{s}} \leqq\|a\|^{m(s)}\left\|a d^{1 / 2}\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{2-s+1}
$$

where $m(s)=2^{s}-1+\left(2^{s-1}-1\right) 2^{-s+3}$.
Proof. Using Lemma 3 with $k=s-3$ we can majorize as follows.

$$
\begin{gathered}
\left\|\left(D a^{*} D a\right)^{2 s-3} d^{1 / 4}\right\|_{L^{2}\left(M, \omega^{\prime}\right)}= \\
=\left[\int d^{1 / 4}\left(a^{*} D a D\right)^{2 s-3}\left(D a^{*} D a\right)^{2^{s-3}} d^{1 / 4} d \omega^{\prime}\right]^{1 / 2}= \\
=\left[\int\left(a^{*} D a D\right)^{2 s-3}\left(D a^{*} D a\right)^{2 s-3} d^{1 / 2} d \omega^{\prime}\right]^{1 / 2} \leqq \\
\left\|\left(a^{*} D a D\right)^{2 s^{S-3}}\left(D a^{*} D a\right)^{2 s-3-1} D a^{*} D\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{1 / 2}\left\|a d^{1 / 2}\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{1 / 2} \leqq \\
\|a\|^{2 s-2-1 / 2}\left\|a d^{1 / 2}\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{1 / 2}
\end{gathered}
$$

Proposition 5. Let $\left(a_{n}\right) \subset M$ be a bounded sequence. If $a_{n} \rightarrow a$ strongly then $q\left(a_{n}\right) \rightarrow q(a)$ in the norm of $L(p, M, \omega)$ for $1 \leqq p<\infty$.

Proof. We may assume that $a=0$ and $p=2^{s}$. For arbitrary $a \in M$ we have

$$
\left\|a d^{1 / 2}\right\|_{L^{2}\left(M, \omega^{\prime}\right)}^{2}=\int d^{1 / 2} a^{*} a d^{1 / 2} d \omega^{\prime}=\int d a^{*} a d \omega^{\prime}=\omega\left(a^{*} a\right) .
$$

Now an application of Lemma 4 completes the proof.
Let M_{0} be a subalgebra of M. We denote by ω_{0} the restriction of ω to M_{0}. Clearly, $D(H, \omega) \subset D\left(H, \omega_{0}\right)$ and if q is a form on $D\left(H, \omega_{0}\right)$ then $\varkappa(q)$ will stand for $q \mid D(H, \omega)$.

Lemma 6. Let $M_{0}, M, \omega_{0}, \omega$ and \varkappa be as above. Then $\chi \mid L\left(1, M_{0}, \omega_{0}\right)$ is a linear contraction from $L\left(1, M_{0}, \omega_{0}\right)$ to $L\left(1, M_{0}, \omega\right)$.

Proof. Denote by $H_{\omega}\left(H_{\omega_{0}}\right)$ the Hilbert space for the standard representation $\pi_{\omega}(M)\left(\pi_{\omega_{0}}\left(M_{0}\right)\right)$ with respect to $\omega\left(\omega_{0}\right)$ and Ω its cyclic and separating vector defining ω (and also ω_{0} since $H_{\omega_{0}}$ is considered as a subspace of H_{ω}). Let $J_{\omega}\left(J_{\omega_{0}}\right)$ be the usual canonical conjugation of the Tomita-Takesaki theory for the couple $(M, \omega)\left(\left(M_{0}, \omega_{0}\right)\right)$ and P the projection from H_{ω} onto $H_{\omega_{0}}$. We define a partial isometry V as it was denote in [1].

$$
\begin{aligned}
V J_{\omega_{0}} \pi_{\omega}(a) \Omega=J_{\omega} \pi_{\omega}(a) \Omega & \text { for } a \in M_{0} \\
V \xi=0 & \text { for } \xi \perp H_{\omega_{0}}
\end{aligned}
$$

