Norm convergence of generalized martingales in L^p -spaces over von Neumann algebras

CARLO CECCHINI and DÉNES PETZ

Dedicated to Professor Károly Tandori on his 60th birthday

Introduction

After scattered partial results the norm convergence of martingales in L_p -spaces over von Neumann algebras has been proved by GOLDSTEIN [10]. The main difference between his approach and our one is twofold. While in [10] (as well as in [3], [6], [7], [15]) the martingale sequence is formed by means of conditional expectations (i.e. state preserving projections of norm one onto subalgebras) we use ω conditional expectations introduced in [1] (which are not projections in general but they always exist). On the other hand, the L^p -norm we shall use is different from the L_p -norm used in [10] when restricted to L^{∞} . So [10] does not cover our results even in the case in which all the conditional expectations involved are norm one projections.

All the theorems are proved for a von Neumann algebra with a faithful normal state on it. The framework is the theory of L(p) spaces as complex forms rather than operators developed in [4] which are, very roughly speaking, representations of the spaces of TERP [18], and so closely connected to the spaces of CONNES and HILSUM [5], [14].

The results of this paper are contained in Theorem 9 and Theorem 10. Their forerunner (the strong convergence of bounded martingales with ω -conditional expectations) was obtained in [16], [17] and independently in [13].

Received June 21, 1984.

Preliminaries

Let *M* be a von Neumann algebra acting on a Hilbert space *H*. We denote by *M'* the commutant of *M* and by ω' a faithful normal state on *M'*. The triple $(\pi_{\omega'}, H_{\omega'}, \Omega')$ is the result of the GNS-construction with ω' .

We summarize some results and notations contained in [5]. As usually we set $D(H, \omega') = \{\xi \in H: \|a\xi\| \le c\omega' (a^*a)^{1/2} \text{ for all } a \in M' \text{ and some } c > 0\}$. The space $D(H, \omega')$ is a dense vector space in H and for each $\xi \in D(H, \omega')$ there is a unique bounded linear operator $R_{\omega'}(\xi): H_{\omega'} \to H$ such that

$$R_{\omega'}(\xi)\pi_{\omega'}(a)\Omega'=a\xi.$$

The correspondence $\xi \mapsto R_{\omega'}(\xi)$ is linear and for all $\xi, \eta \in D(H, \omega')$ the operator $R_{\omega'}(\xi) R_{\omega'}(\eta)^*$ is in *M*. If $\varphi \in M_*^+$ then the equality

$$q_{\varphi}(\xi) = \varphi \big(R_{\omega'}(\xi) R_{\omega'}(\xi)^* \big)$$

defines a lower semicontinuous positive form on $D(H, \omega')$ to which a positive selfadjoint operator $(d\varphi)/(d\omega')$ (the spatial derivative of φ with respect to ω') is associated ([5]).

Now we are in a position to define the spaces $L^{p}(M, \omega')$ for $1 \leq p < \infty$ as in [14]. $L^{p}(M, \omega')$ is the set of all closed densely defined operators on H with polar decomposition T=u|T| such that

$$u \in M$$
 and $|T|^p = \frac{d\varphi}{d\omega'}$

for some $\psi \in M_*^+$. If $\psi \in M_*$ has a polar decomposition $\psi = u|\psi|$ then we define

$$T_{\omega'}(\psi) = u \frac{d|\psi|}{d\omega'}$$
 and $T_{\omega'}(\psi) d\omega' = \psi(1)$.

The spaces $L^{p}(M, \omega')$ $(1 \le p < \infty)$ are Banach spaces endowed with the norm

$$\|T\|_p = \left(\int |T|^p \, d\omega'\right)^{1/p}$$

if by sum (and later by product) of unbounded operators we take the strong sum (and strong product).

