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Rate of approximation of linear processes 
Z. DITZIAN* 

Dedicated to Professor K. Tandori on the occasion of his 60th birthday 

The well-known Korovkin theorem [8] established that a positive linear process, 
(or a sequence of positive linear operators), on C[a, b] that approximates the func-
tions 1, x and x2 (for instance) also approximates any continuous function. An off-
spring of that result is the MOND-SHISHA [11 ] theorem that yields the rate of approxi-
mation of a function with certain smoothness to the rate of approximation of 1, x 
and x2. The rate of approximation in the Mond-Shisha theorem and in many results 
that followed were forcibly uniform, that is independent of the point at which the 
function was approximated. In other words, the rate of approximation prescribed 
does not take into account that L„(<p;, t) could tend to (pt (<p; being 1, x and x2) 
at different rates for different points t. Recently, ESSER [6] and STRUKOV and TIMAN 

[13] proved that if L„ are positive linear operators on C(/), L„( 1, t)—1, L„(x, t) — t 
and Ln(x\ t)=t2+Dn(t) (in which case A , ( 0 = 0 ) , we have \L„(f, i ) - / ( 0 N 
= 15®2(/, 1 / 2 / ^ ( 0 ) where 

/ i s [a,b] or R+ or R, A'J=Ah(A'~xf) and Ahf(x) =f(x+h/2)-f(x-h/2). (The 
result mentioned here is that of STRUKOV and TIMAN [13]; ESSER [6] proved 
somewhat less but earlier). 

Examining the situation on the particular but significant example of the Bern-
stein polynomials given by 

(1.1) co2(f, h) = S u p { S u p ( ^ / ( x ) | ; [x-r,, x+t,] a / ) } , 
näli * 

(1.2) 

we have the following two results which do not imply each other: 

*) Supported by NSERC grant A-4816 of Canada 
Received October 13, 1983. 
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a) For 0 < a < 2 , Sup \A2J(x)\^Mh° if and only if \Bn{f,t)-f(t)\ 
h<x<l—h 

(t(l-t)Ylz 

'JLMA , B E R E N S a n d L O R E N T Z [1]. 

b) For 0<oc<2, Sup \(x(\-xy'2Alf(x)\^Mha if and only if 
h<x<1—h 

IIBn<J\ - ) - / ( - ) l l ^ 

[2]. (In [5] it was shown that Sup \A2
h ,x)f(x)^Mh* for<p ( * ) = / * when 

h a < x < l - A a 

x€[0, 1/2] and, cp(x)=i I — x when x£(l/2, 1], is also equivalent to the above). 
In this paper we will be concerned only with the direct theorem, that is, in the 

particular cases (a) and (b) with the "only i f" aspect. For positive operators for 
which Ln(x, t)—t Strukov and Timan settled the "only i f " question analogous to 
(a) and for positive operators with several conditions on D „ ( I ) TOTIK [ 1 6 ] settled the 
question analogous to (b). 

We will not have the restriction Ln(x, t)=t (see application in §6) nor will we 
require that the operators be positive, and, therefore, higher moduli of smoothness 
can enter into the discussion (see applications in §7 and §8). We will impose relatively 
simple conditions on the moments and the result will be applied to many operators. 
The present result will provide some new applications even for positive operators. Its 
main additional strength, however, will be its uses for some non-positive operators, 
for instance combinations of "Exponential-type operators" introduced by C. P. MAY 
[10]. We will be aided by results using interpolation of spaces and Peetre ^Tfunctionals 
and will introduce those concepts when needed. 

2. Rate of convergence using moduli of continuity. In this section we will establish 
a direct theorem analogous to example (a) in the introduction. For a positive operator 
satisfying L„(l, x ) = l we have the representation Ln(f,x)= Jf(t)danx(t) where 

r i 
a„iX(t) is increasing and J dan x(t)— 1. The operators which we will treat in this 

i 
paper will have the representation 

(2.1) Ln(f,x)= f/(t)dan,x(t) where f doin,x(t) = I, 
i i 

f \dx„,A")\ = Vn.AO and v„tX(t) ^ M. 
ttSt 

The domain I represents a finite interval, semi-infinite ray or the whole real line and 
with no loss of generality we may assume that I is [0, 1], R+ or R. 

