On the stability of the local time of a symmetric random walk

M. CSÖRGŐ¹ and P. RÉVÉSZ

Dedicated to Professor K. Tandori on the occasion of his 60th birthday

1. Introduction

Let $X_1, X_2, ...$ be a sequence of i.i.d. rv with $P\{X_1 = -1\} = P\{X_1 = 1\} = 1/2$, and consider the symmetric random walk $S_0 = 0$, $S_n = X_1 + ... + X_n$ (n = 1, 2, ...). Define the local time of $\{S_k\}$ by

$$\xi(x, n) := \text{No. } \{k: 0 < k \le n, S_k = x\} \quad (n = 1, 2, ...; x = 0, \pm 1, \pm 2, ...),$$

i.e., $\xi(x, n)$ is the number of visits of $\{S_k\}$ at x up to time n. The properties of $\xi(x, n)$ have been studied by a number of authors for a long time now. Here we present some well known and important results.

Theorem A.

Sharan Was

$$P\{\xi(0,2n)=k\}=2^{k-2n}\binom{2n-k}{n}(k=0,1,2,...,n;\ n=1,2,...),$$

$$\lim_{n\to\infty}P\{n^{-1/2}\xi(x,n)\leq u\}=\left(\frac{2}{\pi}\right)^{1/2}\int_{0}^{u}e^{-t^{2}/2}dt\quad (u>0;\ x=0,\pm 1,\pm 2,...).$$

Theorem B (Kesten, 1965). For any $x=0, \pm 1, \pm 2, ...$ we have

$$\limsup_{n\to\infty} \frac{\xi(x,n)}{(2n\log\log n)^{1/2}} = \limsup_{n\to\infty} \frac{\sup_{-\infty < x < \infty} \xi(x,n)}{(2n\log\log n)^{1/2}} = 1 \quad a.s.,$$

$$\liminf_{n\to\infty} \left(\frac{\log\log n}{n}\right) \xi(x,n) = \gamma_1 \quad a.s.$$

where γ_1 is a positive absolute constant.

¹) Research partially supported by an NSERC Canada Grant at Carleton University, Ottawa. Received March 22, 1984.

Remark 1. The actual value of γ_1 was not given by Kesten. It was recently evaluated by E. Csáki (oral communication).

Remark 2. Roughly speaking the above two theorems say that $\xi(x, n)$ (for any fixed $x=0, \pm 1, \pm 2, ...$) goes to infinity like $n^{1/2}$ does.

Intuitively it is clear that $\xi(x, n)$ is close to $\xi(y, n)$ if x is close to y. This paper is devoted to studying this problem.

Here we present the main results.

Theorem 1. For any $k=\pm 1, \pm 2, ...$ we have

$$\lim_{N \to \infty} \sup \frac{\xi(k, N) - \xi(0, N)}{(\xi(0, N) \log \log N)^{1/2}} = \lim_{N \to \infty} \sup \frac{|\xi(k, N) - \xi(0, N)|}{(\xi(0, N) \log \log N)^{1/2}} =$$

$$= \lim_{N \to \infty} \sup_{n \le N} \frac{\xi(k, n) - \xi(0, n)}{(\xi(0, N) \log \log N)^{1/2}} = \lim_{N \to \infty} \sup_{n \le N} \frac{|\xi(k, n) - \xi(0, n)|}{(\xi(0, N) \log \log N)^{1/2}} =$$

$$= 2(2k-1)^{1/2} \quad a.s.$$

Theorem 2.

$$\limsup_{N \to \infty} \frac{\xi(1, N) - \xi(0, N)}{N^{1/4} (\log \log N)^{3/4}} = \limsup_{N \to \infty} \frac{|\xi(1, N) - \xi(0, N)|}{N^{1/4} (\log \log N)^{3/4}} =$$

$$= \limsup_{N \to \infty} \sup_{n \le N} \frac{\xi(1, n) - \xi(0, n)}{N^{1/4} (\log \log N)^{3/4}} = \limsup_{N \to \infty} \sup_{n \le N} \frac{|\xi(1, n) - \xi(0, n)|}{N^{1/4} (\log \log N)^{3/4}} = \left(\frac{128}{27}\right)^{1/4} \quad a.s.$$

Theorem 3. For any $\varepsilon > 0$ we have

$$\lim_{n\to\infty} \sup_{|k|\leq a_n} \left| \frac{\xi(k,n)}{\xi(0,n)} - 1 \right| = 0 \quad a.s.$$

where $a_n = n^{1/2} (\log n)^{-(2+\epsilon)}$.