Let us now fix a faithful normal state ω on M and shorten $(d\omega)/(d\omega')$ in d. For $1 \le p < \infty$ we define $H(p, \omega, \omega')$ as the Hilbert space completion of the domain of $d^{-1/2p}$ under the inner product

$$\langle \xi, \eta \rangle_p = \langle d^{-1/2p} \xi, d^{-1/2p} \eta \rangle$$

and $H(\infty, \omega, \omega') = H$. There is a unique unitary operator $V(\omega, \omega', P_2, P_1)$: $H(p_1, \omega, \omega') \rightarrow H(p_2, \omega, \omega')$ such that

$$V(\omega, \omega', P_2, P_1)\xi = d^{-(p_1^{-1} - p_2^{-1})/2}\xi$$

for $\xi \in D(H, \omega)$ and for $1 \le p_1 < p_2 \le \infty$. (Here $D(H, \omega)$ is defined and has the same properties as $D(H, \omega')$ above by reversing the roles of M and M'.)

When ω and ω' are fixed we shall shorten our notation to H(p) for the Hilbert spaces and to $V(p_2, p_1)$ for the unitaries introduced above.

Let $1 \le p < \infty$. We set $L(p, M, \omega, \omega')$ for the set of all complex forms (i.e. complex linear combinations of positive forms) defined on $D(H, \omega)$ and having the form

$$q(T)(\xi) = \langle |T|^{1/2} V(p, \infty)^* u^* V(p, \infty) \xi, |T|^{1/2} \xi \rangle_p$$

when T is a closed densely defined operator on H(p) with a polar decomposition

$$V(\infty, p)^* u V(\infty, p) |T|$$

such that u is a partial isometry in M and

$$V(\infty, p)TV(\infty, p)^*$$

is in $L^p(M, \omega')$.

For $p = \infty$ we set $L(\infty, M, \omega, \omega') = \{q(a): a \in M\}$ where $q(a)(\xi) = \langle \xi, a \xi \rangle$ $(\xi \in D(H, \omega)).$

We define a norm on $L(p, M, \omega, \omega')$ by requiring the linear bijection $\lambda_p: L(p, M, \omega, \omega') \rightarrow L^p(M, \omega'), \ \lambda_p: q(T) \mapsto V(\infty, p)TV(\infty, p)^*$ to be an isometry for $1 \le p \le \infty$. In [4] it was shown that the spaces $L(p, M, \omega, \omega')$ do not depend on the auxiliarly state ω' used in their construction (ω' can even be taken to be a normal semifinite weight).

We note so that $L(1, M, \omega)$ is isometrically isomorphic to M_* and we denote this isomorphism by ι_{ω} . Explicitly,

$$\iota_{\omega}(\psi)(\xi) = \psi\big(|R_{\omega'}(d^{-1/2}\xi)^*|^2\big) \qquad (\psi \in M_*, \xi \in D(H, \omega)),$$

since $d^{-1/2}\xi \in D(H, \omega')$.

If $1 \le p_1 < p_2 \le \infty$ then $L(p_2, M, \omega) \subset L(p_1, M, \omega)$ and $L(p_2, M, \omega)$ is norm dense in $L(p_1, M, \omega)$. For $q \in L(p_2, M, \omega)$ we have

$$\|q\|_{L(p_2,M,\omega)} \geq \|q\|_{L(p_1,M,\omega)}.$$

These properties will be used without reference.

Let M_0 be a subalgebra of M and $\omega_0 = \omega | M_0$. The ω -conditional expectation E^{ω} : $M \rightarrow M_0$ defined in [1] is an ω -preserving completely positive contraction and it turns out to be the dual of the embedding of M_0 into M when suitable embeddings of the algebras into their preduals are considered (see [2] and [17]). In [4] it was proved that there exists a contraction ε^{ω} : $L(1, M, \omega) \rightarrow L(1, M_0, \omega_0)$ such that

$$\varepsilon^{\omega}q(a)(\xi) = \langle \xi, E^{\omega}(a)\xi \rangle$$

Carlo Cecchini and Dénes Petz

 $(\xi \in D(H, \omega_0), a \in M)$. Interpolation techniques give that the restriction of ε^{ω} to $L(p, M, \omega)$ is also a contraction into $L(p, M_0, \omega_0)$ $(1 , see [4] and [18]). Later we define a natural mapping <math>\varkappa : L(p, M_0, \omega_0) \rightarrow L(p, M, \omega)$ and we form the composition $\varkappa \circ \varepsilon^{\omega}$ in order to have a selfmapping of $L(p, M, \omega)$.

