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Introduction 

After scattered partial results the norm convergence of martingales in Lp-spaces 
over von Neumann algebras has been proved by GOLDSTEIN [10]. The main dif-
ference between his approach and our one is twofold. While in [10] (as well as in 
[3], [6], [7], [15]) the martingale sequence is formed by means of conditional expec-
tations (i.e. state preserving projections of norm one onto subalgebras) we use co-
conditional expectations introduced in [1] (which are not projections in general but 
they always exist). On the other hand, the LP-norm we shall use is different from the 
Zp-norm used in [10] when restricted to L°°. So [10] does not cover our results even 
in the case in which all the conditional expectations involved are norm one projec-
tions. 

All the theorems are proved for a von Neumann algebra with a faithful normal 
state on it. The framework is the theory of L(p) spaces as complex forms rather than 
operators developed in [4] which are, very roughly speaking, representations of the 
spaces of TERP [18], and so closely connected to the spaces of CONNES and HILSUM 
[5], [14]. 

The results of this paper are contained in Theorem 9 and Theorem 10. Their 
forerunner (the strong convergence of bounded martingales with co-conditional 
expectations) was obtained in [16], [17] and independently in [13]. 
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Preliminaries 

Let M be a von Neumann algebra acting on a Hilbert space H. We denote 
by M' the commutant of M and by co' a faithful normal state on M'. The triple 
(7Tm-, CÏ) is the result of the GNS-construction with co'. 

We summarize some results and notations contained in [5]. As usually we set 
D{H, co') = {Ç£H: |K||==ca/(a*a)1/2 for all a£M' and some c>0}. The space 

D(H, o f ) is a dense vector space in H and for each a / ) there is a unique 
bounded linear operator R^iÇ): Ha —H such that 

RAO^-i^Q'= at 

The correspondence Ç>-~Rm-(Ç) is linear and for all ç, rj£D(H, o f ) the operator 
Ra>-(Ç)Rw-(*i)* is in M. If <p£M+ then the equality 

defines a lower semicontinuous positive form on D(H, co') to which a positive self-
adjoint operator (d<p)/(da/) (the spatial derivative of <p with respect to co') is asso-
ciated ([5]). 

Now we are in a position to define the spaces LP(M, co') for 1 % « » as in 
[14]. LP(M, co') is the set of all closed densely defined operators on H with polar 
décomposition T=u\T\ such that 

u£M amd \T\p = - ^ r dm 

for some <p£M%. If i h a s a polar decomposition \j/=u\\j/\ then we define 

Tm.(iP) = u ^ j r and r m . « 0 d û / = ,Rl) . 

The spaces LP(M, co') (1 are Banach spaces endowed with the norm 

||r||, = (J\T\pdco'fip 

if by sum (and later by product) of unbounded operators we take the strong sum (and 
strong product). 

Let us now fix a faithful normal state co on M and shorten (dco)/(dco') in d. 
For 1 oo we define H(p, co, co') as the Hilbert space completion of the domain 
of d~1/2p under the inner product 

<£, n \ = d - W r f ) 

and co, m')=H. There is a unique unitary operator V(co, (o\ P2, Pj): 
H(j>i, co, a>r)^-H(p2, co, co') such that 

F(co, co', P%, P& = d~ûT1-*-1)^ 
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for ££D(H,<o) and for 1 (Here D(H, co) is defined and has the same 
properties as D(H, co') above by reversing the roles of M and M'.) 

When co and co' are fixed we shall shorten our notation to H(p) for the Hilbert 
spaces and to V(p2,p^) for the unitaries introduced above. 

Let We set L(p, M, co, co1) for the set of all complex forms (i.e. 
complex linear combinations of positive forms) defined on D(H, co) and having the 
form 

g(T)(0 = (¡Tl^V(p, -)*u*V(p, 

when T is a closed densely defined operator on H(p) with a polar decomposition 

V{-,p)*uV{~,p)\T\ 

such that u is a partial isometry in M and 
V(oo, p)TV(°°, Py 

is in LP(M, co'). 
For p =« we set L(°°, M, co, <o') = {q(a): a£M} where q(a)(£) = (£, 

( (€D(H, co)). 
We define a norm on L(p, M, co, co') by requiring the linear bijection 

).„: L{p,M,a>,(o')^Lp{M,(o'), lp: q(T)^V(<~,p)TV(pf to be an isometry 
for In [4] it was shown that the spaces L{p, M, co, co7) do not depend on 
the auxiliarly state co' used in their construction (co' can even be taken to be a normal 
semifinite weight). 

