On the stability of the local time of a symmetric random walk

M. CSÖRGŐ ${ }^{1}$ and P. RÉVÉSZ
Dedicated to Professor K. Tandori on the occasion of his 60 th birthday

1. Introduction

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. rv with $P\left\{X_{1}=-1\right\}=P\left\{X_{1}=1\right\}=1 / 2$, and consider the symmetric random walk $S_{0}=0, S_{n}=X_{1}+\ldots+X_{n}(n=1,2, \ldots)$. Define the local time of $\left\{S_{k}\right\}$ by

$$
\xi(x, n):=\text { No. }\left\{k: 0<k \leqq n, S_{k}=x\right\} \quad(n=1,2, \ldots ; x=0, \pm 1, \pm 2, \ldots)
$$

i.e., $\xi(x, n)$ is the number of visits of $\left\{S_{k}\right\}$ at x up to time n. The properties of $\xi(x, n)$ have been studied by a number of authors for a long time now. Here we present some well known and important results.

Theorem A.

$$
P\{\xi(0,2 n)=k\}=2^{k-2 n}\binom{2 n-k}{n}(k=0,1,2, \ldots, n ; n=1,2, \ldots)
$$

$\lim _{n \rightarrow \infty} P\left\{n^{-1 / 2} \zeta(x, n) \leqq u\right\}=\left(\frac{2}{\pi}\right)^{1 / 2} \int_{0}^{u} e^{-t^{2} / 2} d t \quad(u>0 ; x=0, \pm 1, \pm 2, \ldots)$.
Theorem B (Kesten, 1965). For any $x=0, \pm 1, \pm 2, \ldots$ we have

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} \frac{\breve{\zeta}(x, n)}{(2 n \log \log n)^{1 / 2}}=\limsup _{n \rightarrow \infty} \frac{\sup _{-\infty<x<\infty} \xi(x, n)}{(2 n \log \log n)^{1 / 2}}=1 \quad \text { a.s., } \\
\liminf _{n \rightarrow \infty}\left(\frac{\log \log n}{n}\right) \xi(x, n)=\gamma_{1} \quad \text { a.s. }
\end{gathered}
$$

where γ_{1} is a positive absolute constant.

[^0]Remark 1. The actual value of γ_{1} was not given by Kesten. It was recently evaluated by E. Csáki (oral communication).

Remark 2. Roughly speaking the above two theorems say that $\xi(x, n)$ (for any fixed $x=0, \pm 1, \pm 2, \ldots$) goes to infinity like $n^{1 / 2}$ does.

Intuitively it is clear that $\xi(x, n)$ is close to $\xi(y, n)$ if x is close to y. This paper is devoted to studying this problem.

Here we present the main results.
Theorem 1. For any $k= \pm 1, \pm 2, \ldots$ we have

$$
\begin{gathered}
\limsup _{N \rightarrow \infty} \frac{\xi(k, N)-\xi(0, N)}{(\xi(0, N) \log \log N)^{1 / 2}}=\limsup _{N \rightarrow \infty} \frac{|\xi(k, N)-\xi(0, N)|}{(\xi(0, N) \log \log N)^{1 / 2}}= \\
=\limsup _{N \rightarrow \infty} \sup _{n \leq N} \frac{\xi(k, n)-\xi(0, n)}{(\xi(0, N) \log \log N)^{1 / 2}}=\limsup _{N \rightarrow \infty} \sup _{n \leq N} \frac{|\xi(k, n)-\xi(0, n)|}{(\xi(0, N) \log \log N)^{1 / 2}}= \\
=2(2 k-1)^{1 / 2} \text { a.s. }
\end{gathered}
$$

Theorem 2.

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{\xi(1, N)-\xi(0, N)}{N^{1 / 4}(\log \log N)^{3 / 4}}=\lim _{N \rightarrow \infty} \sup \frac{|\xi(1, N)-\xi(0, N)|}{N^{1 / 4}(\log \log N)^{3 / 4}}= \\
=\limsup _{N \rightarrow \infty} \sup _{n \leqq N} \frac{\xi(1, n)-\xi(0, n)}{N^{1 / 4}(\log \log N)^{3 / 4}}=\lim _{N \rightarrow \infty} \sup _{n \leqq N} \frac{|\xi(1, n)-\xi(0, n)|}{N^{1 / 4}(\log \log N)^{3 / 4}}=\left(\frac{128}{27}\right)^{1 / 4} \quad \text { a.s. }
\end{gathered}
$$

Theorem 3. For any $\varepsilon>0$ we have

$$
\lim _{n \rightarrow \infty} \sup _{|k| \leqq a_{n}}\left|\frac{\xi(k, n)}{\xi(0, n)}-1\right|=0 \quad \text { a.s. }
$$

where $a_{n}=n^{1 / 2}(\log n)^{-(2+\varepsilon)}$.
Remark 3. Theorems 1 and 2 essentially say that for any fixed k the distance between $\xi(k, n)$ and $\xi(0, n)$ for large n behaves like $n^{1 / 4}$. Since $\dot{\xi}(0, n)$ is about $n^{1 / 2}$ asymptotically, this means that $\xi(k, n)$ is relatively close asymptotically to $\xi(0, n)$. The meaning of Theorem 3 is about the same. However in the latter theorem we claim that for large $n \xi(k, n)$ is close to $\xi(0, n)$ whenever $|k| \leqq a_{n}$, but the meaning of "close" is not as precise as in Theorems 1 and 2. Theorem 3 is nearly the best possible in the following sense.