Results

The elements of the spaces $L(p, M, \omega)$ are complex forms on $D(H, \omega)$ so the pointwise convergence of forms can be defined in a natural way. We deal with the relation of this convergence to the norm convergence in $L(p, M, \omega)$. We need also the connection between the strong operator topology on M and the norm topology of $L(p, M, \omega)$.

Lemma. Let $(q_n) \subset L(1, M, \omega)$. If $\iota_{\omega}^{-1}(q_n) \to 0$ weakly then for any $\xi \in D(H, \omega)$

 $q_n(\xi) \rightarrow 0.$

Moreover, if (q_n) is bounded then the converse also holds.

Proof. Since

$$q_n(\xi) = (\iota_{\omega}^{-1} q_n) (|R_{\omega'} (d^{-1/2} \xi)^*|^2)$$

the first part of the statement follows immediately. To get the converse it suffices to note that the linear hull of the set

$$\{|R_{\omega'}(d^{-1/2}\xi)^*|^2: \xi \in D(H, \omega)\}$$

is dense in M.

Proposition 2. Let $(q_n) \subset L(p, M, \omega)$ and $1 \leq p < \infty$. If $q_n \rightarrow q$ in norm of $L(p, M, \omega)$ then $q_n(\xi) \rightarrow q(\xi)$

for every $\xi \in D(H, \omega)$.

Proof. $q_n \rightarrow q$ in the norm of $L(1, M, \omega)$ and so in the weak topology. Lemma 1 can be applied.

Now we prove technical lemmas on different norms. To simplify formulas we shall shorten $d^{1/2s}$ in D.

Lemma 3. Let $a \in M$ and s, k be integers such that $s \ge 3$ and $0 \le k \le s-3$. Then

$$\|q(a)\|_{L^{(2^{s},M,\omega)}}^{2^{s}} \leq \|a\|^{2^{s}+2^{s-2-k+1}} \|(Da^{*}Da)^{2^{s-2}-2^{k}} d^{2^{-s+k+1}}\|_{L^{2}(M,\omega')}^{2^{k-1}}.$$

Proof. We apply induction on k. First let k=0.

$$\begin{split} \|q(a)\|_{L^{2s},M,\omega}^{2^{s}} &= \|D^{1/2}aD^{1/2}\|_{L^{2s},M,\omega'}^{2^{s}} = \\ &= \int (d^{1/2^{s+1}}a^{s}Dad^{1/2^{s+1}})^{2^{s-1}}d\omega' = \int (a^{s}DaD)^{2^{s-1}}d\omega' \leq \\ &\leq \|(a^{s}DaD)^{2^{s-2}}a^{s}\|_{L^{2}(M,\omega')}\|DaD(a^{s}DaD)^{2^{s-2}-1}\|_{L^{2}(M,\omega')} \leq \\ &\leq \|a\|^{2^{s-1}+1} \Big[\int (Da^{s}Da)^{2^{s-2}-1}Da^{s}D^{2}aD(a^{s}DaD)^{2^{s-2}-1}d\omega'\Big]^{1/2} \leq \\ &\leq \|a\|^{2^{s-1}+1} \Big[\int a^{s}Da(Da^{s}Da)^{2^{s-2}-2}Da^{s}D^{2}aD(a^{s}DaD)^{2^{s-2}-1}d\omega'\Big]^{1/2} \leq \\ &\leq \|a\|^{2^{s-1}+1} \Big[\int a^{s}Da(Da^{s}Da)^{2^{s-2}-2}Da^{s}D^{2}aD(a^{s}DaD)^{2^{s-2}-1}d\omega'\Big]^{1/2} \leq \\ &\leq \|a\|^{2^{s-1}+1} \Big[\int a^{s}Da(Da^{s}Da)^{2^{s-2}-2}Da^{s}D^{2}aD(a^{s}DaD)^{2^{s-2}-1}d\omega'\Big]^{1/2} \leq \\ &\leq \|a\|^{2^{s-1}+1} \|a^{s}Da(Da^{s}Da)^{2^{s-2}-2}Da^{s}D^{2}a\|_{L^{2}(M,\omega')}^{1/2} \|D(a^{s}DaD)^{2^{s-2}-1}D\|_{L^{2}(M,\omega')}^{1/2} \leq \\ &\leq \|a\|^{2^{s-1}+1} \|a\|^{2^{s-2}} \|D(a^{s}DaD)^{2^{s-2}-1}D\|_{L^{2}(M,\omega')}^{1/2} = \\ &= \|a\|^{2^{s-2s-2}+1} \|(Da^{s}Da)^{2^{s-2}-1}D^{s}\|_{L^{2}(M,\omega')}^{1/2}. \end{split}$$

