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On the stability of the local time of a symmetric random walk
M. CSORGO! and P. REVESZ

Dedicated to Professor K. Tandort on the occasion of his 60th birthday

1. Introduction

Let X, X;, ... be a sequence of iid. rv with P{X,=—1)=P{X,=1}=1/2,
and consider the symmetric random walk S$,=0, S,=X;+...+X, (#=1,2,..).
Define the local time of {S,} by

Ex,m):=No. {k: 0<k=n, S,=x} (n=12,...; x=0, 1, +2,...),

ie., E(x, n) is the number of visits of {Si} at x up to time n. The properties of &(x, n)
bave been studied by 4 number of authors for a long time now. Here we present some
well known and important results.

Theorem A.
P{£(0, 2n) = k} = 2k—2» (Znn—k] k=0,1,2,...,n;n=12,..),

1/2
lim P{nY2¢(x, n) = u} = (_27,:_) f e~?l2dr (u=0; x=0, +1, +£2,..).
n—+oo ¢

‘“".I'ﬁeo'rem B (Kesten, 1965). For any x=0, £1, 2, ... we have

: é(x n) Sup é (x, n)
hT—»s-Bp (2n log log n)*/# = hT—-s«Bp (2n loglog n)'/® =4S
Yim inf [-I-Oglnﬂ) (x,n) =1, a.s.

where 7, is a positive absolute constant.
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Remark 1. The actual value of y, was not given by Kesten. It was recently
evaluated by E. Csdki (oral communication).

Remark 2. Roughly speaking the above two theorems say that £(x, n) (for
any fixed x=0, £1, 2, ...) goes to infinity like n*/* does.

Intuitively it is clear that £(x, n) is close to £(y, n) if x is close to y. This paper
is devoted to studying this problem. '
Here we present the main results.

Theorem 1. For any k==1, £2,... we have

e M=EON) ek, N)=EQ N _
£(0, M) log log M) ~ "W-%PE (0, N)loglog N)® ~

E(k, n)—E(0, n) [E(k, )—EQO,m)]
= lim SUPSUP 7570, W) log log N2 — LALUPSUPTE (0, M) loglog V)2

=2Qk—1)Y? a.s.

lim sup(

Theorem 2.

&(1, N)—-¢(0, N) lim |1, N)—=&(0, N)| -
N7 (loglog N)8 — NesP N (log log NY/*

E(1, n)—&(0, n) e, m)—&@O, )] (28_]1" s
N3 (log log N)** hm_.s.,l;lp,s,gg N2 (loglog N)* =37 .a.s._

hm 1 Sup

= hm 1Sup sup

Theorem 3. For any &=>0 we have

. ¢k, n)
lim su
""°°lk|§l3,_ &©, n)

where a,=n"*(log n)~C+3,

—1| =0 a.s.

Remark 3. Theorems 1 and 2 essentially say that for any fixed k the distance
between £(k, n) and (0, n) for large n behaves like n'/%. Since £(0, ) is about n'/2
asymptotically, this means that £(k, n) is relatively close asymptotically to £(0, n).
The meaning of Theorem 3 is about the same. However in the latter theorem we
claim that for large n £(k, n) is close to £(0, n) whenever |k|=a,, but the meaning
of “close” is not as precise as in Theorems 1 and 2. Theorem 3 is nearly the best
possible in the following sense.

Theorem 4.

¢(k, n)

lim sup sup |=
P e 20, m)

B |ki=b,

—1‘ =1 a.s.,

where b,=n"? (log n)~L.
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2. Proof of Theorem 1.

Among the statements of Theorem 1 we only prove

. &(k, N)—&(0, N)
lirn sup (£(0, N)loglog N )2

=2Q2k—1DV2 as. for any k= 1, +2,....

The proofs of its other statements can be obtained without any further difficulty
along the same lines.

Let A4;;(m) be the event that a symmetric random walk starting form m hits 7
before j (i=m=j). Then )

Lemma 2.1.

P{d4;;(m)} = (j—m)/(j— ).

Proof is trivial.
For any x=0, £1, 2, ... define
T(x) = 0,
7 (x):=inf {I: 1 >0, S,=x)},

1,-+1(x) =inf {l: 1= 1,(x), S;=x} (i=0,1,2,..),

Ti = Ti(o) (l = 0, 1, 2, ...),
and let

%y (k) = E(k, 1) —£(0, 1) = E(k, )1,

a; (k) —(i(k ) —&(k, 7)) —(E(0, ) — (0, 7;1))
= (E(k, 1) —Ek, 1)) —1 (k= %1, £2,...; i=1,2,..).

