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On the stability of the local time of a symmetric random walk 
M. CSÖRGŐ1 and P. RÉVÉSZ 

Dedicated to Professor K. Tandori on the occasion of his 60th birthday 

1. Introduction 

Let AV, .V2, ... be a sequence of i.i.d. rv with P { A \ = - l } = P { A ' 1 = l } = l / 2 , 
and consider the symmetric random walk S 0 = 0 , S'„=A'1+... +X„ (/2=1, 2, ...). 
Define the local time of {S"k} by 

¿(x, rí) Nö. {k : 0 < k 7s n, Sk = x} (n = 1, 2, . . .; x = 0, ±1 , ±2 , ...), 

i.e., %(x, n) is the number of visits of {S1,.} at x up to time n. The properties of £(x, rí) 
haye been studied by á number of authors for a long time now. Here we present some 
well known and important results. 

T h e o r e m A. 

P { m 2n) = k} = 2 * - 2 » ( 2 n ~ k ) ( f c = 0 , 1 , 2 , . . . , n;n = 1, 2 , . . . ) , 

( 211/2 " 
lim P{n~ll2£,(x, n) u) = - f e-'^dt (u>0; x = 0, ± 1 , ±2,...). 

\nj J 

: T h e o r e m B (Kesten, 1965). For any x=Q, ± 1 , ± 2 , . . . we have 

c(x n) _ SUP U x ' n ) 

(2» log log w)1/2 = " T J S P ( 2 7 b g l o g » r = 1 Ű S " 

liminf | Í £ i Í £ Ü L j £ n ) = ^ Ű-S. n—oo \ H / 

where is a positive absolute constant. 

*) Research partially supported by an NSERC Canada Grant at Carleton University, Ottawa. 
Received March 22, 1984. 
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R e m a r k 1. The actual value of was not given by Kesten. It was recently 
evaluated by E. Csáki (oral communication). 

R e m a r k 2. Roughly speaking the above two theorems say that rí) (for 
any fixed x=0, + 1 , ± 2 , ...) goes to infinity like n112 does. 

Intuitively it is clear that ç(.v, n) is close to ç(y, n) if x is close to y. This paper 
is devoted to studying this problem. 

Here we present the main results. 

T h e o r e m 1. For any k— +1, + 2 , ... we have 

g k , m - g o, m \ a k , m - m N ) \ 
lim sup 7 — j rrrjTâ = hm sup- — 

(£ (0, N) log log N f 1 v— (£ (0, N) log log N f * 

= l im s u p s u p 7 , ,—p—— t j75 = l im s u p s u p j z 
^ ' Z ^ m ^ l o g l o g i v r - A )̂ log log N)11* 

— 2(2fc—1)1 / 2 a.s. 
T h e o r e m 2. 

= l i n . s u p - 1 ^ 1 ' ^ 
TV1'4 (log log Nfi* y N1'* (log log Nfl* 

g ( l , n ) - £ ( 0 , f i ) .. |g(l , f i ) - g ( 0 , n ) | f l 2 8 f / 4 

' ^ P ^ P N114(loglog N)3/i = h ^ U P „ S l NV(loglog^ = { t T ) 

T h e o r e m 3. For any £ > 0 we have 

lim sup 
m n) 

- l = 0 a.s. 

where a„ — n1/2( log n) _ ( 2 + E ) . 

R e m a r k 3. Theorems 1 and 2 essentially say that for any fixed k the distance 
between n) and £(0, n) for large n behaves like n1/4. Since 0, «) is about nUi 

asymptotically, this means that q(k, n) is relatively close asymptotically to ¿(0, n). 
The meaning of Theorem 3 is about the same. However in the latter theorem we 
claim that for large n £(k, n) is close to £(0, n) whenever \k\san, but the meaning 
of "close" is not as precise as in Theorems 1 and 2. Theorem 3 is nearly the best 
possible in the following sense. 

T h e o r e m 4. 
n) 

lim sup sup 
|*|=5t„ c(0 , n) 

- 1 ^ 1 a.s., 

where bn=n112 (log n) 1. 
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2. Proof of Theorem 1. 