We note so that L( 1, M, co) is isometrically isomorphic to and we denote 
this isomorphism by iw. Explicitely, 

*»m0 = H\R„-(.d-mO*\%) (</«*, S£D(H, CO)), 

since d-llzt£D(H, co'). 
If 1 00 then L(pt, M, co)c:L{p1, M, co) and L(p2, M, co) is norm 

dense in L(Pl,M,(o). For q£L(p2, M, co) we have 

II 9IILIPS,«,®) — ll?IL(PI,AF,<O)-

These properties will be used without reference. 
Let M0 be a subalgebra of M and co0=o)\M0. The co-conditional expectation 

Em: M—M0 defined in [1] is an co-preserving completely positive contraction and 
it turns out to be the dual of the embedding of M0 into M when suitable embeddings 
of the algebras into their preduals are considered (see [2] and [17]). In [4] it was proved 
that there exists a contraction e": L(l, M, a>)-»L(l, M0, co0) such that 

e»q(a)(O = (Z,E°>(a)0 
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(Ç€D(H, œ0), aÇ_M). Interpolation techniques give that the restriction of e™ to 
L(p,M, co) is also a contraction into L(p,M0,m0) see [4] and [18]). 
Later we define a natural mapping x: L(p, M0, co0)-*L(p, M, co) and we form the 
composition x oc® in order to have a selfmapping of L(p, M, co). 

Results 

The elements of the spaces L(p, M, co) are complex forms on D(H, co) so the 
pointwise convergence of forms can be defined in a natural way. We deal with the 
relation of this convergence to the norm convergence in L(p, M, co). We need also 
the connection between the strong operator topology on M and the norm topology 
of L(p, M, co). 

L e m m a . Let (q„)czL(l, M, co). If i"1^,,)—0 weakly then for any q£D(H, co) 

Moreover, if (q„) is bounded then the converse also holds. 

P r o o f . Since 

the first part of the statement follows immediately. To get the converse it suffices 
to note that the linear hull of the set 

is dense in M. 

P r o p o s i t i o n 2. Let (qn)<zL(p, M, co) and If q„—q in norm of 
L(p, M, co) then 

<?„(£> - q(0 
for every £€£>(#, co). 

P r o o f . <?„—q in the norm of L(l, M, co) and so in the weak topology. Lemma 1 
can be applied. 

Now we prove technical lemmas on different norms. To simplify formulas we 
shall shorten d1/2S in D. 

L e m m a 3. Let a£M and s,k be integers such that 3 and 0^k^s—3. 
Then 

I I 9 0 0 l i p « , i f , o > ) — | | a | | 2 I + 2 S ! " + 1 \\(pa*Da)2" '-2"d2 ^"*1^"^,^-) • 
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P r o o f . We apply induction on k. First let k=0. 

I k O O I l i k M .o = \\Dll2aDl!2lL(2-,M,<oO = 

= f (d1l2'+1a*Dad1/2s + 1)2"~1 da>' = J (a*DaD)-s~1 da>' 

|| (a•.DaZ»)^ - 2 a* || z.,^, [¡Z>aZ> ( a - || i2(Ai> ^ -

si \\a\\2S-'+1\J(I)a*Dafs^-1Da*D2aD(a*DaDys-2-1dco']1'2 s= 

^ \\<>F~1+1[f a*Da(Da*Da)2S-*-*Da*D2aD(a*DaD)2S-2-1da)']1'2 S 

^ Nr"1+1[/a*Da(Da*Da)2S-2-2Da*D2aD(a*DaD)2S-"-i dco']v2 S 

Da(Da*Da)2S'2-2Da*D2a\\]li^Mi(a,y \\D(a*DaD)2'"1-1D\\^Mt<0^ 

== l l a l l ^ - ' + i l a J ^ - p ^ ^ a i ) ) ^ — i j D | | i / | ( M i ( o , ) = 