Clearly then o,(k), #,(k), ... is a sequence of 1i.d. v for any k=1, 42, ....
Now we evaluate the distribution of a, (k). We have

Lemma 2.2.

@.1) Play(k) = —1) = P{E(k, 7y) = 0) = 2I—L

2Ik| ’

2 —
22 Ply(k) =1} =P{e(k, 1) = I+1} = (ﬁﬂ] [%1] (1=0,1,2,..)

Proof. Without loss of generality we assume that k=>0. Then

(k1) =0} = (X, =—1}U{Xy =1, Sy # k, Sy k, ..., Sy # k}.
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Hence by Lemma 2.1.

P{é(k,r1)=o}=l 1 k=1 _ 2k—1

MR i T
and (2.1) is proven Similarly, in case of m=0 we have
{ttk, ) =m} =[{X; =1}N{S. # 0, S, = 0, ..., S, )1 % 0, S0y = k}]ﬂ
NH{X w41 = BUEX 00 = =10 {Sqay 41 # 0, Sz # 0,
o3 Seyy—1 = 0, 8w = EPIN..NKX,,, o+ = BU{X., _a+n ——l}ﬂ
N{Se,_+1 =0, Se _my+e = 05 ooy Sepgy—1 = 0, Seay = KPIN
ﬂ[{X,m(,(,+1 ==-1YU{S, w+2 # k St wy+s Z ks ..oy Symy-1 # K, Sey0y = O}1.

(Note that in case of &(k,t)=m we have O<7,(k)<ty(k)<...=T,(k)<7,(0)<
<7,41(k)). Hence, again by Lemma 2.1

reo-m- S G4 )

-G O
k) U2k )

and (2.2) is also proven. This also completes the proof of Lemma 2.2.

Lemma 2.2 implies
Lemma 2.3.

2.3) Eoxy =0, Eof=4k-2,

2.4 ,}in.}o P.{n‘\llz(ozl(k)-}-oz2 (k) +... +o, (k) = x(4k—-2)1/f}_=
. =‘(2TC);1/2 fe_"z/zdll, — oo X << oo, N I N

(2.5 lim P{n‘”2 sup (e () oo (k) + ... +o; (k) = x(4k 2)1/2}_ B

feoa
_ 21/2 x
=(—) [ e du, x>0,
. - 7 0
and o T U N

. & (k) + ot (k) + ... +a, (k)
2‘ 1 2

=20Qk—-1)V2 as.

The following two lemmas are simple consequences of (2.6). -
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Lemma 24. Let {u,} be any sequence of positive mteger valued rv with
lim p,=< a.s. Then

n—oco

oy (k) +ap (k) + ... +a, (k) —
llgl*sgp (a Tog log )7 =2y2k~-1

Lemma 2.5. Let {v,} be a sequence of positive integer valued rv with the foIIowmg
properties:

@ "lirono V,=o° 4a.s.

(i1) there exists a set Q,CQ such that P(Qy)=0 and for each w¢Q, and
k=1,2, ... there exists an n=n(w, k) for which vy, ,=k.

Then

limsup 20 F0R@ 4 +a, (0 _ 5r— o

n--oo (v, loglog v,)*"2
Utilizing Lemma 2.5. with v,=&(0, n), Theorem 3 and the trivial inequality
0 () + 3 (K) .. e,y (K) = E e, 1) —E(0, 1) = 0 (R)+02 () + .. +0g0,m1 (B + 1,

we obtain Theorem 1.
3. Proof of Theorem 2

Here we only present a proof of the statement

£(1, N)—~£(0, N) [g)’ s

lim sup N7 (loglog N@® ~ \27

The other statements of Theorem 2 are proven along similar lines. .
The proof of Theorem 2 is based on the following result of Dobrushin (1955).

Theorem C.
lim P {n~Y4(e(1, m)—£(0, n)) = 2V2x} = % f f exp( ]dzdy

Dobrushin also notes that the density function g of [N,;|V2N,, where N1 and N2
are independent normal (0, 1) v, 15

bt 2

L2 ( y z“).
g(y)——;r—of eXpl—53— % dz.
Hence Theorem C can be reformulated via saying that

(3.1) 2=12p=Y(E(L, 1)—E(0, n)) 2 [N, 2N, (n — ).
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In fact this statement is not very surprising since on replacing n by £(0, n) and k
by 1 in (2.4), intuitively it is clear that

a0 (1) +d2(1)+ +a§(0,n)(1) 6(1) n)_é(oa n) _2_» N2 (n __oo)

Y2E(0, n) ~ Y2E@,n)

(We must emphasize that we do not know any proof of this intuitively. clear state-

ment.)
Also, by Theorem A

(3.2)

3.3) nTVEO, M) Zs [Ny[1V2 (1 o).
Intuitively it is again clear (however not yet proved) that

¢, m)—¢(0, m)
¥2£(0, n)

“Hence” (3.2), (3.3) and (3.4) together imply (3.1). The proof of Dobrushin is
not based on this idea. Following his method however, a slightly stronger version of
his Theorem C can be obtained.

