On the product of certain permutable subgroups

KERESZTÉLY CORRÁDI and PÉTER Z. HERMANN
Dedicated to Professor K. Tandori on his 60th birthday

It is well-known that the finite p-nilpotent groups form a Fitting class; in particular, for $N_{1}, N_{2} \triangleleft G$ and $N_{1}, N_{2} p$-nilpotent, $\left\langle N_{1}, N_{2}\right\rangle$ is also p-nilpotent. In [1] there was defined $\mathscr{N}(p, q)$ (generalizing the concept of p-nilpotence) as the class of finite groups, in which for every p-subgroup $P,|N(P) / C(P)|$ is not divisible by the prime q. By the theorem in [1], $\mathcal{N}(p, q)$ is a Fitting class for any primes $p \neq q$. In this paper we prove a stronger result:

Theorem. Let G be a finite group and $H_{1}, H_{2} \leqq G$. Assume that $H_{1} H_{2} \leqq G$ (i.e. $H_{1} H_{2}=H_{2} H_{1}$) and $H_{t} M \leqq G(t=1,2)$ for every q-subgroup M. Then $H_{1}, H_{2} \in$ $\in \mathscr{N}(p, q)$ implies $H_{1} H_{2} \in \mathcal{N}(p, q)$.

For the proof we need the following lemmas, dealing with the permutability of subgroups of a group G. (Throughout in the text; p and q are distinct fixed primes.)

Lemma 1. Suppose that $H \leqq G$ and $H M=M H$ for any q-subgroup M. Let S be a subgroup of G then $(H \cap S) D=D(H \cap S)$ for any q-subgroup D in S.

Proof. $(H \cap S) D=H D \cap S=S \cap D H=D(S \cap H)$.
Lemma 2. Assume $H, K, L, T \leqq G$ and $L \leqq H \cap K$. If. $G=H K=L T$ then $T=(T \cap H)(T \cap K)$.

Proof. $H=G \cap H=L T \cap H=L(T \cap H), \quad$ similarly $\quad K=L(T \cap K)$, hence $G=H K=L(T \cap H) L(T \cap K)=L(T \cap H)(T \cap K), \quad$ thus $\quad T=T \cap L(T \cap H)(T \cap K)=$ $=(T \cap L)(T \cap H)(T \cap K)=(T \cap H)(T \cap K)$.

Lemma 3. If $R<G,|G: R|=q$ then $R D=D R$ for any q-subgroup D.
Proof. It can be assumed that D 丰 R. Let z be an element in $D \backslash R$ then $R\langle z\rangle=G=\langle z\rangle R$, hence $R D=G=D R$.

Lemma 4．（see Kegel［4］or［2，p．677］）．Let A and B be subgroups of the finite group G ．Suppose that for all $x \in G, A B^{x}=B^{x} A$ ；if $A B \neq G$ ，then at least one of A and B is contained in a normal subgroup of G ，different from G ．

Proof of the theorem．By induction；suppose it were false and let G be a counterexample for which $f\left(G, H_{1}, H_{2}\right):=|G|+\left|H_{1}: H_{1} \cap H_{2}\right|_{q}+\left|H_{2}: H_{1} \cap H_{2}\right|_{q}+$ $+\left|G: H_{1}\right|+\left|G: H_{2}\right|$ is minimal．So $G=H_{1} H_{2}$ and there is a subgroup $U=U_{p} U_{q}$ in G with a normal Sylow p－subgroup U_{p} and cyclic Sylow q－subgroups like U_{q} such that all subgroups of U except U are $(p$－）nilpotent．（For the standard properties of such U－s we will use see［2，chapter IV．］or［3］）．As $U=\left\langle U_{r}^{q}: r \in U\right\rangle$ ，each $H_{i} U=U H_{i}$ ．
（＊）For any subgroup $X \leqq G$ and $H_{t} \leqq X$（for at least one t）$X=X \cap G=$ $=X \cap H_{t} H_{t^{\prime}}=H_{t}\left(X \cap H_{t^{\prime}}\right)$ ，hence by Lemma $1, X=G$ or $X \in \mathscr{N}(p, q)$ ．In particular， $H_{t} U=G \quad(t=1,2)$ ．