Here we have used the Hölder inequality repetedly. Now we carry out the induction step. We have:

$$\begin{split} \|(Da^*Da)^{2^{s-2}-2^k} d^{2^{-s+k+1}}\|_{L^2(M,\omega')} &= \\ &= \left(\int d^{2^{-s+k+1}} (a^*DaD)^{2^{s-2}-2^k} (Da^*Da)^{2^{s-2}-2^k} d^{2^{-s+k+1}} d\omega'\right)^{1/2} = \\ &= \left(\int (a^*DaD)^{2^{s-2}-2^k} (Da^*Da)^{2^{s-2}-2^k} d^{2^{-s+k+2}} d\omega'\right)^{1/2} \leq \\ &\leq \|(a^*DaD)^{2^{s-2}-2^k} (Da^*Da)^{2^k}\|_{L^2(M,\omega')}^{1/2} \\ &= \|(a^*DaD)^{2^{s-2}-2^{k+1}} d^{2^{-s+k+1}}\|_{L^2(M,\omega')}^{1/2} \leq \\ &\|a\|^{2^{s-2}} \|(Da^*Da)^{2^{s-2}-2^{k+1}} d^{-s+k+2}\|_{L^2(M,\omega')}^{1/2} \leq \\ &\|a\|^{2^{s-2}} \|(Da^*Da)^{2^{s-2}-2^{k+1}} d^{-s+k+2}\|_{L^2(M,\omega')}^{1/2} . \end{split}$$

So our hypothesis on k implies our claim for k+1.

Lemma 4. Let a and s be as in the previous Lemma. Then

$$\|q(a)\|_{L(2^{s},M,\omega)}^{2^{s}} \leq \|a\|^{m(s)} \|ad^{1/2}\|_{L^{2}(M,\omega')}^{2^{-s+1}}$$

where $m(s) = 2^{s} - 1 + (2^{s-1} - 1)2^{-s+3}$.

Proof. Using Lemma 3 with k=s-3 we can majorize as follows.

$$\|(Da^*Da)^{2^{s-3}} d^{1/4}\|_{L^2(M,\omega')} =$$

$$= \left[\int d^{1/4} (a^*DaD)^{2^{s-3}} (Da^*Da)^{2^{s-3}} d^{1/4} d\omega'\right]^{1/2} =$$

$$= \left[\int (a^*DaD)^{2^{s-3}} (Da^*Da)^{2^{s-3}} d^{1/2} d\omega'\right]^{1/2} \leq$$

$$\|(a^*DaD)^{2^{s-3}} (Da^*Da)^{2^{s-3}-1} Da^*D\|_{L^2(M,\omega')}^{1/2} \||ad^{1/2}\|_{L^2(M,\omega')}^{1/2} \leq$$

$$\|a\|^{2^{s-2}-1/2} \|ad^{1/2}\|_{L^2(M,\omega')}^{1/2}$$

Proposition 5. Let $(a_n) \subset M$ be a bounded sequence. If $a_n \rightarrow a$ strongly then $q(a_n) \rightarrow q(a)$ in the norm of $L(p, M, \omega)$ for $1 \leq p < \infty$.

Proof. We may assume that a=0 and $p=2^s$. For arbitrary $a \in M$ we have $||ad^{1/2}||_{L^2(M,\omega')}^2 = \int d^{1/2}a^*a \, d^{1/2} \, d\omega' = \int da^*a \, d\omega' = \omega(a^*a).$

Let M_0 be a subalgebra of M. We denote by ω_0 the restriction of ω to M_0 . Clearly, $D(H, \omega) \subset D(H, \omega_0)$ and if q is a form on $D(H, \omega_0)$ then $\varkappa(q)$ will stand for $q|D(H, \omega)$.