Theorem 4.

$$
\limsup _{n \rightarrow \infty} \sup _{|k| \geqq b_{n}}\left|\frac{\xi(k, n)}{\xi(0, n)}-1\right| \geqq 1 \quad \text { a.s., }
$$

where $b_{n}=n^{1 / 2}(\log n)^{-1}$.

2. Proof of Theorem 1.

Among the statements of Theorem 1 we only prove

$$
\limsup _{N \rightarrow \infty} \frac{\xi(k, N)-\zeta(0, N)}{(\xi(0, N) \log \log N)^{1 / 2}}=2(2 k-1)^{1 / 2} \quad \text { a.s. for any } \quad k= \pm 1, \pm 2, \ldots
$$

The proofs of its other statements can be obtained without any further difficulty along the same lines.

Let $A_{i j}(m)$ be the event that a symmetric random walk starting form m hits i before $j(i \leqq m \leqq j)$. Then

Lemma 2.1.

$$
\mathrm{P}\left\{A_{i j}(m)\right\}=(j-m) /(j-i)
$$

Proof is trivial.
For any $x=0, \pm 1, \pm 2, \ldots$ define

$$
\begin{aligned}
\tau_{0}(x) & :=0 \\
\tau_{1}(x) & :=\inf \left\{l: l>0, S_{l}=x\right\} \\
& \cdots \\
\tau_{i+1}(x) & :=\inf \left\{l: l>\tau_{i}(x), S_{l}=x\right\} \quad(i=0,1,2, \ldots), \\
\tau_{i} & :=\tau_{i}(0) \quad(i=0,1,2, \ldots)
\end{aligned}
$$

and let

$$
\begin{aligned}
\alpha_{1}(k) & :=\xi\left(k, \tau_{1}\right)-\xi\left(0, \tau_{1}\right)=\xi\left(k, \tau_{1}\right)-1 \\
& \ldots \\
\alpha_{i}(k) & :=\left(\xi\left(k, \tau_{i}\right)-\xi\left(k, \tau_{i-1}\right)\right)-\left(\xi\left(0, \tau_{i}\right)-\xi\left(0, \tau_{i-1}\right)\right) \\
& =\left(\xi\left(k, \tau_{i}\right)-\xi\left(k, \tau_{i-1}\right)\right)-1(k= \pm 1, \pm 2, \ldots ; i=1,2, \ldots)
\end{aligned}
$$

Clearly then $\alpha_{1}(k), \alpha_{2}(k), \ldots$ is a sequence of i.i.d. rv for any $k= \pm 1, \pm 2, \ldots$. Now we evaluate the distribution of $\alpha_{1}(k)$. We have

Lemma 2.2.

$$
\begin{equation*}
\mathrm{P}\left\{\alpha_{1}(k)=-1\right\}=\mathrm{P}\left\{\xi\left(k, \tau_{1}\right)=0\right\}=\frac{2|k|-1}{2|k|} \tag{2.1}
\end{equation*}
$$

(2.2) $\mathrm{P}\left\{\alpha_{1}(k)=l\right\}=\mathrm{P}\left\{\xi\left(k, \tau_{1}\right)=l+1\right\}=\left(\frac{1}{2|k|}\right)^{2}\left(\frac{2|k|-1}{2|k|}\right)^{l} \quad(l=0,1,2, \ldots)$.

Proof. Without loss of generality we assume that $k>0$. Then

$$
\left\{\xi\left(k, \tau_{1}\right)=0\right\}=\left\{X_{1}=-1\right\} \cup\left\{X_{1}=1, S_{2} \neq k, S_{3} \neq k, \ldots, S_{\tau_{1}-1} \neq k\right\}
$$

Hence by Lemma 2.1.