Suppose $\quad U_{q} \leqq H_{t}, \quad$ then $\quad U_{q}^{H_{t} \cap U}:=\left\langle U_{q}^{s}: s \in H_{t} \cap U\right\rangle \leqq H_{t} \cap U, \quad$ so $\quad H_{t} \cap U \leqq$ $\leqq Z(U) U_{q}$ ；thus for a suitable $u \in U$ we get $U_{q}^{u} ⿻ 三 丨{ }^{-} \boldsymbol{H}_{t}$ ，hence $\boldsymbol{H}_{\mathrm{t}}<\boldsymbol{H}_{t} U_{q}^{u}$ ，yielding $1 \neq\left|H_{\mathrm{t}} U_{q}^{u}: H_{t}\right|\left|\left(\left|U_{q}\right|, \mid G: H_{t}\right)\right|\left(\left|U_{q}\right|,\left|U_{p}\right|\right)=1$ ，a contradiction，which gives

$$
\begin{equation*}
U_{q} \text { 丰 } H_{t} \quad(t=1,2) . \tag{1}
\end{equation*}
$$

（2）Either（i）$q=\left|G: H_{t}\right|$ and $U_{p} \leqq \bigcap_{y \in G} H_{i}^{y}$（for at least one t ），or
（ii）$T:=\left\langle Q: Q \in \operatorname{Syl}_{q}(G)\right\rangle \neq G$ and $\left(H_{1} \cap H_{2}\right) T \neq G:$
If $T<G$ then $\left(H_{1} \cap H_{2}\right) T=G$ would yield by Lemma 2 that

$$
T=\left(T \cap H_{1}\right)\left(T \cap H_{2}\right) \in \mathscr{N}(p, q)
$$

by the minimality of G and Lemma 1 ，contrary to $U \leqq T$ ；so $\left(H_{1} \cap H_{2}\right) T<G$ in this case．

Now assume $T=G$ ．Suppose $H_{1} Q<G$ for both t and all $Q \in \operatorname{Syl}_{q}(G)$ ，then $H_{t}^{G}<G$ for each t by Lemma 4，hence $H_{1}^{G}, H_{2}^{G} \in \mathscr{N}(p, q)$ by（＊）；so

$$
G=H_{1}^{G} H_{2}^{G} \in \mathscr{N}(p, q)
$$

by［1］，a contradiction．Thus we can assume $H_{1} Q=G$（with a $Q \in \operatorname{Syl}_{q}(G)$ ）．Then with a suitable $Q_{1}<Q$ we get $\left|G: H_{1} Q_{1}\right|=q$ ．By Lemma 3 and $f\left(G, H_{1} Q_{1}, H_{2}\right) \leq$ ． $\leqq f\left(G, H_{1}, H_{2}\right)-\left(\left|G: H_{1}\right|-q\right)$ we see that $\left|G: H_{1}\right|=q$ ．Let $x \in G$ ，then $G=H_{1} U^{x}$ by（1），thus $\left|U^{x}: H_{1} \cap U^{x}\right|=\left|G: H_{1}\right|=q$ ，so $U_{p}^{x} \leqq H_{1}$ ，as required．
（3）If $H_{t} U_{q}<G$ then $H_{t} \cap U=1$ and $\left|U_{q}\right|=q: \quad H_{t} U_{q}<G$ implies $H_{t} U_{q} \in$ $\in \mathscr{N}(p, q)$ ，thus $H_{t} \cap U \leqq Z(U)$ by（1）．$D:=\left(H_{t} \cap U\right)^{G}=\left(H_{t} \cap U\right)^{U H_{t}}=\left(H_{t} \cap U\right)^{H_{t}} \leqq$ $\leqq H_{t}$ ，hence $D \cap U=H_{t} \cap U \leqq Z(U)$ ，thus $U / D \cap U \notin \mathcal{N}(\rho, q)$ ．If $D>1$ ，then －all conditions of the theorem remaining valid for $G / D, H_{1} D / D, H_{2} D / D$－ $G / D \in \mathscr{N}(p, q)$ ，contrary to $U D / D \leqq G / D$ ；so $D=1$ ．Let $D_{1}=\left(\Phi\left(U_{\dot{q}}\right)\right)^{G}$ ，then $D_{1}=$
$=\left(\Phi\left(U_{q}\right)\right)^{U H_{t}}=\left(\Phi\left(U_{q}\right)\right)^{H_{t}} \leqq H_{t} \Phi\left(U_{q}\right)$, hence $D_{1} \cap U \leqq H_{t} \Phi\left(U_{q}\right) \cap U=\left(H_{t} \cap U\right) \Phi\left(U_{q}\right)=$ $=\Phi\left(U_{q}\right) \leqq Z(U)$. Thus we get (factorizing by $\left.D_{1}\right) D_{1}=1$.