Lemma 6. Let M_0 , M, ω_0 , ω and \varkappa be as above. Then $\varkappa | L(1, M_0, \omega_0)$ is a linear contraction from $L(1, M_0, \omega_0)$ to $L(1, M_0, \omega)$.

Proof. Denote by $H_{\omega}(H_{\omega_0})$ the Hilbert space for the standard representation $\pi_{\omega}(M)(\pi_{\omega_0}(M_0))$ with respect to $\omega(\omega_0)$ and Ω its cyclic and separating vector defining ω (and also ω_0 since H_{ω_0} is considered as a subspace of H_{ω}). Let $J_{\omega}(J_{\omega_0})$ be the usual canonical conjugation of the Tomita—Takesaki theory for the couple $(M, \omega)((M_0, \omega_0))$ and P the projection from H_{ω} onto H_{ω_0} . We define a partial isometry V as it was denote in [1].

$$VJ_{\omega_0}\pi_{\omega}(a)\Omega = J_{\omega}\pi_{\omega}(a)\Omega$$
 for $a \in M_0$
 $V\xi = 0$ for $\xi \perp H_{\omega_0}$

From [4] we know that $J_{\omega}|R_{\omega}(\xi)|^2 J_{\omega} \in \pi_{\omega}(M)$ ($\xi \in D(H, \omega)$) (and, for $\xi \in D(H, \omega_0)$, $J_{\omega_0}|R_{\omega_0}(\xi)|^2 J_{\omega_0} \in \pi_{\omega_0}(M_0)$). Now if E^{ω} is the ω -conditional expectation from M to M_0 then

$$E^{\omega}(\pi_{\omega}^{-1}(J_{\omega}|R_{\omega}(\xi)|^{2}J\omega)) = \pi_{\omega_{0}}^{-1}(V^{*}J_{\omega}|R_{\omega}(\xi)|^{2}J_{\omega}V) =$$
$$= \pi_{\omega_{0}}^{-1}(J_{\omega_{0}}|R_{\omega_{0}}(\xi)|^{2}J_{\omega_{0}}).$$

The last equality follows from: $R_{\omega}(\xi) P \pi_{\omega}(a) \Omega = R_{\omega}(\xi) \pi_{\omega}(a) \Omega = a\xi = R_{\omega_0}(\xi) \pi_{\omega_0}(a) \Omega$ for $a \in M_0$ and $\xi \in D(H, \omega)$, which implies $R_{\omega}(\xi) P | H_{\omega_0} = R_{\omega_0}(\xi)$.

Let nos $\varphi \in M_*$. It is proved in [4] that $\iota_{\omega}(\varphi)(\zeta) = \pi_{\omega}^{-1}(J_{\omega}|R_{\omega}(\zeta)|^2 J_{\omega})$ for $\zeta \in D(H, \omega)$ and the similar equality holds also for ι_{ω_0} . We have therefore, for $\zeta \in D(H, \omega)$ and $\varphi \in (M_0)_*$,

$$\begin{aligned} \varkappa \big(\iota_{\omega_0}(\varphi)(\xi) &= \iota_{\omega_0}(\varphi)(\xi) = \varphi \big(\pi_{\omega_0}^{-1}(J_{\omega_0} | R_{\omega_0}(\xi) |^2 J_{\omega_0}) \big) = \\ &= \varphi \big(E^{\omega} \big(\pi_{\omega}^{-1}(J_{\omega} | R_{\omega}(\xi) |^2 J_{\omega}) \big) \big) = \iota_{\omega}(\varphi \circ \varepsilon), \end{aligned}$$

and

$$\begin{aligned} \|\varkappa \circ \iota_{\omega_0}(\varphi)\|_{L(1,M,\omega)} &= \|\iota_{\omega}(\varphi \circ \varepsilon)\|_{L(1,M,\omega)} = \|\varphi \circ \varepsilon\| \leq \\ &\leq \|\varphi\|_{(M_0)^*} = \|\iota_{\omega_0}(\varphi)\|_{L(1,M,\omega)}, \end{aligned}$$

which proves our statement.