We can now state our first result. 
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T h e o r e m 2.1. Let /=[0 ,1] , I=R+ or I=R, L n ( f t ) defined by. (2.1), 
ftidanx(t)=xi M i=0, 1, ..., 2 m - l , and f (t-xfmdvn x(t)^D„(x). Then 

i t 

ILn(f, x) -f{x)| S S ( M + 1 + o2m(f, D]J-m(x)) 

for I=R+ or I=R and : 

\Ln(f x)-f(x)\ ^ (il/+ 1 + ^ ~ ^ + LDl'^(x)]rn2m(f, &J*m(x)) 

for /=[0 , 1] where L depends only on m. 

R e m a r k 2.2. The theorem is interesting only when D„(x)=o( 1), n— 
Obviously, D„(x)^0 and at a point x0 at which D„(x0)=0, Ln(f, x0)=f(x0). In 
applications commonly met D„(x0) = 0 only at the boundary of /. One can construct 
a sequence of linear (and even positive) operators for which Dn(x) has a zero at a 
point internal to I, but in general those examples seem contrived and not very inter-
esting. 

P roof . We define for / i>0 the Steklov-type averages 

( 2m \2m hl}m hl}m f 2m (2m\ 
M x ) = { ~ } f .../ {2\™}(-l)k+1f(x+k(u1 + ...+u2m))du1...du2m 

and for x such that [x, x+2mh] is in I we have | / ( x ) - f h ( x ) \ ^ c o 2 m ( f , h) and fh 

has 2m continuous derivatives ( f ^ is absolutely continuous for / < 2m) and 

i / r -wi , ( £ f , 1 ( ? ) - ('• ¿ * ) - ( i f 

We now show that for g with 2m derivatives we have 

|L„(g,x)-g(x) | 

Using Taylor's expansion we have 

2m—X 1 
| £ „ ( g , x ) - g ( x ) | S ^ - 7 r !g ( 0 (x) | ; |L n ( ( i -x) i ,x) + 

¡=1 I! 

l g ( 2 m ) K ) | / ^ - ^ d F ^ i t ) 
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For I = R + or i we write 

I Lnd * ) - / ( * ) I = I A, ( / - / * , * ) - ( / • ( * ) - / » ( * ) ) + I W » , * ) - / » tol ^ 

^ ( M + I ) ^ ^ ¿ O + ^ f f a>„(/; a) 

and choose 
ft = (A,(x)) 1 / 2 m . 

For / = [ 0 , 1 ] we choose a function i p t C " such that ij/(x)=l on [0,1/3], >p(x)—0 
on [1/3, 1] and ip(x) is decreasing. We define Fh(x)=fh{x)\li(x)+f-h(x){\ —tp(x)) 
where/_h is the same as / , but using — h instead of h. We have | Fh(x) —f(x)| ^ a>2,n ( / , h) 
and Fl2n,)(x)=f<2m)(x) in [0, 1/3] while F«m\x)=ftf) in (2/3, 1]. To calculate 
Flim)(x) in [1/3,2/3] we write 

n*m) to - fi2m) to - { ( A W - / - * ( * ) ) ( 1 - <P(x))}(2m) 

and 
{ U t o - / - , . t o ) ( i - ^ t o ) } ( 2 m ) = { ( / h

( 2 m ) W - / < T ) W ) } ( i - ' A W ) -

By earlier consideration |/A
(2m)(x) S ((4m)/h)2mco2m(f /¡). To estimate /2 we write 

a n d s o a n d therefore, it 

is enough to estimate for k < 2 m 

dm)2"1 ( d 1* ,,/2m h,2m _ 

where and = We can now estimate 
/j) by estimating / + (fc, /i) and ./_ (fc, h) being the first and second terms in the 

sum defining J(k,h) respectively. 

If 2m i d 
J+ (k, h) = -j-j; J ... f Z2™+...+Ujm fix) dUl...dutn = 

\(2m)2m hl2m h>2m -
1 7 0 0 
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and J_(k,h) is evaluated similarly. Therefore 

2m-1 (2m\ 
\I2\ =5 [ k J (4 mf(ű2m(J, h) ^ h~2m+12K (4m + l)2m a>2m(f, h), 

and choosing h as in the earlier case, we obtain our results. 