Now, by (2), we separate two cases.
Case 1: $U_{p} \leqq N:=\bigcap_{x \in G} H_{1}^{x},\left|G: H_{1}\right|=q$.
Case 1/a: $N H_{2}<G$. As $G=H_{2} U=N H_{2} U_{q}, 1 \neq\left|G: N H_{2}\right|$ is a power of q and $N H_{2} \in \mathcal{N}(p, q)$ by Lemma 1 . Then $f\left(G, H_{1}, N H_{2}\right) \leqq f\left(G, H_{1}, H_{2}\right)$ with equality iff $N \leqq H_{2}$. Thus $\left|G: H_{2}\right|$ is a power of q, consequently $H_{2} \leqq \tilde{H}_{2}<G$ with $\left|G: H_{2}\right|=q$. As $f\left(G, H_{1}, \tilde{H}_{2}\right) \leqq f\left(G, H_{1}, H_{2}\right), H_{2}=\tilde{H}_{2}$ is of index q. So $U_{p} \leqq M:=N \cap \bigcap_{x \in G} H_{2}^{x}$. Let $U_{p} \leqq R \in \operatorname{Syl}_{p}(M)$, then $G=M N_{G}(R)$, so by Lemma $2, N_{G}(R)=N_{H_{1}}(R) N_{H_{2}}(R)$. Thus $N_{G}(R) \in \mathscr{N}(p, q)$ by Lemma 1, if $N_{G}(R)<G$. If so, then for $Q_{1} \in \operatorname{Syl}_{q}\left(C_{G}(R)\right)$ there exists a Sylow q-subgroup Q_{2} of M such that (Q_{1} normalizes Q_{2}, hence) $Q_{1} Q_{2} \in \operatorname{Syl}_{q}(G)$. Let $U_{q}=\langle b\rangle$, then $b \in T=\left\langle\left(Q_{1} Q_{2}\right)^{x}: x \in G\right\rangle \leqq\left(C_{G}(R) M\right)^{G}=C_{G}(R) M$, thus $b=b_{C} b_{M}$ with $b_{C} \in C_{G}(R) \leqq C_{G}\left(U_{p}\right)$ and $b_{M} \in M$. So $b_{M} \in N_{M}\left(U_{p}\right) \backslash C_{G}(U)_{p}$ and for any u in $U_{p}, u^{b}=u^{b_{M}}$. Hence $1=u^{b q}=u^{b q}$, yielding with a suitable power b_{M}^{k} a q-subgroup $\left\langle b_{M}^{k}\right\rangle$, that normalizes but does not centralize the p-subgroup U_{p}, contrary to $M \leqq H_{1} \in \mathcal{N}(p, q)$; thus $R \triangleleft G$. For $t=1$, 2 let $S_{t} \in \operatorname{Syl}_{q}\left(H_{t}\right)$, then $S_{1}^{G}, S_{2}^{G} \leqq C_{G}(R)$. Let $S \in \operatorname{Syl}_{q}(G)$; there exist elements e, f in G with $S_{1}^{e}, S_{1}^{f} \leqq S$. $S \neq C_{G}(R)$ and $\left|S: S_{1}^{e}\right|=q=\left|S: S_{2}^{f}\right|$ (because of $\left|G: H_{1}\right|=q=\left|G: H_{2}\right|$, so $S_{1}^{e}=S_{2}^{f} . e f^{-1}=g_{1} g_{2}$ (with $g_{t} \in H_{t}$) and $S_{1}^{g_{1} g_{2}} \leqq H_{1}^{g_{2}} \cap H_{2} ;$ as $f\left(G, H_{1}^{g_{2}} ; H_{2}^{g_{2}}=H_{2}\right) \leqq$ $\leqq f\left(G, H_{1}, H_{2}\right)-\sum_{t=1,2}\left|H_{t}: H_{1} \cap H_{2}\right|_{q}$, we get that $\left|H_{1} \cap H_{2}\right|_{q}=\left|H_{1}\right|_{q}=\left|H_{2}\right|_{q}$, contrary to $\left|H_{1} \cap H_{2}\right|=\left|H_{1}\right|\left|H_{2}\right||G|^{-1}\left|=q^{-1}\right| H_{1} \mid$.