3.9 and n~14(£(0, n))¥2 are asymptotically independent rv.

Theorem C*. Let {x,} be any sequence of positive numbers such that
x,=o0 (log n). Then

—Xn = 2 4
PO @0 m-2@m) <2}~ 2 [ [ e (-Li-F)dzay
—c 0

and

_ . 2 balied yz z4).
P{n=%(E(, n)— (0, m)) > 2V2x,} ~ ;xf d[ exp [—5?—7] dzdy.
We have also

Lemma 3.1. There exists a positive constant C such that
(3.5) g(y) = Cy*Pexp (—(3/2°%) ).

Proof. Substituting z=xy'® we obtain
= [ exp[-2 i“] T _ﬁ(i 4]
g(y) - 6/. exp[ 222 2 dZ =Yy 6[ €Xp 2 +x dx‘

Note that the function

S0 = gt
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attains its maximum at x,=2"Y% and f(2~V%)=3/2¥3. Let x,=(3/2%%)"*. Then

4/3

—yua| [exp |- 22 (L 4] i J"“’(i o)) dx| =
2(») ylalofexp[ 3 (x2+x ]dx+x:/'exp[ 552 X)) x| =

4/3 oo 43 (1
= x, 3 exp (—yT 3. 2—2/3)+y1/3 f exp [__3_’2_ (? + x“]] dx.

3/8_—1/a
X1

For y=2- we also have

4/3 4/

fexp [———( +x)] dx = fexp (-—%—x]dx52x3y4/3 exp (——x ]dx

4/3 4/3
= 2y f x3 exp (—yTx“) dx = exp (—lf— x‘{) .

Hence we have (3.5).
Lemma 3.2. For any ¢=>0 there exists a C=C(g)=0 such that

/
e 3-2—2/3].
—&

g(y) = Cexp (—

Proof. With x,=2"%% and 6=0 we have

Xo+6 43 (1
= yl/ (2 4 =
e o[ (e

xo—3

= 2653 exp (——y—;ﬁ3 .23 1—1—*) s
—¢
where ¢* is defined by

3/22/3
1—g*'

max[ +(xo—9)", +(x0+5)4) =

1 1
(xo—0)? (xo+0)?

Hence Lemma 3.2 is proved.
Lemmas 3.1, 3.2 and some standard calculus imply

Lemma 3.3. Let {a,} be a sequence of positive numbers with a,}e. Then for
any €0 there exist a C;=Cy(e)>=0 and a Cy=C,(e)>0 such that

)= [ s0rdy = uexp (a2,

a

C;exp

By Theorem C* and Lemma 3.3. we have
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Lemma 3.4. For any ¢>0 there exist a C;=Cy(e)>0 and a C,=C,()>0
such that

174
{ “HE -0 m) =( +28)(12278) (loglog 11)3'4} = C,(logn)~+2

and
128Y"*
P {n“/“(f (1, n)—£(0, n)) = (1—2¢) [—2—7—) (loglog n)3/4} = C, (logn)~1-9,
Next we prove

Lemma 3.5.

1o P T (og log e =

£, m)—E0,n) _ (128)"*
(7) s
Proof. Let
1/4
n,:= [exp (klogk)), b,:= (%) ny't (log log n,)*4,
L =&, =&, n), &(x,(m,m) = E(x, m)—&(x,m) (m <n),
C(m: n) = 5(17 (mi n))_f(oz (ms n)): Ak = {C(nk) = (1—28) bk}
By Lemma 3.4
3.6) P{4,} = C(klogk)—1-2,
Let j<k and consider

P{AkA.l}'— 2 P{AInC(nJ) I} =

I=(—29b;
=32, Pl =15, =x) =
=2 ? PUANLm) =L 8, =xPEm) =1, S, =2} =
=3, S, P = 0-205,-115, = APE@) =15, = ) =
= ,=(§;e)b sup P{{(n;,n) = (1—2)b,— = x} ZP{C(n,) =x}=

= bém P{L(n—n) = (1-20)b—}P{(n) = I} =

= (1228 jP{C(nk)>(1 20)b,—P{L(n) =1} ~ -
~ [ P = (1~29b— 2P (n)) = 2Pnifty}dy =

Q-2e)2™ Y2714,

oo

= [ 20) [ g@dzdy,

A B(»)
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where , .
1/4
A:=(1-2e)272n;p; = (1— 28)2 1’2[12278) (loglognp'/*
and
B(y):= (1—2e)b, 27 Y2n;1ap, —2M2n}/4y2-12p 1 =