Remark 3. Theorems 1 and 2 essentially say that for any fixed k the distance between $\xi(k,n)$ and $\xi(0,n)$ for large n behaves like $n^{1/4}$. Since $\xi(0,n)$ is about $n^{1/2}$ asymptotically, this means that $\xi(k,n)$ is relatively close asymptotically to $\xi(0,n)$. The meaning of Theorem 3 is about the same. However in the latter theorem we claim that for large n $\xi(k,n)$ is close to $\xi(0,n)$ whenever $|k| \le a_n$, but the meaning of "close" is not as precise as in Theorems 1 and 2. Theorem 3 is nearly the best possible in the following sense.

Theorem 4.

$$\limsup_{n\to\infty} \sup_{|k|\le b_n} \left| \frac{\xi(k,n)}{\xi(0,n)} - 1 \right| \ge 1 \quad a.s.,$$

where $b_n = n^{1/2} (\log n)^{-1}$.

2. Proof of Theorem 1.

Among the statements of Theorem 1 we only prove

$$\limsup_{N\to\infty} \frac{\xi(k,N) - \xi(0,N)}{(\xi(0,N)\log\log N)^{1/2}} = 2(2k-1)^{1/2} \text{ a.s. for any } k=\pm 1,\pm 2,\ldots.$$

The proofs of its other statements can be obtained without any further difficulty along the same lines.

Let $A_{ij}(m)$ be the event that a symmetric random walk starting form m hits i before j ($i \le m \le j$). Then

Lemma 2.1.

$$P{A_{ij}(m)} = (j-m)/(j-i).$$

Proof is trivial.

For any
$$x=0, \pm 1, \pm 2, \dots$$
 define

$$\tau_0(x):=0,$$

$$\tau_1(x) := \inf \{l: l > 0, S_l = x\},\$$

..

$$\tau_{i+1}(x) := \inf \{l: \ l > \tau_i(x), \ S_l = x\} \quad (i = 0, 1, 2, ...),$$

$$\tau_i := \tau_i(0) \quad (i = 0, 1, 2, ...),$$

and let

$$\begin{aligned} \alpha_1(k) &:= \xi(k, \tau_1) - \xi(0, \tau_1) = \xi(k, \tau_1) - 1, \\ & \dots \\ \alpha_i(k) &:= \left(\xi(k, \tau_i) - \xi(k, \tau_{i-1}) \right) - \left(\xi(0, \tau_i) - \xi(0, \tau_{i-1}) \right) \\ &= \left(\xi(k, \tau_i) - \xi(k, \tau_{i-1}) \right) - 1 \ (k = \pm 1, \pm 2, \dots; \ i = 1, 2, \dots). \end{aligned}$$

Clearly then $\alpha_1(k)$, $\alpha_2(k)$, ... is a sequence of i.i.d. rv for any $k=\pm 1, \pm 2, \ldots$. Now we evaluate the distribution of $\alpha_1(k)$. We have

Lemma 2.2.

(2.1)
$$P\{\alpha_1(k) = -1\} = P\{\xi(k, \tau_1) = 0\} = \frac{2|k|-1}{2|k|},$$

(2.2)
$$P\{\alpha_1(k)=l\} = P\{\xi(k,\tau_1)=l+1\} = \left(\frac{1}{2|k|}\right)^2 \left(\frac{2|k|-1}{2|k|}\right)^l \quad (l=0,1,2,\ldots).$$

Proof. Without loss of generality we assume that k>0. Then

$$\{\xi(k, \tau_1) = 0\} = \{X_1 = -1\} \cup \{X_1 = 1, S_2 \neq k, S_3 \neq k, ..., S_{\tau_1 - 1} \neq k\}.$$

Hence by Lemma 2.1.