Case 1/b: $N H_{2}=G$. As $N U=N U \cap N H_{2}=N\left(N U \cap H_{2}\right), N U=G$ by Lemma 1. Thus $N U_{q}=G, G / N$ is cyclic, so $H_{1} \triangleleft G$. Suppose $H_{2} U_{q}=G$, then $H_{2} \leqq \hat{H}_{2}<G$ with a $\left|G: \hat{H}_{2}\right|=q$, so by induction, $H_{2}=\hat{H}_{2}$. Let $E=\bigcap_{x \in G} H_{2}^{x}$, then $G \neq H_{1} E$, by [1] and $U_{p} \leqq E$, producing Case $1 /$ a with $\left(H_{2}, E, H_{1}\right)$ instead of $\left(H_{1}, N, H_{2}\right)$. Thus $H_{2} U_{q} \neq G . H_{2}<\jmath G$ by [1], so $L:=U_{q}^{G}<G$ by Lemma 4.
$H_{1} \cap \dot{L} \triangleleft G,\left|L: H_{1} \cap L\right|=q, L \notin \mathscr{N}(p, q)$, hence $L \neq\left(H_{1} \cap L\right)\left(H_{2} \cap L\right)$ by Lemma 1, which yields $H_{2} \cap L \leqq H_{1} \cap L$. Suppose $\left(L \cap H_{1}\right) H_{2}<G$, then (as $G=H_{2} U=$ $\left.=H_{2} L\right), \quad\left|G:\left(L \cap H_{1}\right) H_{2}\right|=q, f\left(G, H_{1},\left(L \cap H_{1}\right) H_{2}\right) \leqq f\left(G, H_{1}, H_{2}\right)$. Thus H_{2} is of index q in $G, G=H_{2} U_{q}$, which is not the case; so $G=\left(L \cap H_{1}\right) H_{2}$. We get $G / L \cap H_{1} \simeq H_{2} / L \cap H_{1} \cap H_{2}=H_{2} / L \cap H_{2} \simeq G / L, L \leqq H_{1}, \quad$ a contradiction.

Case 2: $T=\left\langle Q: Q \in \operatorname{Syl}_{q}(G)\right\rangle \neq G$. Having eliminated Case 1 we may assume by (2) and (3) that $H_{t} \cap \hat{U}=1(t=1,2)$ and $\left|\hat{U}_{q}\right|=q$ for any \hat{U}, being of the same type as U. Also by (2), $\left(H_{1} \cap H_{2}\right) T<G$.

As $\hat{U} \cap H_{t}=1,\left|T: T \cap H_{t}\right|=|\hat{U}|$; let $Q \in \operatorname{Syl}_{q}(G)$, then by Lemma 1, $\left(T \cap H_{t}\right) Q^{x}=Q^{x}\left(T \cap H_{t}\right)$ for any $x \in G . T \neq\left(T \cap H_{t}\right) Q$, hence by Lemma 4 , there
exist $W_{t} \nsupseteq T(t=1,2)$ with $T \cap H_{t} \leqq W_{t} . \hat{U}_{q} \neq W_{t}$ yields $W_{t} \in \mathcal{N}(p, q)$ and the existence of $V_{t} \triangleleft T$ with $W_{t} \leqq V_{t}$ and $\left|T: V_{t}\right|=q \quad(t=1,2)$ ．Still $\hat{U}_{q} ⿻ 肀 二 十 刂 V_{t}$ ，so $V_{1}, V_{2} \in \mathscr{N}(p, q)$ ．By $\left|T: V_{i}\right|=q, \quad T \notin \mathscr{N}(p, q)$ and［1］，$V_{1}=V_{2}$ ．