$$
\mathrm{P}\left\{\xi\left(k, \tau_{1}\right)=0\right\}=\frac{1}{2}+\frac{1}{2} \frac{k-1}{k}=\frac{2 k-1}{2 k},
$$

and (2.1) is proven. Similarly, in case of $m>0$ we have

$$
\begin{gathered}
\left\{\xi\left(k, \tau_{1}\right)=m\right\}=\left[\left\{X_{1}=1\right\} \cap\left\{S_{2} \neq 0, S_{3} \neq 0, \ldots, S_{\tau_{1}(k)-1} \neq 0, S_{\tau_{1}(k)}=k\right\}\right] \cap \\
\cap\left[\{ X _ { \tau _ { 1 } (k) + 1 } = 1 \} \cup \left(\{ X _ { \tau _ { 1 } (k) + 1 } = - 1 \} \cap \left\{S_{\tau_{1}(k)+1} \neq 0, S_{\tau_{1}(k)+2} \neq 0, \ldots,\right.\right.\right. \\
\left.\left.\left.\ldots ; S_{\tau_{2}(k)-1} \neq 0, S_{\tau_{2}(k)}=k\right\}\right)\right] \cap \ldots \cap\left[\{ X _ { \tau _ { m - 1 } (k) + 1 } = 1 \} \cup \left(\left\{X_{\tau_{\tau_{-1}}(k+1)}=-1\right\} \cap\right.\right. \\
\left.\left.\cap\left\{S_{\tau_{m-1}(k)+1} \neq 0, S_{\tau_{m-1}(k)+2} \neq 0, \ldots, S_{\tau_{m}(k)-1} \neq 0, S_{\tau_{m}(k)}=k\right\}\right)\right] \cap \\
\cap\left[\left\{X_{\tau_{m}(k)+1}=-1\right\} \cup\left\{S_{\tau_{m}(k)+2} \neq k, S_{\tau_{m}(k)+3} \neq k, \ldots, S_{\tau_{1}(0)-1} \neq k, S_{\tau_{1}(0)}=0\right\}\right] .
\end{gathered}
$$

(Note that in case of $\xi\left(k, \tau_{1}\right)=m$ we have $0<\tau_{1}(k)<\tau_{2}(k)<\ldots<\tau_{m}(k)<\tau_{1}(0)<$ $\left.<\tau_{m+1}(k)\right)$. Hence, again by Lemma 2.1

$$
\begin{aligned}
& \mathrm{P}\left\{\xi\left(k, \tau_{1}\right)=m\right\}=\frac{1}{2} \frac{1}{k}\left(\sum_{j=0}^{m-1}\binom{m-1}{j}\left(\frac{1}{2}\right)^{j}\left(\frac{1}{2} \frac{k-1}{2}\right)^{m-1-j}\right) \frac{1}{2} \frac{1}{k}= \\
&=\left(\frac{1}{2 k}\right)^{2}\left(\frac{2 k-1}{2 k}\right)^{m-1}
\end{aligned}
$$

and (2.2) is also proven. This also completes the proof of Lemma 2.2.
Lemma 2.2 implies
Lemma 2.3.

$$
\begin{equation*}
E \alpha_{1}=0, \quad E \alpha_{1}^{2}=4 k-2 \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \mathrm{P}\left\{n_{1}^{-1 / 2}\left(\alpha_{1}(k)+\alpha_{2}(k)+\ldots+\alpha_{n}(k)\right) \leqq x(4 k-2)^{1 / 2}\right\} \tag{2.4}\\
&= \\
&=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} e^{-u^{2 / 2}} d u, \quad-\infty<x<\infty,
\end{align*}
$$

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \mathrm{P}\left\{n^{-1 / 2} \sup _{\cdot j \leq n}\left(\alpha_{1}(k)+\alpha_{2}(k)+\ldots+\alpha_{j}(k)\right) \leqq x(4 k-2)^{1 / 2}\right\}= \tag{2.5}\\
=\left(\frac{2}{\pi}\right)^{1 / 2} \int_{0}^{x} e^{-u^{2} / 2} d u, \quad x>0,
\end{gather*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\alpha_{1}(k)+\alpha_{2}(k)+\ldots+\alpha_{n}(k)}{(n \log \log n)^{1 / 2}}=2(2 k-1)^{1 / 2} \quad a . s . \tag{2.6}
\end{equation*}
$$

The following two lemmas are simple consequences of (2.6).

Lemma 2.4. Let $\left\{\mu_{n}\right\}$ be any sequence of positive integer valued rv with $\lim _{n \rightarrow \infty} \mu_{n}=\infty$ a.s. Then

$$
\limsup _{i n \rightarrow \infty} \frac{\alpha_{1}(k)+\alpha_{2}(k)+\ldots+\alpha_{\mu_{n}}(k)}{\left(\mu_{n} \log \log \mu_{n}\right)^{1 / 2}} \leqq 2 \sqrt{2 k-1} \quad \text { a.s. }
$$

Lemma 2.5. Let $\left\{v_{n}\right\}$ be a sequence of positive integer valued $r v$ with the following properties:
(i) $\lim _{n \rightarrow \infty} v_{n}=\infty \quad$ a.s.
(ii) there exists a set $\Omega_{0} \subset \Omega$ such that $\mathrm{P}\left(\Omega_{0}\right)=0$ and for each $\omega \nsubseteq \Omega_{0}$ and $k=1,2, \ldots$ there exists an $n=n(\omega, k)$ for which $v_{n(\omega, k)}=k$.