From the above Lemma, it is clear that $\varkappa \circ \iota_{\omega_0}(\varphi)$ depends only on the value of φ on the range of E^{ω} . This implies that \varkappa in general is not injective on $L(1, M, \omega)$. More precisely, $\varkappa \circ \iota_{\omega_0}(\varphi) = 0$ if $\varphi | E^{\omega}(M) \equiv 0$. This implies that \varkappa is injective if and only if $E^{\omega}(M)$ is weak-operator dense in M_0 , which is not the case in general (cf. [1], section 4).

Proposition 7. Let M, M_0, ω, ω_0 and \varkappa be as above. If $q \in L(p, M_0, \omega_0)$ then $\varkappa(q) \in L(p, M, \omega)$ for $1 . Moreover, <math>\varkappa$ is a contraction with respect to the L(p) norms.

Proof. It is straightforward that for $a \in M_0$ we have $\varkappa(q(a)) \in L(\infty, M, \omega)$ and

$$\left\|\varkappa(q(a))\right\|_{L(\infty, M, \omega)} = \|q(a)\|_{L(\infty, M_0, \omega_0)}$$

where $q(a)(\xi) = \langle \xi, a\xi \rangle$ ($\xi \in D(H, \omega_0)$). On the other hand the statement has been proved in Lemma 6 for p=1. By the Calderon—Lions interpolation theorem ([4], [18]) for $1 we have <math>\varkappa(q) \in L(p, M, \omega)$ and

$$\|\varkappa(q)\|_{L(p,M,\omega)} \leq \|q\|_{L(p,M_0,\omega_0)}$$

whenever $q \in L(p, M, \omega)$.

Let us fix a von Neumann algebra M with a faithful normal state ω and an increasing sequence (M_n) of von Neumann subalgebras. Assume that M is generated by $\bigcup_{n=1}^{\infty} M_n$. We denote by ω_n the restriction of ω to M_n and E_n^{ω} will stand for the ω -conditional expectation $M \to M_n$. It is porved in [16], [17] and independently in [13] that $E_n^{\omega}(a) \to a$ strongly for every $a \in M$. As above we write ε_n^{ω} for the extension of E_n^{ω} to $L(1, M, \omega)$ and \varkappa_n : $L(1, M_n, \omega_n) \to L(1, M, \omega)$ is the restriction mapping.

Theorem 8. With the notation above, for every $q \in L(p, M, \omega)$

$$\varkappa_n \circ \varepsilon_n^{\omega}(q) \to q$$

in the norm of $L(p, M, \omega)$ $(1 \le p < \infty)$.

Proof. Since the sequence $(\varkappa_n \circ \varepsilon_n^{\omega})$ is uniformly bounded it is sufficient to prove our statement on a dense set. We shall assume that $q \in L(\infty, M, \omega)$, that is q = q(a)for some $a \in M$. So $E_n^{\omega}(a) \to a$ strongly and by Proposition 5 $q(E_n^{\omega}(a)) \to q(a)$ in the norm of $L(p, M, \omega)$. However, $q \circ E_n^{\omega} = K_n \circ \varepsilon_n^{\omega}$ and the proof is complete.

Let $(q_n) \subset L(p, M, \omega)$ be a sequence such that

$$\varkappa_k \cdot \varepsilon_k^{\omega}(q_n) = q_k \quad (n > k).$$

Such a sequence (q_n) will be called (generalized) martingale (adapted to the sequence (M_n) of subalgebras). The martingale (q_n) is called regular if there is a $q \in L(p, M, \omega)$ such that $q_n = K_n \circ \varepsilon_n^{\omega}(q)$.

Theorem 9. Let $(q_n) \subset L(p, M, \omega)$ be a martingale (adapted to the sequence (M_n)) and 1 . Then the following conditions are equivalent.

- (i) (q_n) is regular.
- (ii) (q_n) converges in the norm of $L(p, M, \omega)$.
- (iii) $\sup \|q_n\|_{L(P, M, \omega)} < \infty$

Proof. (i) \rightarrow (ii) is just the previous Theorem. (ii) \rightarrow (iii) is trivial. If (iii) holds then due to the reflexivity of $L(p, M, \omega)$ (see [4], [14], [18]) we can find a weakly convergent subsequence of (q_n) , say $q_{k(n)} \rightarrow q$ weakly. If *n* is large enough then

$$\varkappa_m \varepsilon_m^{\omega}(q_{k(n)}) = q_m$$

and we have $q_m = \varkappa_m \varepsilon_m^{\omega}(q)$.