From [4] we know that $J_{\omega}\left|R_{\omega}(\xi)\right|^{2} J_{\omega} \in \pi_{\omega}(M)(\xi \in D(H, \omega))$ (and, for $\xi \in D\left(H, \omega_{0}\right)$, $\left.J_{\omega_{0}}\left|R_{\omega_{0}}(\xi)\right|^{2} J_{\omega_{0}} \in \pi_{\omega_{0}}\left(M_{0}\right)\right)$. Now if E^{ω} is the ω-conditional expectation from M to M_{0} then

$$
\begin{gathered}
E^{\omega}\left(\pi_{\omega}^{-1}\left(J_{\omega}\left|R_{\omega}(\xi)\right|^{2} J \omega\right)\right)=\pi_{\omega_{0}}^{-1}\left(V^{*} J_{\omega}\left|R_{\omega}(\xi)\right|^{2} J_{\omega} V\right)= \\
=\pi_{\omega_{0}}^{-1}\left(J_{\omega_{0}}\left|R_{\omega_{0}}(\xi)\right|^{2} J_{\omega_{0}}\right) .
\end{gathered}
$$

The last equality follows from: $R_{\omega}(\xi) P \pi_{\omega}(a) \Omega=R_{\omega}(\xi) \pi_{\omega}(a) \Omega=a \xi=R_{\omega_{0}}(\xi) \pi_{\omega_{0}}(a) \Omega$ for $a \in M_{0}$ and $\xi \in D(H, \omega)$, which implies $R_{\omega}(\xi) P \mid H_{\omega_{0}}=R_{\omega_{0}}(\xi)$.

Let $\operatorname{nos} \varphi \in M_{*}$. It is proved in [4] that $t_{\omega}(\varphi)(\xi)=\pi_{\omega}^{-1}\left(J_{\omega}\left|R_{\omega}(\xi)\right|^{2} J_{\omega}\right)$ for $\xi \in D(H, \omega)$ and the similar equality holds also for $t_{\omega_{0}}$. We have therefore, for $\xi \in D(H, \omega)$ and $\varphi \in\left(M_{0}\right)_{*}$,

$$
\begin{gathered}
x\left(l_{\omega_{0}}(\varphi)(\xi)=i_{\omega_{0}}(\varphi)(\xi)=\varphi\left(\pi_{\omega_{0}}^{-1}\left(J_{\omega_{0}}\left|R_{\omega_{0}}(\xi)\right|^{2} J_{\omega_{0}}\right)\right)=\right. \\
=\varphi\left(E^{\omega}\left(\pi_{\omega}^{-1}\left(J_{\omega}\left|R_{\omega}(\xi)\right|^{2} J_{\omega}\right)\right)\right)=i_{\omega}(\varphi \circ \varepsilon),
\end{gathered}
$$

and

$$
\begin{gathered}
\left\|x \circ I_{\omega_{0}}(\varphi)\right\|_{L(1, M, \omega)}=\left\|t_{\omega}(\varphi \circ \varepsilon)\right\|_{L(1, M, \omega)}=\|\varphi \circ \varepsilon\| \leqq \\
\leqq\|\varphi\|_{\left(M_{0}\right)^{*}}=\left\|l_{\omega_{0}}(\varphi)\right\|_{L(1, M, \infty)},
\end{gathered}
$$

which proves our statement.

From the above Lemma, it is clear that $\kappa \circ l_{\omega_{0}}(\varphi)$ depends only on the value of φ on the range of E^{ω}. This implies that \varkappa in general is not injective on $L(1, M, \omega)$. More precisely, $x{ }^{\circ} l_{\omega_{0}}(\varphi)=0$ if $\varphi \mid E^{\omega}(M) \equiv 0$. This implies that x is injective if and only if $E^{\omega}(M)$ is weak-operator dense in M_{0}, which is not the case in general (cf. [1], section 4).

Proposition 7. Let $M, M_{0}, \omega, \omega_{0}$ and x be as above. If $q \in L\left(p, M_{0}, \omega_{0}\right)$ then $\chi(q) \in L(p, M, \omega)$ for $1<p<\infty$. Moreover, x is a contraction with respect to the $L(p)$ norms.