Then

$$
\limsup _{n \rightarrow \infty} \frac{\alpha_{1}(k)+\alpha_{2}(k)+\ldots+\alpha_{v_{n}}(k)}{\left(v_{n} \log \log v_{n}\right)^{1 / 2}}=2 \sqrt{2 k-1} \quad \text { a.s. }
$$

Utilizing Lemma 2.5. with $v_{n}=\xi(0, n)$, Theorem 3 and the trivial inequality $\alpha_{1}(k)+\alpha_{2}(k)+\ldots+\alpha_{\xi(0, n)}(k) \leqq \xi(k, n)-\xi(0, n) \leqq \alpha_{1}(k)+\alpha_{2}(k)+\ldots+\alpha_{\xi(0, n)+1}(k)+1$, we obtain Theorem 1.

3. Proof of Theorem 2

Here we only present a proof of the statement

$$
\limsup _{N \rightarrow \infty} \frac{\xi(1, N)-\xi(0, N)}{N^{1 / 4}(\log \log N)^{3 / 4}}=\left(\frac{128}{27}\right)^{1 / 4} \quad \text { a.s. }
$$

The other statements of Theorem 2 are proven along similar lines.
The proof of Theorem 2 is based on the following result of Dobrushin (1955).
Theorem C.
$\lim _{n \rightarrow \infty} \mathrm{P}\left\{n^{-1 / 4}(\xi(1, n)-\xi(0, n)) \leqq 2^{1 / 2} x\right\}=\frac{2}{\pi} \int_{-\infty}^{x} \int_{0}^{\infty} \exp \left(-\frac{y^{2}}{2 z^{2}}-\frac{z^{4}}{2}\right) d z d y$.
Dobrushin also notes that the density function g of $\left|N_{1}\right|^{1 / 2} N_{2}$, where N_{1} and N_{2} are independent normal (0,1) rv, is

$$
g(y)=\frac{2}{\pi} \int_{0}^{\infty} \exp \left(-\frac{y^{2}}{2 z^{2}}-\frac{z^{4}}{2}\right) d z
$$

Hence Theorem C can be reformulated via saying that

$$
\begin{equation*}
2^{-1 / 2} n^{-1 / 4}(\xi(1, n)-\xi(0, n)) \xrightarrow{\mathscr{G}}\left|N_{1}\right|^{1 / 2} N_{2} \quad(n \rightarrow \infty) . \tag{3.1}
\end{equation*}
$$

In fact this statement is not very surprising since on replacing n by $\xi(0, n)$ and k by 1 in (2.4), intuitively it is clear that

$$
\begin{equation*}
\frac{\alpha_{1}(1)+\alpha_{2}(1)+\ldots+\alpha_{\xi(0, n)}(1)}{\sqrt{2 \xi(0, n)}} \sim \frac{\xi(1, n)-\xi(0, n)}{\sqrt{2 \xi(0, n)}} \xrightarrow{\mathscr{L}} N_{2} \quad(n \rightarrow \infty) . \tag{3.2}
\end{equation*}
$$

(We must emphasize that we do not know any proof of this intuitively clear statement.)

Also, by Theorem A

$$
\begin{equation*}
n^{-1 / 4}(\check{\zeta}(0, n))^{1 / 2} \xrightarrow{\mathscr{L}}\left|N_{1}\right|^{1 / 2} \quad(n \rightarrow \infty) . \tag{3.3}
\end{equation*}
$$

Intuitively it is again clear (however not yet proved) that
(3.4) $\frac{\xi(1, n)-\xi(0, n)}{\sqrt{2 \xi(0, n)}}$ and $n^{-1 / 4}(\xi(0, n))^{1 / 2}$ are asymptotically independent rv.
"Hence" (3.2), (3.3) and (3.4) together imply (3.1). The proof of Dobrushin is not based on this idea. Following his method however, a slightly stronger version of his Theorem C can be obtained.

Theorem C^{*}. Let $\left\{x_{n}\right\}$ be any sequence of positive numbers such that $x_{n}=o(\log n)$. Then

$$
\mathrm{P}\left\{n^{-1 / 4}(\xi(1, n)-\xi(0, n))<-2^{1 / 2} x_{n}\right\} \approx \frac{2}{\pi} \int_{-\infty}^{-x_{n}} \int_{0}^{\infty} \exp \left(-\frac{y^{2}}{2 z^{2}}-\frac{z^{4}}{2}\right) d z d y
$$

and

$$
\mathrm{P}\left\{n^{-1 / 4}(\xi(1, n)-\xi(0, n))>2^{1 / 2} x_{n}\right\} \approx \frac{2}{\pi} \int_{x_{n}}^{\infty} \int_{0}^{\infty} \exp \left(-\frac{y^{2}}{2 z^{2}}-\frac{z^{4}}{2}\right) d z d y
$$

