On the product of certain permutable subgroups

KERESZTÉLY CORRÁDI and PÉTER Z. HERMANN

Dedicated to Professor K. Tandori on his 60th birthday

It is well-known that the finite p-nilpotent groups form a Fitting class; in particular, for $N_1, N_2 \triangleleft G$ and N_1, N_2 p-nilpotent, $\langle N_1, N_2 \rangle$ is also p-nilpotent. In [1] there was defined $\mathcal{N}(p, q)$ (generalizing the concept of p-nilpotence) as the class of finite groups, in which for every p-subgroup P, |N(P)/C(P)| is not divisible by the prime q. By the theorem in [1], $\mathcal{N}(p, q)$ is a Fitting class for any primes $p \neq q$. In this paper we prove a stronger result:

Theorem. Let G be a finite group and $H_1, H_2 \leq G$. Assume that $H_1H_2 \leq G$ (i.e. $H_1H_2=H_2H_1$) and $H_tM \leq G(t=1, 2)$ for every q-subgroup M. Then $H_1, H_2 \in \mathcal{N}(p, q)$ implies $H_1H_2 \in \mathcal{N}(p, q)$.

For the proof we need the following lemmas, dealing with the permutability of subgroups of a group G. (Throughout in the text, p and q are distinct fixed primes.)

Lemma 1. Suppose that $H \leq G$ and HM = MH for any q-subgroup M. Let S be a subgroup of G then $(H \cap S)D = D(H \cap S)$ for any q-subgroup D in S.

Proof. $(H \cap S)D = HD \cap S = S \cap DH = D(S \cap H)$.

Lemma 2. Assume $H, K, L, T \leq G$ and $L \leq H \cap K$. If G = HK = LT then $T = (T \cap H)(T \cap K)$.

Proof. $H=G\cap H=LT\cap H=L(T\cap H)$, similarly $K=L(T\cap K)$, hence $G=HK=L(T\cap H)L(T\cap K)=L(T\cap H)(T\cap K)$, thus $T=T\cap L(T\cap H)(T\cap K)=$ $=(T\cap L)(T\cap H)(T\cap K)=(T\cap H)(T\cap K)$.

Lemma 3. If R < G, |G:R| = q then RD = DR for any q-subgroup D.

Proof. It can be assumed that $D \not\equiv R$. Let z be an element in $D \setminus R$ then $R\langle z \rangle = G = \langle z \rangle R$, hence RD = G = DR.

Received May 12, 1983.

Lemma 4. (see KEGEL [4] or [2, p. 677]). Let A and B be subgroups of the finite group G. Suppose that for all $x \in G$, $AB^x = B^xA$; if $AB \neq G$, then at least one of A and B is contained in a normal subgroup of G, different from G.

Proof of the theorem. By induction; suppose it were false and let G be a counterexample for which $f(G, H_1, H_2) := |G| + |H_1: H_1 \cap H_2|_q + |H_2: H_1 \cap H_2|_q + |G: H_1| + |G: H_2|$ is minimal. So $G = H_1H_2$ and there is a subgroup $U = U_pU_q$ in G with a normal Sylow p-subgroup U_p and cyclic Sylow q-subgroups like U_q such that all subgroups of U except U are (p-)nilpotent. (For the standard properties of such U-s we will use see [2, chapter IV.] or [3]). As $U = \langle U_r^q: r \in U \rangle$, each $H_tU = UH_t$.

(*) For any subgroup $X \leq G$ and $H_t \leq X$ (for at least one t) $X = X \cap G = X \cap H_t H_{t'} = H_t(X \cap H_{t'})$, hence by Lemma 1, X = G or $X \in \mathcal{N}(p, q)$. In particular, $H_t U = G$ (t = 1, 2).