R e m a r k 2.3. We could have used Whitney's extension theorem (see STEIN 

[12, Ch. VI]) to find a function F(x) defined on R that is identical w i t h / i n the do-
main / a n d whose 2m modulus of continuity a>2m(F,h) in R is bounded by Kco2m(f, h) 
in I. However, this method would still leave us with the need to estimate K and we 
will still need the Steklov averaging functions and almost all the steps of the present 
proof. 

R e m a r k 2.4. For m = 1 and positive opeartors Strukov and Timan have a 
better estimate for the constant in the theorem, as extension F o f / de f ined on [0, 1] 
or R is easily shown to satisfy co2(F, h) on R is smaller than 5co 2 ( f , h) on / (see 
TIMAN [14, p. 122]). That method is valid for m = 1 even without the positivity but 
will yield a somewhat different constant. 

It is obvious that instead of J t'dx,hx(t)=x' for /'=0, 1, ..., 2m — 1 we could 

have imposed J(t — x)lda„ ll(t) = Q for z = l , . . . , 2 m —1 and Jd<x„tX(i) — l. We 
i 

can now derive from Theorem 2.1 a generalization relaxing the conditions on the 
moments that would be useful for applications. We note that the next theorem would 
yield an estimate of the rate of convergence for positive operators for which 
f td<X„,x(t)7±X. / 
i 

T h e o r e m 2.2. Suppose / = [ 0 , 1 ] , I=R+ or I=R, Jda„iX(t) = l and 
J (t~x)' dctn>x(t) = R„ti(x), i = \,...,2m-\ where RnJ(x) = o( 1) 

f \dan<x(u)\ = v,hX(t) = M and f ( i -x) 2 m^n ; X (?)sD„(x) , then 
list i 

2m —1 
I Ln(f, x)-f(x)\ i C 2 <»,(/, I aM(*)lv9+ CflU/, iU*)1/2m) 

i=l 
2m —1 

where Rn(x)=Dn(x)+K 2 \Rr,,i(x)\2ml' and where C and K depend only on m. 
i = l 

P r o o f . To prove our theorem we will construct a new operator A„(f, x) that 
will satisfy the assumptions on the operator in Theorem 2.1. For that we add oper-
ators to obtain a new operator A„(f, *) such that on the one hand A„((t—x)J, x)=0 
for j^2m-\ and on the other hand f (t~xfmdVniX(t)^R„(x) where V„:X(t) 

i 
is the variation up to t of P„,x(u), the measure describing An(f, x), that is An(f, x)= 
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= Jf(u)dfSn x(u), and Rn(x) would be as stated in the theorem. The function R„(x) 
i 

will replace Dn(x) and the operator A„(f,x) will replace L„(f,x) when we apply 
Theorem 2.1 to the present situation. We will write Ahf(x)=f(x+h)—f(x) and 
Z f s ^ t f r 1 ) and define L n J f , *) = ( ( - l ) / i ! ) Sgn Rnii(x)A\Rn iUVnf(x) for all 
x in case 1—R+ or I=R, and for O s x S l / 2 in case / = [ 0 , 1], in which case 
4 > , . ( / . * ) = ( - l ) i + 1 A ' ! Sgn / ^ ¡ M z l L i ^ i ( x ) | i / i /W for l / 2 < x < l . Since a simple 
calculation will yield Ln i((t—x)', x ) = —Rni(x), we can add this operator to elimi-
nate the i moment. However, for / < / s 2 m — 1 

LnJ{(t-xy, x) = c u | i U J / i ( * ) Sgn *„,,(*) 

where c( j is a constant that depends on / and j but not on n and .v. To cancel that 
effect for j = i x we add the operator 

L„,i,h(f, x) = - ^ f - Sgn /?„, ¿.x)!^ ^ f ( x ) 
J i! „ 

(and a similar version for l / 2 < x ^ l incase /—[0,1]). Of course for j \ < j s 2 m — 1 
we still have Ln iJy((t-x)J*, x)=ciJiJi\RnJ(x)\J*li Sgn Rn>i(x), the effect of 
which we cancel by adding Ln i j j (J, x) given in a similar way. In general we will 
define Ln iJi J k ( f , x ) by induction. We have 