$$P\{\xi(k,\tau_1)=0\}=\frac{1}{2}+\frac{1}{2}\frac{k-1}{k}=\frac{2k-1}{2k},$$

and (2.1) is proven. Similarly, in case of m>0 we have

$$\begin{split} \{\xi(k,\tau_1) = m\} &= [\{X_1 = 1\} \cap \{S_2 \neq 0, \, S_3 \neq 0, \, \dots, S_{\tau_1(k)-1} \neq 0, \, S_{\tau_1(k)} = k\}] \cap \\ &\cap [\{X_{\tau_1(k)+1} = 1\} \cup (\{X_{\tau_1(k)+1} = -1\} \cap \{S_{\tau_1(k)+1} \neq 0, \, S_{\tau_1(k)+2} \neq 0, \, \dots, \\ \dots, \, S_{\tau_2(k)-1} \neq 0, \, S_{\tau_2(k)} = k\})] \cap \dots \cap [\{X_{\tau_{m-1}(k)+1} = 1\} \cup (\{X_{\tau_{m-1}(k+1)} = -1\} \cap \\ &\cap \{S_{\tau_{m-1}(k)+1} \neq 0, \, S_{\tau_{m-1}(k)+2} \neq 0, \, \dots, \, S_{\tau_m(k)-1} \neq 0, \, S_{\tau_m(k)} = k\})] \cap \\ \cap [\{X_{\tau_m(k)+1} = -1\} \cup \{S_{\tau_m(k)+2} \neq k, \, S_{\tau_m(k)+3} \neq k, \, \dots, \, S_{\tau_1(0)-1} \neq k, \, S_{\tau_1(0)} = 0\}]. \end{split}$$

(Note that in case of $\xi(k, \tau_1) = m$ we have $0 < \tau_1(k) < \tau_2(k) < \dots < \tau_m(k) < \tau_1(0) < \tau_{m+1}(k)$). Hence, again by Lemma 2.1

$$P\{\xi(k,\tau_1) = m\} = \frac{1}{2} \frac{1}{k} \left(\sum_{j=0}^{m-1} {m-1 \choose j} \left(\frac{1}{2} \frac{k-1}{2} \right)^{m-1-j} \right) \frac{1}{2} \frac{1}{k} =$$

$$= \left(\frac{1}{2k} \right)^2 \left(\frac{2k-1}{2k} \right)^{m-1},$$

and (2.2) is also proven. This also completes the proof of Lemma 2.2.

Lemma 2.2 implies

Lemma 2.3.

(2.3)
$$E\alpha_1 = 0, \quad E\alpha_1^2 = 4k - 2,$$

(2.4)
$$\lim_{n\to\infty} P\left\{n^{-1/2}\left(\alpha_1(k) + \alpha_2(k) + \dots + \alpha_n(k)\right) \le x(4k-2)^{1/2}\right\} =$$

$$= (2\pi)^{-1/2} \int_{-\infty}^{x} e^{-u^2/2} du, \quad -\infty < x < \infty,$$

(2.5)
$$\lim_{n \to \infty} P\left\{n^{-1/2} \sup_{j \le n} \left(\alpha_1(k) + \alpha_2(k) + \dots + \alpha_j(k)\right) \le x(4k - 2)^{1/2}\right\} =$$

$$= \left(\frac{2}{\pi}\right)^{1/2} \int_{0}^{x} e^{-u^2/2} du, \quad x > 0,$$

and

(2.6)
$$\limsup_{n\to\infty} \frac{\alpha_1(k) + \alpha_2(k) + \dots + \alpha_n(k)}{(n\log\log n)^{1/2}} = 2(2k-1)^{1/2} \quad a.s.$$

The following two lemmas are simple consequences of (2.6).

Lemma 2.4. Let $\{\mu_n\}$ be any sequence of positive integer valued rv with $\lim_{n\to\infty}\mu_n=\infty$ a.s. Then

$$\limsup_{k \to \infty} \frac{\alpha_1(k) + \alpha_2(k) + \ldots + \alpha_{\mu_n}(k)}{(\mu_n \log \log \mu_n)^{1/2}} \leq 2\sqrt{2k - 1} \quad a.s.$$

Lemma 2.5. Let $\{v_n\}$ be a sequence of positive integer valued rv with the following properties:

- (i) $\lim_{n \to \infty} v_n = \infty$ a.s.
- (ii) there exists a set $\Omega_0 \subset \Omega$ such that $P(\Omega_0) = 0$ and for each $\omega \notin \Omega_0$ and k = 1, 2, ... there exists an $n = n(\omega, k)$ for which $v_{n(\omega, k)} = k$.