= II « l l 2 1 - 2 5 - 1 « ! ^ ^ ) 2 ' - 2 - 1 ^ 2 ! ! ^ . . ' ) -

Here we have used the Holder inequality repetedly. Now we carry out the induction 
step. We have: 

|| (Da^DaY'^d^^WwM,«^ 

= (J*d2-s+k+\a*DaD)2S-2-2k(Da*Da)2S-!-2k d2's+k+1 dco')1'2 = 

= [ f ( a * D a D f s - ' - 2 k ( D a J r D a ) 2 S - ' - 2 h d2~s+k+°-dco')1'2 ^ 

\ \ ( a * D a D r - - 2 \ D a * D a r \ \ ] ! i ( M t 

|| (Da *£)fl)2s- 2 - 2" +1 ¿2-* + * +11| M_ o,.) ^ 

| | a | | 2 S - 2 | | ( £ > ^ i ) a r - i - 2 t + 1 . 

So our hypothesis on k implies our claim for k +1. 

L e m m a 4. Let a and s be as in the previous Lemma. Then 

I k O O I I ^ M , . ) ^ i ! « [ | H |j 

where m(s)=2S-1+(2S-1-1)2-S+3. 

P r o o f . Using Lemma 3 with k=s—3 we can majorize as follows. 

| \(Da*Day»-*dl'th*<M.*> = 

= [f d1/4(a*DaD)2S-\Da*Da)2s-!'d1/id(o']1'2 = 

= [f (a*DaD)2'~3(JDa*Da)2* 3 d112 ¿a/]1'2 S 

|| a || 2®-2-1/2 ||ad1/2! J42 M, 
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P r o p o s i t i o n 5. Let (a„)czM be a bounded sequence. If an-~a strongly then 
q(an)--q(a) in the norm of L(p,M,co) for 

P r o o f . We may assume that a—0 and p=T. For arbitrary a£M we have 

IM1/2II1«(*,«•) = /d 1 ' 2 a*ad 1 / *d (o ' = f da*a da' = w(a*a). 

Now an application of Lemma 4 completes the proof. 

Let M0 be a subalgebra of M. We denote by co0 the restriction of co to M0. 
Clearly, D(H, co)czD(H, co0) and if q is a form on D(H, co0) then v.{q) will stand 
for q\D(H, co). 

L e m m a 6. Let M0, M, co0, co andy. be as above. Then x\L(\, M0, co0) is a linear 
contraction from L( 1, M0, co0) to L ( l , M0, co). 

P r o o f . Denote by HA the Hilbert space for the standard representation 
na(M) (nmo(M0)) with respect to co(a>0) and Q its cyclic and separating vector de-
fining co (and also co0 since H^ is considered as a subspace of Ha). Let Ja 

be the usual canonical conjugation of the Tomita—Takesaki theory for the couple 
(Af, co)((Af0, co0)) and P the projection from Hm onto H . We define a partial iso-
metry V as it was denote in [1]. 

VJao na(a)Q - J^ 7i Ja)Q for a£M0 

V£ = 0 for I±HAO 

From [4] we know that JJR0{&\*Ja£it0(M) (€€D(H, co)) (and, for ^D(H,w0), 
J ^ K S M ^ S M » ) ) . Now if EM is the to-conditional expectation from M to 
M0 then 

v w * \Ra,m2Jo>)) = ^ ( v * J J R J 0 \ 2 J m v ) = 

The last equality follows f rom: Ra(Z)Pnja)Q=Rm(0nja)Q=a<;=Rao(£)n^a)Q 
for a£M0 and {€D(H,co ) , which implies Rm^)P\Hm=Ra^). 