Among the statements of Theorem 1 we only prove 

The proofs of its other statements can be obtained without any further difficulty 
along the same lines. 

Let Ау(т) be the event that a symmetric random walk starting form m hits i 
before j (i=m^j). Then 

L e m m a 2.1. 
P { ^ y ( m ) } = 0 - m ) / 0 " - 0 . 

P r o o f is trivial. 

For any x = 0 , ± 1 , +2 , ... define 

т0(дс) := 0, 

TI(JC) := inf {/: / > 0 , St = x), 

Ti+1(x) := inf {/: / > т;(х), S, = x} (i = 0 ,1 ,2 , . . . ) , 

т , : = т , ( 0 ) (i = 0 , l , 2 , . . . ) , 
and let 

«,(*) := С (/с, Tj) — £ (0, tx) = t x ) - l , 

«,(*) := (f(fc, T;)-C(/C, "Ti-i)) —(< (̂0, т ; ) -£(0 , T ^ ) ) 

= (£ (* , № = ± 1 , ± 2 , . . . ; ¿ = 1 , 2 , . . . ) . 

Clearly then a x (k) ,a 2 (k ) , . . . is a sequence of i.i.d. rv for any k=±l, ± 2 , . . . . 
Now we evaluate the distribution of oc^k). We have 

L e m m a 2.2. 

(2.1) P K ( f c ) = - 1 } = P{S(fc, TO = 0} = H ! * j z l , 

(2.2) Р Ы * ) = P № = / + I ) = ( щ ) 2 ( ^ p ) ' 0 = 0, 1. 2, •••)• 

P r o o f . Without loss of generality we assume that k > 0 . Then 

t j = 0 } = {X, = - 1 } U {X, = 1 , S t * k, Ss * к, ..., и к). 
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Hence by Lemma 2.1. 

= 0} = - + -
2 ' 2 k 2k ' 

and (2.1) is proven. Similarly, in case of wi>0 we have 

№ = m) = [{X, = 1 } D {S2 * 0, 5 3 0, .. . * 0, SIlW = fe}]D 

n[{JSr r i W + 1 = l}U({JSTri(fc)+1 = - l } f l { S t l W + 1 f i 0, S t l W + 2 * 0, . . . , 

. . . ; S ^ , * 0 , . ^ = fc})]D...n[{Ztm_lW+1 = l } U ( { X t m _ l ( i + 1 ) = - l } n 

n { S t m . l № ) + 1 * o, S t m . l ( k ) + 2 * 0, . . . , S ^ . , * 0, SXmW = fc})]n 

m(*)+l — — 1 } U {StmW+2 ^ k, sz m(*) + 3 ^ k; •••> ^ciCOj-l ^ k> snm — 0}]. 

(Note that in case of £(k, Tx)=/M we have 0 -== Tx (/C) < T2 (/C) < . . . < T,„ (&) < T2 (0) -
<tm + 1(fc)) . Hence, again by Lemma 2.1 

~ UfcJ I 2k ) ' 

and (2.2) is also proven. This also completes the proof of Lemma 2.2. 

Lemma 2.2 implies 

L e m m a 2.3. 

(2.3) übij =0 , £a2 = 4fc-2, 

(2.4) lim P{«_1/2(a1(fc)+a2(/c) + ... +a„(fc)) x(4fc-2)1 '2} = 
/1 oo \ v ** ' • t : 

X ' ='(2TZ)~1/2 J du, -co<.v<oo, ••• 

(2.5) lim Pf«" 1 / 2 sup(ax(fe) + a2(k) + . . . + a• (fc)) ^ jc(4fc-2)1/2} = -
JSN ' 

/ 2 \ 1 / 2 1 

= U J f c_uV2 du' x ^ 

ami . • • ' : , 

The following two lemmas are simple consequences of (2.6). . 
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L e m m a 2.4. Let {¿¿„} be any sequence of positive integer valued rv with 
lim //„== = a.s. Then 