We have also
Lemma 3.1. There exists a positive constant C such that

$$
\begin{equation*}
g(y) \leqq C y^{1 / 3} \exp \left(-\left(3 / 2^{5 / 3}\right) y^{4 / 3}\right) . \tag{3.5}
\end{equation*}
$$

Proof. Substituting $z=x y^{1 / 3}$ we obtain

$$
g(y)=\int_{0}^{\infty} \exp \left(-\frac{y^{2}}{2 z^{2}}-\frac{z^{4}}{2}\right) d z=y^{1 / 3} \int_{0}^{\infty} \exp \left(-\frac{y^{4 / 3}}{2}\left(\frac{1}{x^{2}}+x^{4}\right)\right) d x
$$

Note that the function

$$
f(x)=\frac{1}{x^{2}}+x^{4}
$$

attains its maximum at $x_{0}=2^{-1 / 6}$ and $f\left(2^{-1 / 6}\right)=3 / 2^{2 / 3}$. Let $x_{1}=\left(3 / 2^{2 / 3}\right)^{1 / 4}$. Then

$$
\begin{aligned}
g(y) & =y^{1 / 3}\left[\int_{0}^{x_{1}} \exp \left(-\frac{y^{4 / 3}}{2}\left(\frac{1}{x^{2}}+x^{4}\right)\right) d x+\int_{x_{1}}^{\infty} \exp \left(-\frac{y^{4 / 3}}{2}\left(\frac{1}{x^{2}}+x^{4}\right)\right) d x\right] \leqq \\
& \leqq x_{1} y^{1 / 3} \exp \left(-\frac{y^{4 / 3}}{2} 3 \cdot 2^{-2 / 3}\right)+y^{1 / 3} \int_{x_{1}}^{\infty} \exp \left(-\frac{y^{4 / 3}}{2}\left(\frac{1}{x^{2}}+x^{4}\right)\right) d x
\end{aligned}
$$

For $y>2^{-3 / 4} x_{1}^{-1 / 4}$ we also have

$$
\begin{gathered}
\int_{x_{1}}^{\infty} \exp \left(-\frac{y^{4 / 3}}{2}\left(\frac{1}{x^{2}}+x^{4}\right)\right) d x \leqq \int_{x_{1}}^{\infty} \exp \left(-\frac{y^{4 / 3}}{2} x^{4}\right) d x \leqq 2 x_{1}^{3} y^{4 / 3} \int_{x_{1}}^{\infty} \exp \left(-\frac{y^{4 / 3}}{2} x^{4}\right) d x \leqq \\
\leqq 2 y^{4 / 3} \int_{x_{1}}^{\infty} x^{3} \exp \left(-\frac{y^{4 / 3}}{2} x^{4}\right) d x=\exp \left(-\frac{y^{4 / 3}}{2} x_{1}^{4}\right)
\end{gathered}
$$

Hence we have (3.5).
Lemma 3.2. For any $\varepsilon>0$ there exists a $C=C(\varepsilon)>0$ such that

$$
g(y) \geqq C \exp \left(-\frac{y^{4 / 3}}{2-\varepsilon} 3 \cdot 2^{-2 / 3}\right)
$$

Proof. With $x_{0}=2^{-1 / \delta}$ and $\delta>0$ we have

$$
\begin{aligned}
g(y) & \geqq y^{1 / 3} \int_{x_{0}-\delta}^{x_{0}+\delta} \exp \left(-\frac{y^{4 / 3}}{2}\left(\frac{1}{x^{2}}+x^{4}\right)\right) d x \geqq \\
& \geqq 2 \delta y^{1 / 3} \exp \left(-\frac{y^{4 / 3}}{2} 3 \cdot 2^{-2 / 3} \frac{1}{1-\varepsilon^{*}}\right)
\end{aligned}
$$

where ε^{*} is defined by

$$
\max \left(\frac{1}{\left(x_{0}-\delta\right)^{2}}+\left(x_{0}-\delta\right)^{4}, \frac{1}{\left(x_{0}+\delta\right)^{2}}+\left(x_{0}+\delta\right)^{4}\right)=\frac{3 / 2^{2 / 3}}{1-\varepsilon^{*}}
$$

Hence Lemma 3.2 is proved.
Lemmas 3.1, 3.2 and some standard calculus imply
Lemma 3.3. Let $\left\{a_{n}\right\}$ be a sequence of positive numbers with $a_{n} \uparrow \infty$. Then for any $\varepsilon>0$ there exist a $C_{1}=C_{1}(\varepsilon)>0$ and a $C_{2}=C_{2}(\varepsilon)>0$ such that

$$
C_{1} \exp \left(-\frac{a_{n}^{4 / 3}}{2-\varepsilon}\left(3 / 2^{2 / 3}\right)\right) \leqq \int_{a_{n}}^{\infty} g(y) d y \leqq C_{2} \exp \left(-\frac{a_{n}^{4 / 3}}{2+\varepsilon}\left(3 / 2^{2 / 3}\right)\right)
$$