 Then

$$\limsup_{n \to \infty} \frac{\alpha_1(k) + \alpha_2(k) + \dots + \alpha_{\nu_n}(k)}{(\nu_n \log \log \nu_n)^{1/2}} = 2\sqrt{2k - 1} \quad a.s.$$

Utilizing Lemma 2.5. with $v_n = \xi(0, n)$, Theorem 3 and the trivial inequality $\alpha_1(k) + \alpha_2(k) + \ldots + \alpha_{\xi(0,n)}(k) \le \xi(k,n) - \xi(0,n) \le \alpha_1(k) + \alpha_2(k) + \ldots + \alpha_{\xi(0,n)+1}(k) + 1$, we obtain Theorem 1.

3. Proof of Theorem 2

Here we only present a proof of the statement

$$\limsup_{N \to \infty} \frac{\xi(1, N) - \xi(0, N)}{N^{1/4} (\log \log N)^{3/4}} = \left(\frac{128}{27}\right)^{1/4} \quad \text{a.s.}$$

The other statements of Theorem 2 are proven along similar lines.

The proof of Theorem 2 is based on the following result of Dobrushin (1955).

Theorem C.

$$\lim_{n\to\infty} P\left\{n^{-1/4}\left(\xi(1,\,n)-\xi(0,\,n)\right) \le 2^{1/2}x\right\} = \frac{2}{\pi} \int_{-\infty}^{x} \int_{0}^{\infty} \exp\left(-\frac{y^2}{2z^2}-\frac{z^4}{2}\right) dz \, dy.$$

Dobrushin also notes that the density function g of $|N_1|^{1/2}N_2$, where N_1 and N_2 are independent normal (0, 1) rv, is

$$g(y) = \frac{2}{\pi} \int_{0}^{\infty} \exp\left(-\frac{y^2}{2z^2} - \frac{z^4}{2}\right) dz.$$

Hence Theorem C can be reformulated via saying that

$$(3.1) 2^{-1/2} n^{-1/4} (\xi(1, n) - \xi(0, n)) \xrightarrow{\mathscr{D}} |N_1|^{1/2} N_2 \quad (n \to \infty).$$

In fact this statement is not very surprising since on replacing n by $\xi(0, n)$ and k by 1 in (2.4), intuitively it is clear that

$$(3.2) \qquad \frac{\alpha_1(1) + \alpha_2(1) + \ldots + \alpha_{\xi(0,n)}(1)}{\sqrt{2\xi(0,n)}} \sim \frac{\xi(1,n) - \xi(0,n)}{\sqrt{2\xi(0,n)}} \xrightarrow{\mathscr{D}} N_2 \quad (n \to \infty).$$

(We must emphasize that we do not know any proof of this intuitively clear statement.)

Also, by Theorem A

(3.3)
$$n^{-1/4} (\xi(0, n))^{1/2} \xrightarrow{\mathcal{G}} |N_1|^{1/2} \quad (n \to \infty).$$

Intuitively it is again clear (however not yet proved) that

(3.4)
$$\frac{\xi(1,n)-\xi(0,n)}{\sqrt{2\xi(0,n)}}$$
 and $n^{-1/4}(\xi(0,n))^{1/2}$ are asymptotically independent rv.

"Hence" (3.2), (3.3) and (3.4) together imply (3.1). The proof of Dobrushin is not based on this idea. Following his method however, a slightly stronger version of his Theorem C can be obtained.