Suppose $U_q \leq H_t$, then $U_q^{H_t \cap U} := \langle U_q^s : s \in H_t \cap U \rangle \leq H_t \cap U$, so $H_t \cap U \leq Z(U)U_q$; thus for a suitable $u \in U$ we get $U_q^u \leq H_t$, hence $H_t < H_t U_q^u$, yielding $1 \neq |H_t U_q^u : H_t| |(|U_q|, |G : H_t|)| (|U_q|, |U_p|) = 1$, a contradiction, which gives

(1)
$$U_q \not\equiv H_t \quad (t = 1, 2).$$

(2) Either (i) $q = |G: H_t|$ and $U_p \leq \bigcap_{v \in G} H_t^v$ (for at least one t), or

(ii) $T := \langle Q : Q \in Syl_a(G) \rangle \neq G$ and $(H_1 \cap H_2) T \neq G$:

If T < G then $(H_1 \cap H_2)T = G$ would yield by Lemma 2 that

 $T = (T \cap H_1)(T \cap H_2) \in \mathcal{N}(p, q)$

by the minimality of G and Lemma 1, contrary to $U \le T$; so $(H_1 \cap H_2)T < G$ in this case.

Now assume T=G. Suppose $H_tQ < G$ for both t and all $Q \in Syl_q(G)$, then $H_t^G < G$ for each t by Lemma 4, hence $H_1^G, H_2^G \in \mathcal{N}(p, q)$ by (*); so

$$G = H_1^G H_2^G \in \mathcal{N}(p,q)$$

by [1], a contradiction. Thus we can assume $H_1Q=G$ (with a $Q\in Syl_q(G)$). Then with a suitable $Q_1 < Q$ we get $|G: H_1Q_1| = q$. By Lemma 3 and $f(G, H_1Q_1, H_2) \le \le f(G, H_1, H_2) - (|G: H_1| - q)$ we see that $|G: H_1| = q$. Let $x \in G$, then $G = H_1U^x$ by (1), thus $|U^x: H_1 \cap U^x| = |G: H_1| = q$, so $U_p^x \le H_1$, as required.

(3) If $H_t U_q < G$ then $H_t \cap U = 1$ and $|U_q| = q$: $H_t U_q < G$ implies $H_t U_q \in \mathcal{N}(p, q)$, thus $H_t \cap U \leq Z(U)$ by (1). $D := (H_t \cap U)^G = (H_t \cap U)^{UH_t} = (H_t \cap U)^{H_t} \leq H_t$, hence $D \cap U = H_t \cap U \leq Z(U)$, thus $U/D \cap U \notin \mathcal{N}(p, q)$. If D > 1, then — all conditions of the theorem remaining valid for G/D, H_1D/D , $H_2D/D = G/D \in \mathcal{N}(p, q)$, contrary to $UD/D \leq G/D$; so D = 1. Let $D_1 = (\Phi(U_q))^G$, then $D_1 = (\Phi(U_q))^G$.

 $= (\Phi(U_q))^{UH_t} = (\Phi(U_q))^{H_t} \le H_t \Phi(U_q), \text{ hence } D_1 \cap U \le H_t \Phi(U_q) \cap U = (H_t \cap U) \Phi(U_q) = \Phi(U_q) \le Z(U). \text{ Thus we get (factorizing by } D_1) \quad D_1 = 1.$

Now, by (2), we separate two cases.

Case 1:
$$U_p \leq N := \bigcap_{x \in G} H_1^x$$
, $|G: H_1| = q$.