Ln,i,h, ...^((.t-xy*, x) = cUlt Jk(Sgn RnJx^R^x)^ 

and for / < A < • • • = 2m — 1 we define 

Ln,i,h...jk{f,x) = ~ Ci-h—jk Sgn*„. , (*)Zfc , i W | i / . / (x) 

together with an appropriate modification for l / 2 < x ^ l in case / = [ 0 , 1]. The 
operator A„(f, x) is given by 

2m —1 
An(f,x) = L„(f,x)+ 2 {L-nM x) + 

¡=i 

+ 2 L n M k { f , x ) } 

where the second sum is taken on all finite sequences j\, -..,jk for which 1 ... 
...<jk^2m — 1. To calculate the variation of the measure defining A„(f, x), we 
simply estimate its norm as an operator on C(/) . We can write 

2 m - 1 f 2 i 241 
lAn\\^M+z{~+ 2 h A jfclyyj > 

and since ct j are just constants that do not depend on our operator at all just 
on the i and j's (in case Rn i(x)=0 they do not count at all being multiplied by 0), 
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we have a bound for the variation Vnx(t) of the measure /?„,,(/) givenfor An(f,x) = 
= Jf(t)dpn<x(t). To estimate J(n,x)= f (t -xfmdVnx(t), we write 

i i 

2m—1 
J(n, x) S Z ) „ W + 2 { K i W n ' m ^ 

i = 1 

+ 2 \Cuj1...jMA*)\*m"^i.Jr j'fc — 

2m—1 
*~Dn(x) + K2 |7?„>i(x)|2ra'; 

i=1 

since mt and j are numbers independent of the particular operator. 
Finally, we 'use ' theorem 2.1 and obtain x)- /(x) |3=Cco2 m( / , 2?„(x)1/am) 

where an estimate for C is given in that theorem. To obtain the estimate for 
\L„(J, x)-/(x)|, we estimate L„,; and LnJJi by |L„, i( / ,x) |^( l / / ! )o) i( / , K ^ x ) ! 1 " ) 
and 

IL n , U l J f , x ) \ ^ « J k ( / , IK.iWI17') -Jk-

^ \ci,Ji, J ^„.¡(x)!1^) 
Jk-

and this completes the proof. 

3. Some preliminary Lemmas. For the result involving interpolation spaces we 
will need a few preliminary Lemmas which may be of interest by themselves. 

L e m m a 3.1. Suppose / €C[0 , 3/4], / ( i )(x) for 0 s / < 2 / w — 1 is locally absolutely 
continuous in (0, 3/4) and |!x2mi/(2m>(x)||C[0, (3/4)] —^(/)<0° where 0 < y < l , then we 
have 

(3.1) l ^ - ^ + W * ) ! ! ^ « . ] S * ( 1 > ( j O + ||/||c|o_JLJ) for 2my — 2m + i > 0 

and 

(3 2) II/ (°WI!C[0>3J (<?(/) + I l / l l c [ 0 , | ] ) f o r 2my-2m+i^0. 

P r o o f o f L e m m a 3.1. The proof follows to some extent a proof of a special 
case proved earlier by the author [2, p. 280]. We have |x 2 mT" ( 2 m>(*)N#(/) in 
(0, 3/4] and therefore |/<2m>(x)|=3M<2>(/) in [1/4, 3/4]. Consequently, | / ( 2 m " r ) ( x ) | ^ 
== M x ( / ) + H/llC[o,(3/4)]) for 1 / 4 ^ x ^ 3 / 4 and in particular for x = l / 2 . (This 
result follows a Kolmogorov-type inequality in a finite interval where the best 
constant is not known.) Assuming by induction on i \x2my~ifi2m-i)(x)\^K(<P(f)+ 
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+ 11/11) /=0 , . . . , y - l and 2/wy—y>0, then 