+ — T a.s. 
(m* l o g i o g j u j 1 / 2 

L e m m a 2.5. Lei {v„} be a sequence ofpositive integer valued rv with the following 
properties: 

(i) l imv„=°° a.s. n-* 
(ii) there exists a set Q0czQ such that P(i20)=0 and for each co$Qa and 

k —1,2, ... there exists an n=n(ca, k) for which v„([0it)=fc. 
Then 

lim sup + = s (v„loglogv„)12 

Utilizing Lemma 2.5. with vn=i(0, «), Theorem 3 and the trivial inequality 

<x1(k)+<x2(k) + ...+cc4(0t„)(k) S £(k, n)-§(0, n) S a1(fe)+a2(fe) + ... +a4(0>.)+i(fc)+1, 

we obtain Theorem 1. 

3. Proof of Theorem 2 

Here we only present a proof of the statement 

^ ( l o g i o g j y r = n r J a ' s ' 

The other statements of Theorem 2 are proven along similar lines. 

The proof of Theorem 2 is based on the following result of Dobrushin (1955). 

T h e o r e m C. 

lim P{n - 1 / 1((J( l , n)—^(0, »)) ^ 21/2x} = ^ f f exp {-1^-Qdzdy. 
OO 0 

Dobrushin also notes that the density function g of fTVx [1/2 , where Nr and N2 

are independent normal (0, 1) rv, is 

Hence Theorem C can be reformulated via saying that 

(3.1) 2 - 1 / 2 n _ 1 / 4 ( i J ( l , » ) - £ ( 0 , n ) ) - ^ IN^Nz (n -
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In fact this statement is not very surprising since on replacing n by ¿;(0, n) and k 
by 1 in (2.4), intuitively it is clear that 

(3 2) « i ( 1 ) + « 2 ( ! ) + . • • + g{(o,„)(1) " ) - g ( 0 . " ) a i N , 
/ 2 ~ 

(We must emphasize that we do not know any proof of this intuitively clear state-
ment.) 

Also, by Theorem A 

(3.3) n"1/4(£(0, n))1'2^ l ^ l 1 ' 2 (it -oo). 

Intuitively it is again clear (however not yet proved) that 

(3.4) C ( 1 j / 2 ^ ( Q ) ~ a n d "))1/2 a r e asymptotically independent rv. 

"Hence" (3.2), (3.3) and (3.4) together imply (3.1). The proof of Dobrushin is 
not based on this idea. Following his method however, a slightly stronger version of 
his Theorem C can be obtained. 

T h e o r e m C*. Let {x„} be any sequence of positive numbers such that 
xn=o (log n). Then 

and 

P { n - v ( { ( 1 , n ) - m »)) < - 2 " 2 x „ } « | / " / exp ( - ¿ - y ) d z d y 

" ) -C(0 , »)) > 2V*xn} / / exp { - J t L - Q d z d y . 

We have also 

L e m m a 3.1. There exists a positive constant C such that 

(3.5) g(y) C j 1 ' 3 exp ( - (3 /2 6 / 3 ) / / 3 ) . 

P r o o f . Substituting z=xy1,s we obtain 

800 = f exp ( - ¿ - y ) ^ - exp dx. 

Note that the function 

f i x ) = -Ux* 
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attains its maximum at x0=2~1/a and f(2~i'6)^3l22'3. Let x1=(3/22'3)1'i. Then 

gOO = y"3 [ / exp ( - - ^ (3^ + x4)) d x + f exp + dx} s 

=§ x.y1 '3 exp • 2 - ^ + j 1 / 3 / exp L ^ j ^ + ^ j W 

For y>2~3/ixx
lli we also have 

X j JCj X j 

S 2y1/3 f X3 exp X4j dx = exp *i) • 

Hence we have (3.5). 

L e m m a 3.2. For any e > 0 there exists a C=C(e)=-0 such that 

g ( j ) £ C e x p ( - ^ l 3 - 2 - ^ ) . 

P r o o f . With x0=2~1/s and ¿ > 0 we have 

g(y) S yi'3 f exp + x i ) ) d x = 

S 2dyi'3 exp 3 • 2 - 2 ' 3 , 

where e* is defined by 

Hence Lemma 3.2 is proved. 