Case 1/a: $NH_2 < G$. As $G = H_2 U = NH_2 U_q$, $1 \neq |G: NH_2|$ is a power of q and $NH_2 \in \mathcal{N}(p, q)$ by Lemma 1. Then $f(G, H_1, NH_2) \leq f(G, H_1, H_2)$ with equality iff $N \leq H_2$. Thus $|G: H_2|$ is a power of q, consequently $H_2 \leq \tilde{H}_2 < G$ with $|G: H_2| = q$. As $f(G, H_1, \tilde{H}_2) \leq f(G, H_1, H_2)$, $H_2 = \tilde{H}_2$ is of index q. So $U_p \leq M := N \cap \bigcap_{x \in I} H_2^x$. Let $U_p \leq R \in \operatorname{Syl}_p(M)$, then $G = MN_G(R)$, so by Lemma 2, $N_G(R) = N_{H_1}(R)N_{H_2}(R)$. Thus $N_G(R) \in \mathcal{N}(p,q)$ by Lemma 1, if $N_G(R) < G$. If so, then for $Q_1 \in Syl_q(C_G(R))$ there exists a Sylow q-subgroup Q_2 of M such that $(Q_1 \text{ normalizes } Q_2, \text{ hence})$ $Q_1 Q_2 \in \operatorname{Syl}_q(G)$. Let $U_q = \langle b \rangle$, then $b \in T = \langle (Q_1 Q_2)^x : x \in G \rangle \leq (C_G(R)M)^G = C_G(R)M$, thus $b = b_C b_M$ with $b_C \in C_G(R) \leq C_G(U_p)$ and $b_M \in M$. So $b_M \in N_M(U_p) \setminus C_G(U_p)$ and for any u in U_p , $u^b = u^{b_M}$. Hence $1 = u^{b^q} = u^{b_M^q}$, yielding with a suitable power b_M^k a q-subgroup $\langle b_M^k \rangle$, that normalizes but does not centralize the p-subgroup U_p , contrary to $M \leq H_1 \in \mathcal{N}(p, q)$; thus $R \triangleleft G$. For t=1, 2 let $S_t \in Syl_q(H_t)$, then $S_1^G, S_2^G \leq C_G(R)$. Let $S \in \text{Syl}_q(G)$; there exist elements e, f in G with $S_1^e, S_1^f \leq S$. $S \not\equiv C_G(R)$ and $|S: S_1^e| = q = |S: S_2^f|$ (because of $|G: H_1| = q = |G: H_2|$), so $S_1^e = S_2^f$. $ef^{-1} = g_1g_2$ (with $g_t \in H_t$) and $S_1^{g_1g_2} \le H_1^{g_2} \cap H_2$; as $f(G, H_1^{g_2}, H_2^{g_2} = H_2) \le f(G, H_1^{g_2}, H_2^{g_2}) \le f(G, H_1^{g_2}, H_2^{g_2})$ $\leq f(G, H_1, H_2) - \sum_{i=1,2} |H_i: H_1 \cap H_2|_q$, we get that $|H_1 \cap H_2|_q = |H_1|_q = |H_2|_q$, contrary to $|H_1 \cap H_2| = |H_1| |H_2| |G|^{-1} = q^{-1} |H_1|$.

Case 1/b: $NH_2=G$. As $NU=NU\cap NH_2=N(NU\cap H_2)$, NU=G by Lemma 1. Thus $NU_q=G$, G/N is cyclic, so $H_1 \lhd G$. Suppose $H_2U_q=G$, then $H_2 \le \hat{H}_2 < G$ with a $|G: \hat{H}_2|=q$, so by induction, $H_2=\hat{H}_2$. Let $E=\bigcap_{x\in G} H_2^x$, then $G \ne H_1E$ by [1] and $U_p \le E$, producing Case 1/a with (H_2, E, H_1) instead of (H_1, N, H_2) . Thus $H_2U_q \ne G$. $H_2 < \exists G$ by [1], so $L:=U_q^G < G$ by Lemma 4.

 $H_1 \cap L \lhd G$, $|L: H_1 \cap L| = q$, $L \notin \mathcal{N}(p, q)$, hence $L \neq (H_1 \cap L)(H_2 \cap L)$ by Lemma 1, which yields $H_2 \cap L \cong H_1 \cap L$. Suppose $(L \cap H_1)H_2 < G$, then (as $G = H_2 U = H_2 L$), $|G: (L \cap H_1)H_2| = q$, $f(G, H_1, (L \cap H_1)H_2) \cong f(G, H_1, H_2)$. Thus H_2 is of index q in G, $G = H_2 U_q$, which is not the case; so $G = (L \cap H_1)H_2$. We get $G/L \cap H_1 \simeq H_2/L \cap H_1 \cap H_2 = H_2/L \cap H_2 \simeq G/L$, $L \cong H_1$, a contradiction.

Case 2: $T = \langle Q: Q \in Syl_q(G) \rangle \neq G$. Having eliminated Case 1 we may assume by (2) and (3) that $H_t \cap \hat{U} = 1$ (t = 1, 2) and $|\hat{U}_q| = q$ for any \hat{U} , being of the same type as U. Also by (2), $(H_1 \cap H_2)T < G$.