/№"-.» (x)- /№»-.*) m i 1 / / ( 2 m - J - 1 ) ( " ) d « | ^ 
* 

1/2 

s * ( * ( / ) + l / l ) | / == K 1 ( * ( f ) + m ) x J - t m r 

X 

or 
/<«"-•»(*) ^ (4> ( / ) +1/1)x'~imy+M1 (M<P ( / ) +1| / 1 ) ^ 

^ K2($(f) + \\f\\)xJ~2my 

which concludes the proof for 2my—j>0. For j satisfying 2my —j= 0 we obtain the 
1/2 

estimate l / ^ - ^ O O I ^ ^ C O + LL/LL) |log JC|. Since f |log u\du ^ M and 
1/2 ¿ u 

f - s M for a < l , we obtain the estimate | / ( 2 m ' J° )(x) |ssA'2(<f(/) + | | / | | ) in 

[0, 3/4], for the first j satisfying 2my—2m+/<0 which we denote by j0. Therefore, 
also for we have 

j —Jo 2M - j 
l / ( 2 m " J ) W I ^ (l/(2m-J'°)!l2m-J° ll/ll2m-J°) ^ ^ 3 ( f ( / ) + l l / l l c j 0 _3j). 

We will now define the interpolation space which we will need in this paper. 
A will be the space of functions with 2m continuous derivatives in the interior of I 
whose i derivative for i<2m is locally absolutely continuous, and for which the 
seminorm ^ ( / ) = ||(<j£>(-v))2m/(2m)(Ji:)llc(/)<00 for some fixed weight function cp(x). 
Recall that the Peetre K functional for the pair of spaces (C, A) is K ( f , t) = 
= / = mf / t {l l / i l | C ( / ) + ^ ( / a ) } and the interpolation space (C, A)x (or (C, /!)„,„) 

is the collection of all functions for which sup — ^ - 2 . -&M, for some constant Mr. ' t" 1 

L e m m a 3.2. Let A-, and A be the spaces for which 

1 ^ - 2 ^ ( 0 ( ^ 1 ^ < O Q a n d 

respectively (the derivatives of lower order being absolutely continuous locally), then 
for 0 < y < l and 2 w y - 2 w + / > 0 we have /€(C[0, 3/4],A)„ implies /6(C[0, 3/4], At)fi. 

P r o o f . The Lemma follows immediately from (3.1). 

L e m m a 3.3. Let A(j+1) be the space of functions whose derivatives up to 
fiJ) are locally absolutely continuous in (0, 3/4) and for which ||xCT/(J+1)(*)llc[o, 3/4] = 
= <Pj ( f ) < OO for some 0 < a < y + l , then f£(C,A(j+ l))p where. C=C[0,3/4] 
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for some 0</i< 1 implies \AJ
h+*/j+if(x)\^Mha+1)e and in case tr^l it also 

implies f€Lip*jf}. 

Actually for tr< 1 the second part of the Lemma is an immediate corollary of 
Lemma 3.1 and is not too interesting. The interesting part is when a=l. The first 
part of the Lemma for even j + 1 was proved in [5] and in fact the proof is very similar. 

P r o o f of L e m m a 3.3. For / 6 ( C , A(j+l))fi we have for any t functions fx 

and f2 such that / i€C[0 , 3/4], W M ^ m - M * ' and f£A(j+\) such that 
and f=fx+f and M does not depend on T. For 

[x-i±!-hx°»+1, x+i^-hx"'^ c [o, j ] 

we have 

M & W M I as M & W i ( * ) I + M & W S ( * ) I = h + i 2 . 

Choosing T=h } + 1 , I i s 2 } + 1 M h i i J r 1 ^ . Using Taylor's formula, we have 

max I f \u-x + {^--l)hxa'J+1} \f^+1\u)\du = 
o s / s j + i i j i ( 2 ; j 

l\hx+ 1 

= Mi max 1(1), 
OSiSj + l 

and we will estimate 7(7)for /<( . /+1) /2 and />(./ '+1)/2 separately. For />(y '+ l ) /2 
we have 

j 
j+ i L - i i + l - i W / « 

/ 1 1 , , — | M ^ 2 0 + l) ( M ) | i / U £3 

^ M4>j(f2)hJ+1x-'x° s= M&j(f2)r. 