By Theorem C^{*} and Lemma 3.3. we have

Lemma 3.4. For any $\varepsilon>0$ there exist a $C_{1}=C_{1}(\varepsilon)>0$ and a $C_{2}=C_{2}(\varepsilon)>0$ such that

$$
\mathrm{P}\left\{n^{-1 / 4}(\xi(1, n)-\xi(0, n)) \geqq(1+2 \varepsilon)\left(\frac{128}{27}\right)^{1 / 4}(\log \log n)^{3 / 4}\right\} \leqq C_{2}(\log n)^{-(1+\varepsilon)}
$$

and

$$
\mathrm{P}\left\{n^{-1 / 4}(\xi(1, n)-\xi(0, n)) \geqq(1-2 \varepsilon)\left(\frac{128}{27}\right)^{1 / 4}(\log \log n)^{3 / 4}\right\} \geqq C_{1}(\log n)^{-(1-\varepsilon)}
$$

Next we prove
Lemma 3.5.

$$
\limsup _{n \rightarrow \infty} \frac{\xi(1, n)-\xi(0, n)}{n^{1 / 4}(\log \log n)^{3 / 4}} \geqq\left(\frac{128}{27}\right)^{1 / 4} \quad \text { a.s. }
$$

Proof. Let

$$
\begin{gathered}
n_{k}:=[\exp (k \log k)], \quad b_{k}:=\left(\frac{128}{27}\right)^{1 / 4} n_{k}^{1 / 4}\left(\log \log n_{k}\right)^{3 / 4}, \\
\zeta(n):=\xi(1, n)-\xi(0, n), \quad \xi(x,(m, n)):=\xi(x, n)-\xi(x, m) \quad(m<n), \\
\zeta(m, n):=\xi(1,(m, n))-\xi(0,(m, n)), A_{k}:=\left\{\zeta\left(n_{k}\right) \geqq(1-2 \varepsilon) b_{k}\right\} .
\end{gathered}
$$

By Lemma 3.4

$$
\begin{equation*}
\mathrm{P}\left\{A_{k}\right\} \geqq C(k \log k)^{-(1-\varepsilon)} \tag{3.6}
\end{equation*}
$$

Let $j<k$ and consider

$$
\begin{gathered}
\mathrm{P}\left\{A_{k} A_{j}\right\}=\sum_{l=(1-2 \varepsilon) b_{j}}^{\infty} \mathrm{P}\left\{A_{k}, \zeta\left(n_{j}\right)=l\right\}= \\
=\sum_{x} \sum_{l=(1-2 \varepsilon) b_{j}}^{\infty} \mathrm{P}\left\{A_{k}, \zeta\left(n_{j}\right)=l, S_{n_{j}}=x\right\}= \\
=\sum_{x} \sum_{l=(1-2 \varepsilon) b_{j}}^{\infty} \mathrm{P}\left\{A_{k} \mid \zeta\left(n_{j}\right)=l, S_{n_{j}}=x\right\} \mathrm{P}\left\{\zeta\left(n_{j}\right)=l, S_{n_{j}}=x\right\}= \\
=\sum_{x} \sum_{l=(1-2 \varepsilon) b_{j}}^{\infty} \mathrm{P}\left\{\zeta\left(n_{j}, n_{k}\right) \geqq(1-2 \varepsilon) b_{k}-l \mid S_{n_{j}}=x\right\} \mathrm{P}\left\{\zeta\left(n_{j}\right)=l, S_{n_{j}}=x\right\} \leqq \\
\leqq \sum_{l=(1-2 e) b_{j}}^{\infty} \sup _{x} \mathrm{P}\left\{\zeta\left(n_{j}, n_{k}\right) \geqq(1-2 \varepsilon) b_{k}-l \mid S_{n_{j}}=x\right\} \sum_{x} \mathrm{P}\left\{\zeta\left(n_{j}\right)=l, S_{n_{j}}=x\right\}= \\
=\sum_{l=\left\{(1-2 \varepsilon) b_{j}\right.}^{\infty} \mathrm{P}\left\{\zeta\left(n_{k}-n_{j}\right) \geqq(1-2 \varepsilon) b_{k}-l\right\} \mathrm{P}\left\{\zeta\left(n_{j}\right)=l\right\} \leqq \\
\leqq \sum_{l=(1-2 \varepsilon) b_{j}}^{\infty} \mathrm{P}\left\{\zeta\left(n_{k}\right) \geqq(1-2 \varepsilon) b_{k}-l\right\} \mathrm{P}\left\{\zeta\left(n_{j}\right)=l\right\} \approx \\
\approx \int_{(1-2 \varepsilon) 2-1 / 2_{n}-1 / 4} \mathrm{P}\left\{\zeta\left(n_{j}\right) \geqq(1-2 \varepsilon) b_{k}-2^{1 / 2} n_{j}^{1 / 4} y\right\} \mathrm{P}\left\{\zeta\left(n_{j}\right)=2^{1 / 2} n_{j}^{1 / 4} y\right\} d y= \\
=\int_{A}^{\infty} g(y) \int_{B(y)}^{\infty} g(z) d z d y,
\end{gathered}
$$