Lemmas 3.1, 3.2 and some standard calculus imply 

L e m m a 3.3. Let {a„} be a sequence of positive numbers with an\ Then for 
any e > 0 there exist a C 1 = C 1 ( e ) > 0 and a C2—Cz(s)>0 such that 

Ci exp ( — ( 3 / 2 2 ' ® ) j / g(j,) dy == C2 exp ( - - ( 3 / 2 ^ ) ) . 
"n 

By Theorem C* and Lemma 3.3. we have 
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L e m m a 3.4. For any e > 0 there exist a and a Cz=C2(e)^-0 
such that 

p { n - V * ( i ( l , ri)—t;(P, «)) == ( l + 2 £ ) ( ^ ) ' ( loglog«)3 '4} s C2(logn)-(1+£) 

and 

p { n - ^ ( i ( l , „)-£(<>, »)) ^ ( l - 2 £ ) ( - ^ ) ' (loglogn)3/4} ^ Cx(log n)~ (1~£). 

Next we prove 

L e m m a 3.5. 

h ^ U p n1 '1 (log log n)3/4 ~ V~27~J 
P r o o f . Let 

- ^ - J ni'4 (log log»,)3/4, 

?(«) <f(l, n)-£(0, n), £(*, (m, «)) := £(*, n)-£(x, m) (m < «), 

C(m, n) := §(1, (m, n ) ) -£ (0 , (m, n)), Ak := {C(nt) ^ (i-2e)bk}. 

By Lemma 3.4 
(3.6) P{Ak}^C(klogk)-^~'\ 
Let j < k and consider 

= 2 P { A k , U n j ) = l} = l=(X~2s)bj 

= 2 2 p { A k , i ; ( n J ) = i,snj = x} = x l=(l-2e)bj 

= 2 2 P K K K - ) = i, snj = X}P{C(Wj) = i, s„ =x} = X l=(l-2t)bj ' 

= 2 2 P{C("„ nk) ^ (i~2e)bk — l\Sn = x}P{C(nj) = I, Snj = x}^ 
X l=(l—2e)bj 1 ' 

^ 2 sup P {£(«,-, nk) s (1 —2s)bk—l\Sn = x}2'PUnj) = I, S = x} = 
l~(l—2e)bj x x ' 

= 2 P{C(»fc- nj) s ( l - 2 e ) bk - /}P{C («,-) = /} 3= l — (l—2e)bj 

^ 2 P{C("t) — (1 — 2e) £>fc — /} P {C («j) = /} % l=Cl-2e)bj 
f P{C(«fc) = (X~2s)bk—21,zn}liy}P{C(nj) = 2mnj/iy}dy = 

(l-2e)2 -WnJ1/lbj 

= / gOO / g(z)dzdy, 
B(y) 
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where 

(12811 / 4 

- ^ j (log log n / / 4 

and 
: B(y) := (1—2e) ft* 2~1/2 njbj—21'2 n)/iy2~1l2 nk

1/4 = 

= (1 —2e)2~ 1 / 2 ( ^ f ( l o g log 

Now a simple but tedious calculation yields that for any e > 0 there exists a JQ 

such that if y'0<_/<fc then 

(3.7) P { A j A k } s (1 + £ )P{^.}P{A}. 

Here we omit the details of the proof of this fact, and sketch only the main idea be-
hind it. Since («j/%)1/4^A:_1/4 ( y = l , 2, ..., k—l), the lower limit of integration 
B(y) above is nearly equal to 

- ^ J (log log n*)1'4 if y == kV\ say. 

Hence for the latter y values the integral f g(z)dz is nearly equal to P{Ak). Simi-
JW 

larly, the integral J g(y)dy gives P {Aj}, and our claim (3.7) follows, for in the case 
A 

of y>k1!i the value of g(y) is very small. 
Now (3.6), (3.7) and the Borel—Cantelli lemma combined give Lemma 3.5. 
We have also 

L e m m a 3.6. Let mk:= [exp (fc/log2 k)] and 

Bk:= 

= {¿(0, (mk, mk+1)) s (1 +s)\(mk+1-mk) (log w * ̂  +21og jogm, + 1 ] ] } . 