For / < ( / + l ) / 2 we have the same estimate provided x/2>((j+l)l2)hx°IJ+1. 
If however x / 2 < ( ( ; + l)/2)/jx f f / J + 1 then 

x - ^ i - l j / j W - i + i 

x 
^M<Pj(f2) f u^* du ^ M<Pj(f2)Xj+1-'' S M<Pj(f2)(hx''IJ+1)J+1x-'' = M<Pj(f2)x. 

o 

This completes the proof that 
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We are now ready to prove the second (and probably the more important) 
contention of our Lemma. Using a well-known result [14, p. 105], we have 

A i , f ( x ) - V A i f ( x ) = J2 2 iiWv̂  + v / ) 
v=0 11-v+l W 

where Anf(x) are forward differences. We now use the former estimate on AJ
n
+1f(x) = 

=AJ
n
+lf(x+(j+l)ril2) and obtain 

\Ai,f(x)\ ^ -^i MJ2,/WI+yosmax_i \ A ^ f ( x + vn)\ s 

1 - i f n YU+1)/» 

I r(v+V)"J j 
and for o = 1 we have 

Repeating the above process I times, 

\AJJ(x)\ == \Ai,J(x)\+j-M 2o 2~jk(2*nyl> ^ {Ai.Jix^+j-M.n jf> 

Choosing I such that 1 / 8 ^ 2 ' ^ s 1/4 and using the elementary estimate 
\A{inf{x)\=2i\\f\\, we complete the proof. (Actually we proved the Lemma for 
0 < x < 1/4 but apart from the singularity near zero the Lemma and an even better 
estimate are well-known). 

L e m m a 3.4. F o r | | x 2 m V ( 2 m ) to l l c [ i /2 ,~ )< °° a n d l l/ l lc[ i/2,~]< °° w e h a v e 

I I * W * ) ! C [ - 1 „ ] ^ C ( l ^ " " / ( 2 m ) l i c [ | ; „ ] + l l / » c [ | , „ ) ) -

P r o o f . In [A, A+Afi] the Lemmas follows [5, p. 311] with b-a^A11. Our 
Lemma follows patching together pieces of this type. 

4. Rate of convergence for the intermediate space. In this section we will be inter-
ested in the analogue to the direct theorem that shows that for 0 < a < 2 
( ( x ( l - x ) y / 2 A 2

h f ( x ) ) ^ M h * or \A2
h(pf(x)\^Mha where cp(x) = ( x ( l - x ) ) 1 / 2 which is 

equivalent (see [5, p. 312]) we have \\Bn(J, x ) - / ( x ) | | = 0 ( l / / f / 2 ) . The results here 
are not corollaries of the results in section 2 and this is best illustrated by the fact 
that in the particular case Bern stein polynomials after proving the analogue of Theo-
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rem 2 . 1 for positive operators, STRUKOV and TIMAN [ 1 3 ] show with a relatively lengthy 
computation that ||JB„(jcy, i ) — =0(l /n*) for 0 < y < 1 which would have followed 
from ( ( x ( l — x ) ) M l ( x 7 ) ) s M h 2 v (a result which follows observing that for 
x(l— x ) ^ 5 h the estimate is obvious and for ,x(l —x)^5h the mean value theorem 
yields the estimate). 

D e f i n i t i o n 4.1 (a) A function cp(x) defined on / = [ 0 , 1] satisfies the y con-
dition for some OsSysSl if 0 < A x y ^ y ( x ) ^ B x y for 0 < x S l / 2 and 
^q>(x)7sB(l-x)y for 1. (b) A function on I=R+ or R satisfies the 
(7, P) condition for some O ^ y S l , O ^ j S ^ l if 0 < A x y ^ ( p ( x ) ^ B x y for 0<|x |=Sl/2 
and elsewhere. 