Proof. It is straightforward that for $a \in M_{0}$ we have $\varkappa(q(a)) \in L(\infty, M, \omega)$ and

$$
\|\varkappa(q(a))\|_{L(\infty, M, \infty)}=\|q(a)\|_{L\left(\infty, M_{0}, \omega_{0}\right)}
$$

where $q(a)(\xi)=\langle\xi, a \xi\rangle\left(\xi \in D\left(H, \omega_{0}\right)\right)$. On the other hand the statement has been proved in Lemma 6 for $p=1$. By the Calderon-Lions interpolation theorem ([4], [18]) for $1<p<\infty$ we have $x(q) \in L(p, M, \omega)$ and

$$
\|x(q)\|_{L(p, M, \omega)} \leqq\|q\|_{L\left(p, M_{0}, \omega_{0}\right)}
$$

whenever $q \in L(p, M, \omega)$.
Let us fix a von Neumann algebra M with a faithful normal state ω and an increasing sequence $\left(M_{n}\right)$ of von Neumann subalgebras. Assume that M is generated by $\bigcup_{n=1}^{\infty} M_{n}$. We denote by ω_{n} the restriction of ω to M_{n} and E_{n}^{ω} will stand for the ω-conditional expectation $M \rightarrow M_{n}$. It is porved in [16], [17] and independently in [13] that $E_{n}^{\omega}(a) \rightarrow a$ strongly for every $a \in M$. As above we write ε_{n}^{ω} for the extension of E_{n}^{ω} to $L(1, M, \omega)$ and $x_{n}: L\left(1, M_{n}, \omega_{n}\right) \rightarrow L(1, M, \omega)$ is the restriction mapping.

Theorem 8. With the notation above, for every $q \in L(p, M, \omega)$

$$
x_{n} \circ \varepsilon_{n}^{\omega}(q) \rightarrow q
$$

in the norm of $L(p, M, \omega)(1 \leqq p<\infty)$.
Proof. Since the sequence $\left(\varkappa_{n} \circ \varepsilon_{n}^{\omega}\right)$ is uniformly bounded it is sufficient to prove our statement on a dense set. We shall assume that $q \in L(\infty, M, \omega)$, that is $q=q(a)$ for some $a \in M$. So $E_{n}^{\omega}(a) \rightarrow a$ strongly and by Proposition $5 q\left(E_{n}^{\omega}(a)\right) \rightarrow q(a)$ in the norm of $L(p, M, \omega)$. However, $q \circ E_{n}^{\omega}=K_{n} \circ \varepsilon_{n}^{\omega}$ and the proof is complete.

Let $\left(q_{n}\right) \subset L(p, M, \omega)$ be a sequence such that

$$
x_{k} \cdot \varepsilon_{k}^{\infty}\left(q_{n}\right)=q_{k} \quad(n>k) .
$$

Such a sequence (q_{n}) will be called (generalized) martingale (adapted to the sequence (M_{n}) of subalgebras). The martingale $\left(q_{n}\right)$ is called regular if there is a $q \in L(p, M, \omega)$ such that $q_{n}=K_{n} \circ \varepsilon_{n}^{\omega}(q)$.

Theorem 9. Let $\left(q_{n}\right) \subset L(p, M, \omega)$ be a martingale (adapted to the sequence $\left(M_{n}\right)$) and $1<p<\infty$. Then the following conditions are equivalent.
(i) $\left(q_{n}\right)$ is regular.
(ii) $\left(q_{n}\right)$ converges in the norm of $L(p, M, \omega)$.
(iii) $\sup _{n}\left\|q_{n}\right\|_{L(P, M, \omega)}<\infty$