Then of the events Bk only finitely many occur with probability one. 

P r o o f . This lemma is an immediate consequence of Theorem 1 of Csáki— 
Csörgő—Földes—Révész (1983), where the corresponding statement is formulated 
in terms of Wiener process instead of symmetric random walk. The analogue state-
ment is easily obtained. 



and 

94 M. Csörgő and P. Révész 

L e m m a 3.7. Let 

Mk+1:= ((2+e)mk+1 log log mk+ 

ak+1 := (1 + e) [(m*+1 •- »»*) f log ^ + 2 log log mk+Jj 

A. := 1 sup sup |a í+0í í+1 + ...+0cí+J-| ^ l'sitfk+1-o f c+1 k+i 

^ [(2 + £ ) f l 4 + 1 ( l o g ^ - + l o g l o g M t + 1 ) ] ' }. 

of the events Dk only finitely many occur with probability one. 

P r o o f . Cf. Theorem 3.11 of Csörgő—Révész (1981). 

A simple consequence of Lemmas 3.6, 3.7 and Theorem B is 

L e m m a 3.8. Let 

Ek:=\ sup |C(m t ,n) |& f ( 2 + £ ) a t + 1 i l o g ^ ± i + l o g l o g M i l + 1 ) l } . 
lmkanSmt + 1 V /J ' 

Then of the events Ek only finitely many occur with probability one. 

L e m m a 3.9. 
5(1. n ) - £ ( 0 , n ) (128 (3.8) lunsup , , ' , , ', g k r a.s. v "-co M (log log w) I 27 J 

P r o o f . Let 

c * : = IIFtJ m* /4 ( l o g ! °g • № * ) - ( 1 + 2 e ) c J . 

Then by Lemma 3.4 only finitely many of the events Ek occur with probability 
Now observing that 

[ ( 2 + s K + 1 ( l o g i ^ + l o g l o g M i + 1 ] ] = 0(ck), 
,1/2 

+loglog M i + 1 J 

*k + l 

we have (3.8) by Lemma 3.8, and Lemma 3.9 is proved. 

Also Lemmas 3.5 and 3.9 combined give Theorem 2. 
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4. Proof of Theorem 3. 

A simple calculation and Lemma 2.2 imply 

L e m m a 4.1. For any k=\, 2, ..., n; 11= 1 ,2 , . . . we have 

( a 1 ( fc)+a 2 ( fc) + . . . + g n ( / c ) ) 
A c x p l ( ( A k - D W J = c ' ((4fe —2))n1/2 

where C is an absolute positive constant. 

The above lemma together with the Chebishev inequality and the Borel—Can-
telli lemma imply 

L e m m a 4.2. For any £ > 0 

1irn cim a1(k)+at(k) + ...+am(k) hm sup . rr— = 0 a.s. 
Wan (fen)1'' (log w)1+£ 

Consequently, on replacing n by <5(0, w), we get 

y £(k,n)-{(0,n) n l i m SUP i r r ik—wi/o /, Nnrr = 0 a- s-(ki(0, n))1/2(log n)1 + s 

and 
qk,n)-qo, «) 

|fc|-=«0,nXIogn>-( = + <5(0, ») ( log «)" 

By (4.1) we have also Theorem 3. 

(4-1) Jim sup = 0 

5. Proof of Theorem 5. 

A theorem of Hirsch (1965) (cf. p. 124 in Csörgő—Révész (1981)) says: 

max Sk ^ n11- (log ÍJ)"1 i.o. 
lsksn 

with probability one. This, in turn, implies Theorem 4. 

6. A problem 

To fill in the gap between Theorems 3 and 4 is an interesting enough problem. 
The following conjecture, however, is even more challenging. 

C o n j e c t u r e . 
№ »«) 
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where 
inf St sup S, 3k l^ksn T., IStSn mn '•= T—r^Z' M„:= 

k 

" ' log log n ' log log n ' 
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