T h e o r e m 4.1. Suppose for a sequence of linear operators on C(I) where 
/ = [ 0 , 1 ] , I=R+ or R given by L„(fx)= Jf(t)da,hX(t) we have 

i 

a) f tld<x„tX(t) = xl for i = 0, 1, ..., 2 m - ] , 
i 

vn,At)= f\da„iX(u)\*M 
ust 

and 
b) / ( t ~ x f m dvn<x(t) ES <J?r(<p(x) + 1,iym 

i 

where a„ = o(\), cp (x) satisfies condition y or condition (y, ft) (Definition 4.1(a) and 
(b)), nn^O(ayJ1~y) if 0 < y < 1 while ij„ = 0 for y = 0 and y = l . Then for f 

MC,A\ we have \\f(-)-Ln(f • )llc(i> = 0( f f j~) . 

The spaces (C, AX were characterized in [5] for cp(x) given here. (See also Lemma 
3 . 3 ) . 

R e m a r k 4.1 (a) The addition of the term r]n is important for some applications, 
though it looks at first glance somewhat artificial. Of course the theorem is valid 
(and easier to prove) with r}„=0. 

(b) One could have different y near 0 and 1 which we call y0 and yL respectively 
in which case the theorem would still be valid provided that and 

J { t - x ) ~ d o K t X { t ) ^ o ? { < P W + n « ( f ) T with i7„(0) = O(<xj>,1-y°) for O S x ^ l / 2 
/ 

and t1„0) = O(al i l l~7<) for 1/2sLv==1 if y ^ O , 1, and >/„(/) = 0 otherwise. Since 
the proof will concentrate at the boundary points one at a time, no other change will 
be required. 

(c) The special case of Theorem 4.1 dealing with positive operators was treated 
by V. Totik who had somewhat different (and more involved) conditions on (p(x) 
[16]. It can be noticed that differentiability, convexity etc. of cp(x) are not the issue 

8 
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here. However, it should be noted that Totik treated, the inverse as well as the direct 
- theorem for positive operators. 

(d) For I—R generally y = 0 (in applications). 

P r o o f . For / £ (C , A)a there exists for each t fx and f2 such that / = / i + / 2 

and \ \ M c W + ^ ( f 2 ) s K z ' or WAWmKr' and r<P(f 2 )^Kx\ Choosing x = a f , 
we have | | L „ ( f , x)-/(x)|| ^ \\Ln(fu x)-/Ax)]] + \\Ln(f2, x)-f2(x)\\ ^ ( M + 1 + 
+ 11 Ln(f2, x)-f2(x)\\. 

We wiU now show that for f ^ A | | L n ( f 2 , x)-f2(x)\\^Na2
n

m<P(f2) which is the 
crucial step in the proof and which with the estimates above will complete the proof 
our theorem. For g(t)£A we write the Taylor expansion 

(2m-1) (*) + 
Ci _ ^cam-i) 

g(t) = g(x)+(t-x)g'(x) + ... + g' 

+ ( 2 ^ T ) i / ( M - i ) 2 m " l g ( 2 m ) ( M ) i / w -

For 0 < y < l , Ba^-^xSljl and for I=R+ (or R) x<t, (whilein case / = [ 0 , 1] 
x < / ^ 3 / 4 ) we have 

For / < x , 0 < y < l and 1/2 we have 

X X x 
= t c ^k-i anc* therefore for k — 1, or — ^ t < x, 

X X 

I f {u-tfm-1g^ni){u)du\ == C4>(g) f 
t t 

Hs) 

(u A2m — 1 •y2my 
K

 uly du - C — ( x - i f - H g ) S 

l2m (*- ' ) 2 m - For k > 1, « / < - ^ r r we have-2k ~ ' ~~ 2k-

( M - 0 2 m ~ 1 

0 ( * ) + f n ) : 

| / ( x _ 0 2 m - l g ( 2 m ) ( „ ) i i M | ^ C $ ( g ) | ^ 

^ C f ( g ) / 
x/2k 1=0 jc/2« +1 

t | 2 m - l 

- 2 m j ,2ym du ^ 

^ c<Kg) 2 
1=0 

L I 1 l 1 * 
~ 2" J 2 , + 1 (x—tYm (x—t)2"1 
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Therefore, we use the estimate 

4 ( g ( 0 - g ( 4 *) - ( 2 m 1 } , L„(f ( u - t f ^ g™(u) du, x) 

for 1=R+ or R and B f f J ' 1 - ' t o get 

Ln{g(t)-g(.*)> *) ^ C H g ) = C*(g)«i". 