Theorem C*. Let $\{x_n\}$ be any sequence of positive numbers such that $x_n = o(\log n)$. Then

$$P\left\{n^{-1/4}\left(\xi(1,n)-\xi(0,n)\right)<-2^{1/2}x_n\right\}\approx \frac{2}{\pi}\int_{-\infty}^{-x_n}\int_{0}^{\infty}\exp\left(-\frac{y^2}{2z^2}-\frac{z^4}{2}\right)dz\,dy$$

and

$$P\{n^{-1/4}(\xi(1, n) - \xi(0, n)) > 2^{1/2}x_n\} \approx \frac{2}{\pi} \int_{x_n}^{\infty} \int_{0}^{\infty} \exp\left(-\frac{y^2}{2z^2} - \frac{z^4}{2}\right) dz dy.$$

We have also

Lemma 3.1. There exists a positive constant C such that

(3.5)
$$g(y) \le Cy^{1/3} \exp\left(-\left(3/2^{5/3}\right)y^{4/3}\right).$$

Proof. Substituting $z=xy^{1/3}$ we obtain

$$g(y) = \int_0^\infty \exp\left(-\frac{y^2}{2z^2} - \frac{z^4}{2}\right) dz = y^{1/3} \int_0^\infty \exp\left(-\frac{y^{4/3}}{2} \left(\frac{1}{x^2} + x^4\right)\right) dx.$$

Note that the function

$$f(x) = \frac{1}{x^2} + x^4$$

attains its maximum at $x_0 = 2^{-1/6}$ and $f(2^{-1/6}) = 3/2^{2/3}$. Let $x_1 = (3/2^{2/3})^{1/4}$. Then

$$g(y) = y^{1/3} \left[\int_0^{x_1} \exp\left(-\frac{y^{4/3}}{2} \left(\frac{1}{x^2} + x^4\right)\right) dx + \int_{x_1}^{\infty} \exp\left(-\frac{y^{4/3}}{2} \left(\frac{1}{x^2} + x^4\right)\right) dx \right] \le$$

$$\le x_1 y^{1/3} \exp\left(-\frac{y^{4/3}}{2} \cdot 3 \cdot 2^{-2/3}\right) + y^{1/3} \int_{x_1}^{\infty} \exp\left(-\frac{y^{4/3}}{2} \left(\frac{1}{x^2} + x^4\right)\right) dx.$$

For $y > 2^{-3/4} x_1^{-1/4}$ we also have

$$\int_{x_1}^{\infty} \exp\left(-\frac{y^{4/3}}{2}\left(\frac{1}{x^2} + x^4\right)\right) dx \le \int_{x_1}^{\infty} \exp\left(-\frac{y^{4/3}}{2}x^4\right) dx \le 2x_1^3 y^{4/3} \int_{x_1}^{\infty} \exp\left(-\frac{y^{4/3}}{2}x^4\right) dx \le 2y^{4/3} \int_{x_1}^{\infty} x^3 \exp\left(-\frac{y^{4/3}}{2}x^4\right) dx = \exp\left(-\frac{y^{4/3}}{2}x_1^4\right).$$

Hence we have (3.5).

Lemma 3.2. For any $\varepsilon > 0$ there exists a $C = C(\varepsilon) > 0$ such that

$$g(y) \ge C \exp\left(-\frac{y^{4/3}}{2-\varepsilon} \cdot 3 \cdot 2^{-2/3}\right).$$

Proof. With $x_0=2^{-1/\delta}$ and $\delta>0$ we have

$$g(y) \ge y^{1/3} \int_{x_0 - \delta}^{x_0 + \delta} \exp\left(-\frac{y^{4/3}}{2} \left(\frac{1}{x^2} + x^4\right)\right) dx \ge$$
$$\ge 2\delta y^{1/3} \exp\left(-\frac{y^{4/3}}{2} \cdot 3 \cdot 2^{-2/3} \cdot \frac{1}{1 - \varepsilon^*}\right),$$

where ε^* is defined by

$$\max\left(\frac{1}{(x_0-\delta)^2}+(x_0-\delta)^4, \frac{1}{(x_0+\delta)^2}+(x_0+\delta)^4\right)=\frac{3/2^{2/3}}{1-\varepsilon^*}.$$

Hence Lemma 3.2 is proved.