where

$$
A:=(1-2 \varepsilon) 2^{-1 / 2} n_{j}^{-1 / 4} b_{j}=(1-2 \varepsilon) 2^{-1 / 2}\left(\frac{128}{27}\right)^{1 / 4}\left(\log \log n_{j}\right)^{1 / 4}
$$

and

$$
\begin{aligned}
& B(y):=(1-2 \varepsilon) b_{k} 2^{-1 / 2} n_{j}^{-1 / 4} b_{j}-2^{1 / 2} n_{j}^{1 / 4} y 2^{-1 / 2} n_{k}^{-1 / 4}= \\
& \quad=(1-2 \varepsilon) 2^{-1 / 2}\left(\frac{128}{27}\right)^{1 / 4}\left(\log \log n_{k}\right)^{1 / 4}-y\left(\frac{n_{j}}{n_{k}}\right)^{1 / 4} .
\end{aligned}
$$

Now a simple but tedious calculation yields that for any $\varepsilon>0$ there exists a j_{0} such that if $j_{0}<j<k$ then

$$
\begin{equation*}
\mathrm{P}\left\{A_{j} A_{k}\right\} \leqq(1+\varepsilon) \mathrm{P}\left\{A_{j}\right\} \mathrm{P}\left\{A_{k}\right\} . \tag{3.7}
\end{equation*}
$$

Here we omit the details of the proof of this fact, and sketch only the main idea behind it. Since $\left(n_{j} / n_{k}\right)^{1 / 4} \leqq k^{-1 / 4} \quad(j=1,2, \ldots, k-1)$, the lower limit of integration $B(y)$ above is nearly equal to

$$
(1-2 \varepsilon) 2^{1 / 2}\left(\frac{128}{27}\right)^{1 / 4}\left(\log \log n_{k}\right)^{1 / 4} \quad \text { if } \quad y \leqq k^{1 / 4}, \quad \text { say }
$$

Hence for the latter y values the integral $\int_{B(y)}^{\infty} g(z) d z$ is nearly equal to $P\left\{A_{k}\right\}$. Similarly, the integral $\int_{A}^{\infty} g(y) d y$ gives $P\left\{A_{j}\right\}$, and our claim (3.7) follows, for in the case of $y>k^{1 / 4}$ the value of $g(y)$ is very small.

Now (3.6), (3.7) and the Borel-Cantelli lemma combined give Lemma 3.5. We have also

Lemma 3.6. Let $m_{k}:=\left[\exp \left(k / \log ^{2} k\right)\right]$ and

$$
\begin{gathered}
B_{k}:= \\
=\left\{\xi\left(0,\left(m_{k}, m_{k+1}\right)\right) \geqq(1+\varepsilon)\left[\left(m_{k+1}-m_{k}\right)\left(\log \frac{m_{k+1}}{m_{k+1}-m_{k}}+2 \log \log m_{k+1}\right)\right]^{1 / 2}\right\} .
\end{gathered}
$$

Then of the events B_{k} only finitely many occur with probability one.
Proof. This lemma is an immediate consequence of Theorem 1 of Csáki-Csörgö-Földes-Révész (1983), where the corresponding statement is formulated in terms of Wiener process instead of symmetric random walk. The analogue statement is easily obtained.

Lemma 3.7. Let

$$
\begin{gathered}
M_{k+1}:=\left((2+\varepsilon) m_{k+1} \log \log m_{k+1}\right)^{1 / 2} \\
a_{k+1}:=(1+\varepsilon)\left[\left(m_{k+1}-m_{k}\right)\left(\log \frac{m_{k+1}}{m_{k+1}-m_{k}}+2 \log \log m_{k+1}\right)\right]^{1 / 2}
\end{gathered}
$$

and

$$
\begin{aligned}
& D_{k}:=\left\{\sup _{l \leqq M_{k+1}^{-a_{k+1}}} \sup _{j \leqq a_{k+1}}\left|\alpha_{l}+\alpha_{l+1}+\ldots+\alpha_{l+j}\right| \geqq\right. \\
& \left.\geqq\left[(2+\varepsilon) a_{k+1}\left(\log \frac{M_{k+1}}{a_{k+1}}+\log \log M_{k+1}\right)\right]^{1 / 2}\right\} .
\end{aligned}
$$

Then of the events D_{k} only finitely many occur with probability one.
Proof. Cf. Theorem 3.11 of Csörgő-Révész (1981).
A simple consequence of Lemmas 3.6, 3.7 and Theorem B is Lemma 3.8. Let

$$
E_{k}:=\left\{\sup _{m_{k} \leqq n \leqq m_{k+1}}\left|\zeta\left(m_{k}, n\right)\right| \geqq\left[(2+\varepsilon) a_{k+1}\left(\log \frac{M_{k+1}}{a_{k+1}}+\log \log M_{k+1}\right)\right]^{1 / 2}\right\}
$$

Then of the events E_{k} only finitely many occur with probability one.
Lemma 3.9.