As $\hat{U} \cap H_t = 1$, $|T: T \cap H_t| = |\hat{U}|$; let $Q \in \text{Syl}_q(G)$, then by Lemma 1, $(T \cap H_t)Q^x = Q^x(T \cap H_t)$ for any $x \in G$. $T \neq (T \cap H_t)Q$, hence by Lemma 4, there

exist $W_t \not\subseteq T$ (t=1,2) with $T \cap H_t \subseteq W_t$. $\hat{U}_q \not\equiv W_t$ yields $W_t \in \mathcal{N}(p,q)$ and the existence of $V_t \lhd T$ with $W_t \subseteq V_t$ and $|T: V_t| = q$ (t=1,2). Still $\hat{U}_q \not\equiv V_t$, so $V_1, V_2 \in \mathcal{N}(p,q)$. By $|T: V_t| = q$, $T \notin \mathcal{N}(p,q)$ and [1], $V_1 = V_2$.

On the other hand, $V_t = V_t \cap T = V_t \cap (T \cap H_t) \hat{U} = (T \cap H_t) (V_t \cap \hat{U}) = (T \cap H_t) \hat{U}_p$; thus

(4) $(T \cap H_1)\hat{U}_p = (T \cap H_2)\hat{U}_p$, consequently $|T \cap H_1| = |T \cap H_2|$.

(5) |G:T| is a power of p, hence for any $A \leq B \leq G$, $|B:A|_a = |B \cap T:A \cap T|_a$:

Let P be a Sylow p-subgroup of G then $(|G: TP|, |G: H_1 \cap H_2|) = (|G: TP|, |\hat{U}|^2) = 1$, thus $G = (H_1 \cap H_2)TP$, so $TP = (TP \cap H_1)(TP \cap H_2)$ by Lemma 2. By $U \leq TP$, TP = G.

Let $Q_t \in \operatorname{Syl}_q(H_t \cap T)$ for t=1, 2, then by (4), $Q_2 = Q_1^g$ for some g. Let $g = g_1 g_2$ with $g_t \in H_t$; as $Q_2 \leq (T \cap H_1^{g_2}) \cap (T \cap H_2)$, $f(G, H_1^{g_2}, H_2^{g_2} = H_2) = |G| + |G: H_1| + |G: H_2| + |H_1^{g_2}: H_1^{g_2} \cap H_2|_q + |H_2: H_1^{g_2} \cap H_2|_q = |G| + |G: H_1| + |G: H_2| + |T \cap H_1^{g_2}: T \cap H_1^{g_2} \cap H_2|_q + |T \cap H_2: T \cap H_1^{g_2} \cap H_2|_q$ by (5). But $|T \cap H_1^{g_2}: T \cap H_1^{g_2} \cap H_2|_q = 1 = |T \cap H_2: T \cap H_1^{g_2} \cap H_2|_q$ as $Q_2 \leq T \cap H_1^{g_2} \cap H_2$, so by the minimality of $f(G, H_1, H_2)$, we have $|H_1: H_1 \cap H_2|_q = |H_2: H_1 \cap H_2|_q = 1$.

On the other hand, $|H_1: H_1 \cap H_2|_q = |G: H_2|_q = |U|_q = q = |G: H_1|_q = |H_2: H_1 \cap H_2|_q$, the final contradiction.

References

[1] P. HERMANN, Groups without certain subgroups form a Fitting class (to appear).

[2] B. HUPPERT, Endliche Gruppen. 1, Springer-Verlag (Berlin, 1967).

[3] N. Ito, Note on (LM)-groups of finite order, Kodai Math. Seminar Report (1951), 1-6.

[4] O. H. KEGEL, Produkte nilpotenter Gruppen, Arch. Math., 12 (1961), 90-93.

(K. C.) DEPT. NUMERICAL METHODS AND COMPUTATION, EOTVOS UNIVERSITY, BUDAPEST, 1088, HUNGARY (P. H.) DEPT. ALGEBRA AND NUMBER THEORY, EÖTVÖS UNIVERSITY, BUDAPEST, 1088, HUNGARY