Proof. (i) \rightarrow (ii) is just the previous Theorem. (ii) \rightarrow (iii) is trivial. If (iii) holds then due to the reflexivity of $L(p, M, \omega)$ (see [4], [14], [18]) we can find a weakly convergent subsequence of $\left(q_{n}\right)$, say $q_{k(n)} \rightarrow q$ weakly. If n is large enough then

$$
\chi_{m} \varepsilon_{m}^{\omega}\left(q_{k(n)}\right)=q_{m}
$$

and we have $q_{m}=\chi_{m} \varepsilon_{m}^{\omega}(q)$.
Theorem 10. Let $\left(q_{n}\right) \subset L(1, M, \omega)$ be a martingale (adapted to the sequence $\left(M_{n}\right)$). Then the following conditions are equivalent.
(i) $\left(q_{n}\right)$ is regular,
(ii) $\left(q_{n}\right)$ converges in the norm of $L(1, M, \omega)$.
(iii) $\left\{q_{n}: n \in \mathbb{N}\right\}$ is relatively $\sigma(L(1), L(\infty))$ compact in $L(1, M, \omega)$.

Proof. We can follow the proof of Theorem 9 but instead of reflexivity we may apply the Eberlein-Smulian theorem ([8]).

The reversed martingale convergence theorem does not hold if the sequence is formed with ω-conditional expectations. A counter example is contained in [1].

Acknowledgement. The authors are grateful to S. Goldstein for a copy of [10] and to L. Accardi for his interest in this paper during the second author's stay at the University II of Rome.

References

[1] L. Accardi and C. Cecchini, Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Anal., 45 (1982), 245-273.
[2] L. Accardi and C. Cecchin, Surjectivity of the conditional expectation on L 1-spaces, Lecture Notes in Math., 992, Springer-Verlag, (Berlin-Heidelberg-New York, 1983), 436-442.
[3] A. Alesina and L. De Michele, Inequalities of Paley type for noncommutative martingales, Ann. Math. Pura Appl., 116 (1978), 143-150.
[4] C. Cecchini, Non-commutative integration for states on von Neumann algebras, preprint, 1984.
[5] A. Connes, On the spatial theory of von Neumann algebras, J. Funct. Anal., 35 (1980), 153-164.
[6] I. Cuculescu, Pointwise convergence of martingales in von Neumann algebras, J. Multivariate Anal., 1 (1971), 17-27.
[7] N. Dang-Ngoc, Pointwise convergence of martingales in von Neumann algebras, Israel J. Math., 34 (1979), 273-280.
[8] N. Dunford and J.T. Schwartz, Linear operators, Part I, Interscience Publishers (New York, 1958):
[9] S. Goldstein, Convergence of martingales in von Neumann algebras, Bull. Acad. Polon, Sci., 27 (1979), 853-859.
[10] S. Goldstein, Norm convergence of martingales in L^{p}-spaces over von Neumann algebras, preprint, 1983.
[11] M. S. Goldstein, Almost sure convergence theorems in von Neumann algebras, J. Operator Theory, 6 (1981), 233-311. (in Russian)
[12] U. HaAGerup, Normal weights on W^{*}-algebras, J. Func. Anal., 19 (1975), 302-318.
[13] F. Hiai and M. Tsukada, Strong martingale convergence of generalized conditional expectations on von Neumann algebras, Trans. Amer. Math. Soc., 282 (1984), 791-798.
[14] M. Hilsum, Les espaces L^{p} d'une algébre de von Neumann définies par las derivée spatiale, J. Funct. Analysis, 40 (1981), 151-169.
[15] E. C. Lance, Martingale convergence in von Neumann algebras, Math. Proc. Cambridge Philos. Soc., 84 (1978), 47-56.
[16] D. Petz, Quantum ergodic theorems, Proceedings of the Workshop on Quantum Probability, Lecture Notes in Math., 1055, Springer-Verlag (Berlin-Heidelberg-New York, 1984), 289-300.
[17] D. Petz, A dual in von Neumann algebras with weights, Quart. J. Math. Oxford, to appear.
[18] M. Terp, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory, 8 (1982), 327-360.
(C. C.)

UNIVERSITÀ DI GENOVA
ISTITUTO DI MATEMATICA
VIA L. B. ALBERTI 4 16132-GENOVA ITALY
(D. P.)

MATHEMATICAL INSTITUTE OF
THE HUNGARIAN ACADEMY OF SCIENCES
REALTANODA U. 13-15.
1364-BUDAPEST, PF. 127 HUNGARY