Lemmas 3.1, 3.2 and some standard calculus imply

Lemma 3.3. Let $\{a_n\}$ be a sequence of positive numbers with $a_n \nmid \infty$. Then for any $\varepsilon > 0$ there exist a $C_1 = C_1(\varepsilon) > 0$ and a $C_2 = C_2(\varepsilon) > 0$ such that

$$C_1 \exp\left(-\frac{a_n^{4/3}}{2-\varepsilon} (3/2^{2/3})\right) \le \int_a^\infty g(y) \, dy \le C_2 \exp\left(-\frac{a_n^{4/3}}{2+\varepsilon} (3/2^{2/3})\right).$$

By Theorem C* and Lemma 3.3. we have

Lemma 3.4. For any $\varepsilon > 0$ there exist a $C_1 = C_1(\varepsilon) > 0$ and a $C_2 = C_2(\varepsilon) > 0$

$$P\left\{n^{-1/4}\left(\xi(1,n)-\xi(0,n)\right) \ge (1+2\varepsilon)\left(\frac{128}{27}\right)^{1/4}(\log\log n)^{3/4}\right\} \le C_2(\log n)^{-(1+\varepsilon)}$$
and

$$P\left\{n^{-1/4}\left(\xi(1,n)-\xi(0,n)\right) \ge (1-2\varepsilon)\left(\frac{128}{27}\right)^{1/4}(\log\log n)^{3/4}\right\} \ge C_1(\log n)^{-(1-\varepsilon)}.$$

Next we prove

Lemma 3.5.

$$\limsup_{n \to \infty} \frac{\xi(1, n) - \xi(0, n)}{n^{1/4} (\log \log n)^{3/4}} \ge \left(\frac{128}{27}\right)^{1/4} \quad a.s.$$

Proof. Let

$$n_k := [\exp(k \log k)], \quad b_k := \left(\frac{128}{27}\right)^{1/4} n_k^{1/4} (\log \log n_k)^{3/4},$$

$$\zeta(n) := \xi(1, n) - \xi(0, n), \quad \xi(x, (m, n)) := \xi(x, n) - \xi(x, m) \quad (m < n),$$

$$\zeta(m, n) := \xi(1, (m, n)) - \xi(0, (m, n)), \quad A_k := \{\zeta(n_k) \ge (1 - 2\varepsilon) b_k\}.$$

By Lemma 3.4

$$(3.6) P\{A_k\} \ge C(k \log k)^{-(1-\varepsilon)}.$$

Let j < k and consider

$$P\{A_{k}A_{j}\} = \sum_{l=(1-2\varepsilon)b_{j}}^{\infty} P\{A_{k}, \zeta(n_{j}) = l\} =$$

$$= \sum_{x} \sum_{l=(1-2\varepsilon)b_{j}}^{\infty} P\{A_{k}, \zeta(n_{j}) = l, S_{n_{j}} = x\} =$$

$$= \sum_{x} \sum_{l=(1-2\varepsilon)b_{j}}^{\infty} P\{A_{k} | \zeta(n_{j}) = l, S_{n_{j}} = x\} P\{\zeta(n_{j}) = l, S_{n_{j}} = x\} =$$

$$= \sum_{x} \sum_{l=(1-2\varepsilon)b_{j}}^{\infty} P\{\zeta(n_{j}, n_{k}) \ge (1-2\varepsilon)b_{k} - l | S_{n_{j}} = x\} P\{\zeta(n_{j}) = l, S_{n_{j}} = x\} \le$$

$$\leq \sum_{l=(1-2\varepsilon)b_{j}}^{\infty} \sup_{x} P\{\zeta(n_{j}, n_{k}) \ge (1-2\varepsilon)b_{k} - l | S_{n_{j}} = x\} \sum_{x} P\{\zeta(n_{j}) = l, S_{n_{j}} = x\} =$$

$$= \sum_{l=(1-2\varepsilon)b_{j}}^{\infty} P\{\zeta(n_{k}-n_{j}) \ge (1-2\varepsilon)b_{k} - l\} P\{\zeta(n_{j}) = l\} \le$$

$$\leq \sum_{l=(1-2\varepsilon)b_{j}}^{\infty} P\{\zeta(n_{k}) \ge (1-2\varepsilon)b_{k} - l\} P\{\zeta(n_{j}) = l\} \ge$$

$$\approx \int_{l=(1-2\varepsilon)b_{j}}^{\infty} P\{\zeta(n_{k}) \ge (1-2\varepsilon)b_{k} - 2^{1/2}n_{j}^{1/4}y\} P\{\zeta(n_{j}) = 2^{1/2}n_{j}^{1/4}y\} dy =$$