1/4

128\ (n)
1/2 1/4 J
= (1-2¢)2~ ( 77 ) (loglog ny) y e

Now a simple but tedious calculation yields that for any >0 there exists a j,
such that if jy<j<k then

3.7 P{4; 4} = (1+)P{4}P{4,}.

Here we omit the details of the proof of this fact, and sketch only the main idea be-
hind it. Since (n;/m)*=k"Y* (j=1,2,...,k—1), the lower limit of integration
B(y) above is nearly equal to

v
(1-2 )21/2(12278) (loglogn )t if y = kY4, say.

Hence for the latter y values the integral f g(2)dz is nearly equalto P{4,}. Simi-
B(y)

larly, the integral f g(y)dy gives P{A4;}, and our claim (3.7) follows, for in the case

of y=k'* the value of g(y) is very small.

Now (3.6), (3.7) and the Borel—Cantelli lemma combined give Lemma 3.5.
We have also

Lemma 3.6. Let my,:=[exp (k/l<')g2 k)] and

B" =

{5 (0 (my, mk+1)) =(1+e) [(mk+1 mk) (IOg — et +2log log mk+1)]1/2} .

My —my i

Then of the events B, only finitely many occur with probability one.

Proof. This lemma is an immediate consequence of Theorem 1 of Csiki—
Csorg6—Foldes—Révész (1983), where the corresponding statement is formulated
1in terms of Wiener process instead of symmetric random walk. The analogue state-
ment is easily obtained.
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Lemma 3.7. Let
M= ((24+€)my,, loglog mk+l)l/2’

2

. Yy
Ay g = (1+9) [(n1k+1—111k) (log 1L__ 12loglog mkﬂ)]
k

Mgty
and

D, = { sup Sup |oy+ogeyt... oyl =

1=SMy g1 =040 TS0,

I

M 1/2
[+ a0 (1o 2222 1oglog )| |-

Then of the events Dy only finitely many occur with probability one.
Proof. Cf. Theorem 3.11 of Csérg6—Révész (1981).
A simple consequence of Lemmas 3.6, 3.7 and Theorem B is

Lemma 3.8. Let

M 1/2
Bi={ swp KO, = [@+0)auus (1og 222 +ioglog )| .
+1

m=n=my oy
Then of the events E,, only finitely many occur with probability one.
Lemma 3.9.

(3.8) i SUP = 5 (og Tog m)* =

(A, m)—E0,n) _ ( ﬁ)“‘
27
Proof. Let

128\
O = [._2_7'] mj/* (loglog m)**, * Ey = {{(my) = (1+26)cy).

Then by Lemma 3.4 only finitely many of the events E; occur with probability one.

Now observing that

2
[(2+3)ak+1(10g k2l +108108Mk+1)] = o(cy),

we have (3.8) by Lemma 3.8, and Lemma 3.9 is proved.
Also Lemmas 3.5 and 3.9 combined give Theorem 2.
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4. Proof of Theorem 3.

A simple calculation and Lemma 2.2 imply

Lemma 4.1. For any k=1,2,...,n; n=1,2;... we have

oy (k) +ap (k) + ... + . (K)
Eexp (_ @Gk—2)n " ]

where C is an absolute positive constant.

[

G

The above lemma together with the Chebishev inequality and the Borel—Can-
telli lemma imply

Lemma 4.2. For any &=0

oy (k) +op(k) +... +a,(k)

N (U o
Consequently, on replacing n by £(0, n), we get )
. E(k, n)—£€(0, n)
lim su =0 a.s.
Py 2gen (RO, My (ognyre O
and
(@.1) lim su Cm—E0n o ¢

p — =
n~o (k] <&@, m(logm-C+320 & (0, n) (log n)=4*

By (4.1) we have also Theorem 3.

5. Proof of Theorem 5.

A theorem of Hirsch (1965) (cf. p. 124 in Csorg8—Révész (1981)) says:

max S, = n¥/2(logn)~! i.o.

1=k=n

with probability one. This, in turn, implies Theorem 4.

6. A problem
To fill in the gap between Theorems 3 and 4 is an interesting enough problem.
The following conjecture, however, is even more challenging.

‘Conjecture.

. Ek, )
lim su -
pee mnék_sI_)Mn £, n)

1[ =0 as.,
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where
inf Sk sup Sk
__ Asks=n . 1sk=n
"7 loglogn® "7 loglogn’®
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