Theorem 10. Let $(q_n) \subset L(1, M, \omega)$ be a martingale (adapted to the sequence (M_n)). Then the following conditions are equivalent.

- (i) (q_n) is regular,
- (ii) (q_n) converges in the norm of $L(1, M, \omega)$.
- (iii) $\{q_n: n \in \mathbb{N}\}$ is relatively $\sigma(L(1), L(\infty))$ compact in $L(1, M, \omega)$.

Proof. We can follow the proof of Theorem 9 but instead of reflexivity we may apply the Eberlein—Smulian theorem ([8]).

The reversed martingale convergence theorem does not hold if the sequence is formed with ω -conditional expectations. A counter example is contained in [1].

Acknowledgement. The authors are grateful to S. Goldstein for a copy of [10] and to L. Accardi for his interest in this paper during the second author's stay at the University II of Rome.

References

- L. ACCARDI and C. CECCHINI, Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Anal., 45 (1982), 245-273.
- [2] L. ACCARDI and C. CECCHINI, Surjectivity of the conditional expectation on L¹-spaces, Lecture Notes in Math., 992, Springer-Verlag, (Berlin-Heidelberg-New York, 1983), 436-442.
- [3] A. ALESINA and L. DE MICHELE, Inequalities of Paley type for noncommutative martingales, Ann. Math. Pura Appl., 116 (1978), 143-150.
- [4] C. CECCHINI, Non-commutative integration for states on von Neumann algebras, preprint, 1984.
- [5] A. CONNES, On the spatial theory of von Neumann algebras, J. Funct. Anal., 35 (1980), 153-164.
- [6] I. CUCULESCU, Pointwise convergence of martingales in von Neumann algebras, J. Multivariate Anal., 1 (1971), 17–27.
- [7] N. DANG-NGOC, Pointwise convergence of martingales in von Neumann algebras, Israel J. Math., 34 (1979), 273-280.
- [8] N. DUNFORD and J. T. SCHWARTZ, Linear operators, Part I, Interscience Publishers (New York, 1958):

- [9] S. GOLDSTEIN, Convergence of martingales in von Neumann algebras, Bull. Acad. Polon, Sci., 27 (1979), 853-859.
- [10] S. GOLDSTEIN, Norm convergence of martingales in L^p -spaces over von Neumann algebras, preprint, 1983.
- [11] M. S. GOLDSTEIN, Almost sure convergence theorems in von Neumann algebras, J. Operator Theory, 6 (1981), 233-311. (in Russian)
- [12] U. HAAGERUP, Normal weights on W*-algebras, J. Func. Anal., 19 (1975), 302-318.
- [13] F. HIAI and M. TSUKADA, Strong martingale convergence of generalized conditional expectations on von Neumann algebras, *Trans. Amer. Math. Soc.*, 282 (1984), 791–798.
- [14] M. HILSUM, Les espaces L^p d'une algébre de von Neumann définies par las derivée spatiale, J. Funct. Analysis, 40 (1981), 151-169.
- [15] E. C. LANCE, Martingale convergence in von Neumann algebras, Math. Proc. Cambridge Philos. Soc., 84 (1978), 47–56.
- [16] D. PETZ, Quantum ergodic theorems, Proceedings of the Workshop on Quantum Probability, Lecture Notes in Math., 1055, Springer-Verlag (Berlin-Heidelberg-New York, 1984), 289-300.
- [17] D. PETZ, A dual in von Neumann algebras with weights, Quart. J. Math. Oxford, to appear.
- [18] M. TERP, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory, 8 (1982), 327-360.

(C. C.) UNIVERSITÀ DI GENOVA ISTITUTO DI MATEMATICA VIA L. B. ALBERTI 4 16132-GENOVA ITALY (D. P.) MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES REÁLTANODA U. 13—15. 1364—BUDAPEST, PF. 127 HUNGARY