Let nos It is proved in [4] that !„(<?)(£)=7g 1( /Jf l 0 )(OI 2-4) for 
D(H,a>) and the similar equality holds also for im . We have therefore, for 

Z£D(H, co) and <p£(M0\, 

x(I<O0(.cp№ = IO,0(<P№ = l ^ „ ( A I 2 4 „ ) ) = 

- «K^TT-H/J/UOIVJ)) =  LTOI.(P  OE)> 
and 

ll'<0'ia(,(9')llL(l,M>a,) = M<?>0«)llL(l,Ai,a,) = ll<P°e|| ^ 
^ \\<P\\(M0)> = LK„OP)LLI.A,M.A>)> 

which proves our statement. 
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From the above Lemma, it is clear that x o iaa(cp) depends only on the value of <p 
on the range of Em. This implies that x in general is not injective on L(\, M, co). 
More precisely, x 01 (<p)=0 if cp\Ea>(M)=0. This implies that x is injective if and 
only if Em(M) is weak-operator dense in M 0 , which is not the case in general (cf. [1], 
section 4). 

P r o p o s i t i o n 7. Let M,M0,u),co0 and x be as above. If q£L(p, M0, co0) 
then x(q)dL(p, M, co) for 1 </)<•». Moreover, x is a contraction with respect to 
the L(p) norms. 

P r o o f . It is straightforward that for a£M0 we have x(q(a))£L(^, M, a>) 
and 

L(<x>, M, co) , M0> too) 

where q(a)(£,)=(g, a£) (££D(H, co0)). On the other hand the statement has been 
proved in Lemma 6 for p = 1. By the Calderon—Lions interpolation theorem ([4], 
[18]) for 1 oo we have x(q)£L(p, M, co) and 

\up,M,<o) = lklL(p,M0><a0) 

whenever q£L(p, M, co). 
Let us fix a von Neumann algebra M with a faithful normal state co and an in-

creasing sequence (M„) of von Neumann subalgebras. Assume that M is generated by 
oo 

(J Mn. We denote by co„ the restriction of co to M„ and E™ will stand for the co-con -
n = l 

ditional expectation M ^ M „ . It is porved in [16], [17] and independently in [13] that 
E™(a)^a strongly for every a£M. As above we write s" for the extension of E™ 
to L(1,M, co) and xn\ L( l , Mn, con)—L(l, M, co) is the restriction mapping. 

T h e o r e m 8. With the notation above, for every q£L(p, M, co) 

- q 
in the norm of L(p, M, co) (1 <̂ >). 

P r o o f . Since the sequence (x„oe") is uniformly bounded it is sufficient to prove 
our statement on a dense set. We shall assume that q£L(°°, M, co), that is q=q(a) 
for some a£M. So E"(a)-*a strongly and by Proposition 5 q(E^(a))—q(a) 
in the norm of L(p, M, co). However, qoE™=Knoe™ and the proof is complete. 

Let ( q n ) c L ( p , M, co) be a sequence such that 

x* •<*(?») = 9* ( n > f e ) . 

Such a sequence (q„) will be called (generalized) martingale (adapted to the sequence 
(M„) of subalgebras). The martingale (q„) is called regular if there is a q£L(j>, M, co) 
such that q„=K„oe»(q). 
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T h e o r e m 9. Let (qn)czL(p, M, co) be a martingale (adapted to the sequence 
(M„)) and 1 Then the following conditions are equivalent. 

(i) (q„) is regular. 
(ii) (qn) converges in the norm of L(p, M, co). 

(iii) sup | | ? J t ( P , 

P r o o f . (i)—(ii) is just the previous Theorem, (ii)—(iii) is trivial. If (iii) holds 
then due to the reflexivity of L(p, M, co) (see [4], [14], [18]) we can find a weakly 
convergent subsequence of (q„), say q^n)" cI weakly. If n is large enough then 

and we have qm=y.ms"(q). 

T h e o r e m 10. Let (qn)czL(l, M, co) be a martingale (adapted to the sequence 
(Mn)). Then the following conditions are equivalent. 

(i) (q„) is regular, 
(ii) (qn) converges in the norm of L(l,M, co). 

(iii) {qn: T J £ N } is relatively a(L(\), !(<»)) compact in L(\, M,co). 

P r o o f . We can follow the proof of Theorem 9 but instead of reflexivity we may 
apply the Eberlein—Smulian theorem ([8]). 

The reversed martingale convergence theorem does not hold if the sequence is 
formed with co-conditional expectations. A counter example is contained in [1]. 

Acknowledgement. The authors are grateful to S. Goldstein for a copy of [10] 
and to L. Accardi for his interest in this paper during the second author's stay at the 
University II of Rome. 
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