$$= \int_{A}^{\infty} g(y) \int_{B(y)}^{\infty} g(z) dz dy,$$

where

$$A := (1 - 2\varepsilon)2^{-1/2} n_j^{-1/4} b_j = (1 - 2\varepsilon)2^{-1/2} \left(\frac{128}{27}\right)^{1/4} (\log \log n_j)^{1/4}$$

and

$$B(y) := (1 - 2\varepsilon)b_k 2^{-1/2} n_j^{-1/4} b_j - 2^{1/2} n_j^{1/4} y 2^{-1/2} n_k^{-1/4} =$$

$$= (1 - 2\varepsilon)2^{-1/2} \left(\frac{128}{27}\right)^{1/4} (\log \log n_k)^{1/4} - y \left(\frac{n_j}{n_k}\right)^{1/4}.$$

Now a simple but tedious calculation yields that for any $\varepsilon > 0$ there exists a j_0 such that if $j_0 < j < k$ then

$$(3.7) P\{A_j A_k\} \leq (1+\varepsilon)P\{A_j\}P\{A_k\}.$$

Here we omit the details of the proof of this fact, and sketch only the main idea behind it. Since $(n_j/n_k)^{1/4} \le k^{-1/4}$ (j=1, 2, ..., k-1), the lower limit of integration B(y) above is nearly equal to

$$(1-2\varepsilon)2^{1/2}\left(\frac{128}{27}\right)^{1/4}(\log\log n_k)^{1/4} \quad \text{if} \quad y \le k^{1/4}, \quad \text{say}.$$

Hence for the latter y values the integral $\int_{B(y)}^{\infty} g(z) dz$ is nearly equal to $P\{A_k\}$. Similarly, the integral $\int_{a}^{\infty} g(y) dy$ gives $P\{A_j\}$, and our claim (3.7) follows, for in the case

Now (3.6), (3.7) and the Borel—Cantelli lemma combined give Lemma 3.5. We have also

Lemma 3.6. Let $m_k := [\exp(k/\log^2 k)]$ and

of $y > k^{1/4}$ the value of g(y) is very small.

$$B_k :=$$

$$= \left\{ \xi \left(0, (m_k, m_{k+1})\right) \ge (1+\varepsilon) \left[(m_{k+1} - m_k) \left(\log \frac{m_{k+1}}{m_{k+1} - m_k} + 2 \log \log m_{k+1} \right) \right]^{1/2} \right\}.$$

Then of the events B_k only finitely many occur with probability one.

Proof. This lemma is an immediate consequence of Theorem 1 of Csáki—Csörgő—Földes—Révész (1983), where the corresponding statement is formulated in terms of Wiener process instead of symmetric random walk. The analogue statement is easily obtained.

and

Lemma 3.7. Let

$$M_{k+1} := ((2+\varepsilon)m_{k+1}\log\log m_{k+1})^{1/2},$$

$$a_{k+1} := (1+\varepsilon)\left[(m_{k+1} - m_k)\left(\log\frac{m_{k+1}}{m_{k+1} - m_k} + 2\log\log m_{k+1}\right)\right]^{1/2}$$

$$\begin{split} D_k &:= \left\{ \sup_{l \leq M_{k+1} - a_{k+1}} \sup_{j \leq a_{k+1}} |\alpha_l + \alpha_{l+1} + \ldots + \alpha_{l+j}| \geq \right. \\ &\geq \left[(2 + \varepsilon) a_{k+1} \left(\log \frac{M_{k+1}}{a_{k+1}} + \log \log M_{k+1} \right) \right]^{1/2} \right\}. \end{split}$$

Then of the events D_k only finitely many occur with probability one.

Proof. Cf. Theorem 3.11 of Csörgő—Révész (1981).

A simple consequence of Lemmas 3.6, 3.7 and Theorem B is

Lemma 3.8. Let

$$E_k := \left\{ \sup_{m_k \le n \le m_{k+1}} |\zeta(m_k, n)| \ge \left[(2 + \varepsilon) a_{k+1} \left(\log \frac{M_{k+1}}{a_{k+1}} + \log \log M_{k+1} \right) \right]^{1/2} \right\}.$$

Then of the events E_k only finitely many occur with probability one.

Lemma 3.9.