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\xi(1, n)-\xi(0, n)}{n^{1 / 4}(\log \log n)^{3 / 4}} \leqq\left(\frac{128}{27}\right)^{1 / 4} \quad \text { a.s. } \tag{3.8}
\end{equation*}
$$

Proof. Let

$$
c_{k}:=\left(\frac{128}{27}\right)^{1 / 4} m_{k}^{1 / 4}\left(\log \log m_{k}\right)^{3 / 4}, \cdot E_{k}:=\left\{\zeta\left(m_{k}\right) \geqq(1+2 \varepsilon) c_{k}\right\}
$$

Then by Lemma 3.4 only finitely many of the events E_{k} occur with probability one. Now observing that

$$
\left[(2+\delta) a_{k+1}\left(\log \frac{M_{k+1}}{a_{k+1}}+\log \log M_{k+1}\right)\right]^{1 / 2}=o\left(c_{k}\right)
$$

we have (3.8) by Lemma 3.8, and Lemma 3.9 is proved.
Also Lemmas 3.5 and 3.9 combined give Theorem 2.

4. Proof of Theorem 3.

A simple calculation and Lemma 2.2 imply
Lemma 4.1. For any $k=1,2, \ldots, n ; n=1,2, \ldots$ we have

$$
E \exp \left(-\frac{\alpha_{1}(k)+\alpha_{2}(k)+\ldots+\alpha_{n}(k)}{((4 k-2)) n^{1 / 2}}\right) \leqq C
$$

where C is an absolute positive constant.
The above lemma together with the Chebishev inequality and the Borel-Cantelli lemma imply

Lemma 4.2. For any $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \sup _{|k| \equiv n} \frac{\alpha_{1}(k)+\alpha_{2}(k)+\ldots+\alpha_{n}(k)}{(k n)^{1 / 2}(\log n)^{1+\varepsilon}}=0 \quad \text { a.s. }
$$

Consequently, on replacing n by $\xi(0, n)$, we get

$$
\lim _{n \rightarrow \infty} \sup _{|k| \leq \xi(0, n)} \frac{\xi(k, n)-\xi(0, n)}{(k \xi(0, n))^{1 / 2}(\log n)^{1+\varepsilon}}=0 \quad \text { a.s. }
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{|k|<\zeta(0, n)(\log n)^{-(\cdot+8 \varepsilon)}} \frac{\xi(k, n)-\xi(0, n)}{\xi(0, n)(\log n)^{-\varepsilon / 2}}=0 \quad \text { a.s. } \tag{4.1}
\end{equation*}
$$

By (4.1) we have also Theorem 3.

5. Proof of Theorem 5.

A theorem of Hirsch (1965) (cf. p. 124 in Csörgö—Révész (1981)) says:

$$
\max _{1 \leqq k \leqq n} S_{k} \leqq n^{1 / 2}(\log n)^{-1} \quad \text { i.o. }
$$

with probability one. This, in turn, implies Theorem 4.

6. A problem

To fill in the gap between Theorems 3 and 4 is an interesting enough problem. The following conjecture, however, is even more challenging.

Conjecture.

$$
\lim _{n \rightarrow \infty} \sup _{m_{n} \leq k \leqq M_{n}}\left|\frac{\zeta(k, n)}{\xi(0, n)}-1\right|=0 \quad \text { a.s. }
$$

where

$$
m_{n}:=\frac{\inf _{1 \leq k \leq n} S_{k}}{\log \log n}, \quad M_{n}:=\frac{\sup _{1 \equiv k \leq n} S_{k}}{\log \log n} .
$$

References

E. ĆSÁki, M. Csörgö, A. FöLdes and P. RÉvész, How big are the increments of the local time of a Wiener process?, Ann. Probability, 11 (1983), 593-608.
M. Csörgö and P. Révész, Strong Approximations in Probability and Statistics, Academic Press (New York, 1981).
R. L. Dobrushin, Two limit theorems for the simplest random walk on a line. Uspehi Mat. Nauk (N. S.), 10 (1955), 139-146. (in Russian).
W. M. Hirsch, A strong law for the maximum cumulative sum of independent random variables, Comm. Pure Appl. Math., 18 (1965), 109-217.
H. Kesten, An interated logarithm law for the local time, Duke Math., J., 32 (1965), 447-456.

DEPARTMENT OF MATHEMATICS
AND STATISTICS
CARLETON UNIVERSITY
OTTAWA K1S 5 B6
CANADA

MATHEMATICAL INSTITUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES REALTANODA U. 13-15
1053 BUDAPEST, HUNGARY

[^0]: ${ }^{1}$) Research partially supported by an NSERC Canada Grant at Carleton University, Ottawa. Received March 22, 1984.