On the other hand，$V_{t}=V_{t} \cap T=V_{t} \cap\left(T \cap H_{t}\right) \hat{U}=\left(T \cap H_{t}\right)\left(V_{t} \cap \hat{U}\right)=\left(T \cap H_{t}\right) \hat{U}_{p} ;$ thus
（4）$\left(T \cap H_{1}\right) \hat{U}_{p}=\left(T \cap H_{2}\right) \hat{U}_{p}$ ，consequently $\left|T \cap H_{1}\right|=\left|T \cap H_{2}\right|$ ．
（5）$|G: T|$ is a power of p ，hence for any $A \leqq B \leqq G,|B: A|_{q}=|B \cap T: A \cap T|_{q}$ ：
Let P be a Sylow p－subgroup of G then $\left(|G: T P|,\left|G: H_{1} \cap H_{2}\right|\right)=(|G: T P|$ ， $\left.|\hat{U}|^{2}\right)=1$ ，thus $G=\left(H_{1} \cap H_{2}\right) T P$ ，so $T P=\left(T P \cap H_{1}\right)\left(T P \cap H_{2}\right)$ by Lemma 2．By $U \leqq T P, \quad T P=G$ ．

Let $Q_{t} \in \operatorname{Syl}_{q}\left(H_{t} \cap T\right)$ for $t=1,2$ ，then by（4），$Q_{2}=Q_{1}^{g}$ for some g ．Let $g=g_{1} g_{2}$ with $g_{t} \in H_{i} ; \quad$ as $\quad Q_{2} \leqq\left(T \cap H_{1}^{g_{2}}\right) \cap\left(T \cap H_{2}\right), \quad f\left(G, H_{1}^{g_{2}}, H_{2}^{g_{2}}=H_{2}\right)=|G|+\left|G: H_{1}\right|+$ $+\left|G: H_{2}\right|+\left|H_{1}^{g_{2}}: H_{1}^{g_{2}} \cap H_{2}\right|_{q}+\left|H_{2}: H_{1}^{g_{2}} \cap H_{2}\right|_{q}=|G|+\left|G: H_{1}\right|+\left|G: H_{2}\right|+\mid T \cap H_{1}^{g_{2}}:$ $\left.T \cap H_{1}^{g_{2}} \cap H_{2}\right|_{q}+\left|T \cap H_{2}: T \cap H_{1}^{g_{2}} \cap H_{2}\right|_{q} \quad$ by（5）．But $\quad\left|T \cap H_{1}^{g_{2}}: T \cap H_{1}^{g_{2}} \cap H_{2}\right|_{q}=$ $=1=\left|T \cap H_{2}: T \cap H_{1}^{g_{2}} \cap H_{2}\right|_{q} \quad$ as $\quad Q_{2} \leqq T \cap H_{1}^{g_{2}} \cap H_{2}$ ，so by the minimality of $f\left(G, H_{1}, H_{2}\right)$ ，we have $\left|H_{1}: H_{1} \cap H_{2}\right|_{q}=\left|H_{2}: H_{1} \cap H_{2}\right|_{q}=1$ ．

On the other hand，$\left|H_{1}: H_{1} \cap H_{2}\right|_{q}=\left|G: H_{2}\right|_{q}=|U|_{q}=q=\left|G: H_{1}\right|_{q}=\mid H_{2}:$ $\left.H_{1} \cap H_{2}\right|_{q}$ ，the final contradiction．

References

［1］P．Hermann，Groups without certain subgroups form a Fitting class（to appear）．
［2］B．Huppert，Endliche Gruppen．I，Springer－Verlag（Berlin，1967）．
［3］N．Ito，Note on（LM）－groups of finite order，Kodai Math．Seminar Report（1951），1－6．
［4］O．H．Kegel，Produkte nilpotenter Gruppen，Arch．Math．， 12 （1961），90－93．