(3.8)
$$\limsup_{n \to \infty} \frac{\xi(1, n) - \xi(0, n)}{n^{1/4} (\log \log n)^{3/4}} \le \left(\frac{128}{27}\right)^{1/4} \quad a.s.$$

Proof. Let

$$c_k := \left(\frac{128}{27}\right)^{1/4} m_k^{1/4} (\log \log m_k)^{3/4}, \quad E_k := \{\zeta(m_k) \ge (1+2\varepsilon)c_k\}.$$

Then by Lemma 3.4 only finitely many of the events E_k occur with probability one. Now observing that

$$\left[(2+s) a_{k+1} \left(\log \frac{M_{k+1}}{a_{k+1}} + \log \log M_{k+1} \right) \right]^{1/2} = o(c_k),$$

we have (3.8) by Lemma 3.8, and Lemma 3.9 is proved.

Also Lemmas 3.5 and 3.9 combined give Theorem 2.

4. Proof of Theorem 3.

A simple calculation and Lemma 2.2 imply

Lemma 4.1. For any k=1, 2, ..., n; n=1, 2, ... we have

$$E\exp\left(-\frac{\alpha_1(k)+\alpha_2(k)+\ldots+\alpha_n(k)}{((4k-2))n^{1/2}}\right)\leq C,$$

where C is an absolute positive constant.

The above lemma together with the Chebishev inequality and the Borel—Cantelli lemma imply

Lemma 4.2. For any $\varepsilon > 0$

$$\lim_{n\to\infty}\sup_{|k|\leq n}\frac{\alpha_1(k)+\alpha_2(k)+\ldots+\alpha_n(k)}{(kn)^{1/2}(\log n)^{1+\varepsilon}}=0\quad a.s.$$

Consequently, on replacing n by $\xi(0, n)$, we get

$$\lim_{n\to\infty} \sup_{|k|\leq \xi(0,n)} \frac{\xi(k,n)-\xi(0,n)}{(k\xi(0,n))^{1/2}(\log n)^{1+\varepsilon}} = 0 \quad a.s.$$

and

(4.1)
$$\lim_{n\to\infty} \sup_{|k|<\xi(0,n)(\log n)^{-(z+3\varepsilon)}} \frac{\xi(k,n)-\xi(0,n)}{\xi(0,n)(\log n)^{-\varepsilon/2}} = 0 \quad a.s.$$

By (4.1) we have also Theorem 3.

5. Proof of Theorem 5.

A theorem of Hirsch (1965) (cf. p. 124 in Csörgő—Révész (1981)) says:

$$\max_{1 \le k \le n} S_k \le n^{1/2} (\log n)^{-1} \quad i.o.$$

with probability one. This, in turn, implies Theorem 4.

6. A problem

To fill in the gap between Theorems 3 and 4 is an interesting enough problem. The following conjecture, however, is even more challenging.

Conjecture.

$$\lim_{n\to\infty} \sup_{m_n \le k \le M_n} \left| \frac{\xi(k,n)}{\xi(0,n)} - 1 \right| = 0 \quad a.s.,$$

where

$$m_n := \frac{\inf_{1 \le k \le n} S_k}{\log \log n}, \quad M_n := \frac{\sup_{1 \le k \le n} S_k}{\log \log n}.$$

References

- E. CSÁKI, M. CSÖRGŐ, A. FÖLDES and P. RÉVÉSZ, How big are the increments of the local time of a Wiener process?, Ann. Probability, 11 (1983), 593—608.
- M. Csörgő and P. Révész, Strong Approximations in Probability and Statistics, Academic Press (New York, 1981).
- R. L. Dobrushin, Two limit theorems for the simplest random walk on a line. *Uspehi Mat. Nauk* (N. S.), 10 (1955), 139—146. (in Russian).
- W. M. HIRSCH, A strong law for the maximum cumulative sum of independent random variables, Comm. Pure Appl. Math., 18 (1965), 109-217.
- H. KESTEN, An interated logarithm law for the local time, Duke Math., J., 32 (1965), 447-456.

DEPARTMENT OF MATHEMATICS AND STATISTICS CARLETON UNIVERSITY OTTAWA K1S 5B6 CANADA MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES REÁLTANODA U. 13—15 1053 BUDAPEST, HUNGARY