For /= [0 ,1 ] , Bo^-i^xtbIII we have 

3/4 t 

I L n ( g ( t ) - g ( x ) , x ) ^ f | / (h —i)2m_Ig (2m)(M)| dv„yX(t) + 
0 x 

2m—1 1 } 
+ 2 7rlg(i)WI / li-xI'd^xW^ 

i=o J! 3/4 

2m—1 1 
2 |g ( 0(x)| / 

which, using Lemma 3.1, implies for the x in question |L„((g(/) ~g(x)) , x)[ ^ 
^C<P(g)alm. For x < B a l l l ~ y we observe that 2m(l —y) is either an integer of not. 
If 2m(\—y) = i, then 2my —2m+i=0 and therefore, using Lemma 3.3, Lip* ai 
in [0,3/4]. Therefore, for a given T , / = / 1 + / 2 such that WM^Mx" and 
^Mr"^1, and we write again r=<T2m. We observe now that 

\L„(A, x)-f2(x)\ =s i.||/2«|| f\t-xUvn,x{t) S 
i! / 

^ • ^ ¡ m { ¡ ( t - x r d v n t X ( t f 2 m { f dvniX(t)Y~^ ^ K (|/2
(i) || {cp (x) + >]„)' a'„ ^ l- I I 

^ KAf^W^-'c'n ^ KAfPWrT ^ K2<T*r. 

For 2m(1 —7) not an integer, choose / such that 0 < 2 m y — 2 m + i < 1 and, using 
Lemma 3.2, / 6 ( C , A\ implies / 6 ( C , At)tt where At= {/, | |x2m^2+ i/< i)(x)||C[o.3/4]< 

We write f=fi+f2 where H / J ^ M x a and <Pi(f^^Mta-1 and set i=<r2m. 
Now 

I Ln(/2, x) ~ / 2 ( x ) I g ( / 2 ) / / du dvn,x(t). 

For x < B a 1 ' 1 y we have for / > x 

• (u-ty 
a 

t-1 
,2my—2m + i rdu Ä C l i - x l ' - 1 / u2m-2my-i du 3= CxIi — x| '~1 f 2 m -2my+1 . 

0 

3= C1\t—x\2m~2my 
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and for 

f i 
0u-tf 

•du 
/ 1« 

IK - ' I ' " 1 

2m + l du S C |x - / | 2 m - 2 m i ' . y2my—2m + i 

But, using Holder's inequality, 

7= / \x-tr-^dvn,x{t) ^ { J \ x - t r ^„,x(i)}1_V{ fdvn,x0)}y S 
I i i 

which for xSBa)! 1 -* implies J^C1alm~2 m- '(ayJ1-- ')2 m-2 m y^C1a2
n

m . With the above 
choice o f / 2 and T, we have our estimate for 1 /2 and 0 < y < 1. For y = 0 the 
estimate is actually trivial. For 7 = 1 we write 

x Am 1 
I / {u-tr>-^\u)du\ ^ -(u-iT 

for t ^ x / 2 and therefore 

\L„(g,x)-g(x)\^\f g(t)dalhX(t)-g(x) f d«„tX(t)\ + 
xl 2 x/2 

(2m — 2||g||c f dvmiX(t) + Urn / { / ("-02m-1g(2m)(«)du 
/n{»=-(*/2)> It 

4m 1 /• + J ( u - t f m dvn>x(t) ^ 

4m 1 1 
" ^ ^ l ^ T = c ( l g l c + * ( g ) K 2 m . 

One can note that | | g | | c S | | / | | c + l and therefore the estimate follows). For / = [ 0 , 1 ] 
near x= 1 the estimate is similar to the above. We now have to estimate the rate for 
x bounded away from 0 for R+ or R. For t>x^]/2 (in R+ say) 

\J (u-tr^g^(u)du\ -

Otherwise we distinguish the two cases x—xp/4<t^x, x^l/2 and t<x—xp/4, 
I Q 

* S l / 2 . In the first case we have | f ¡w~t\2r,g(2m\u)du]s — ( x - t ^ ^ i g ) 
X m 
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and in the second case we just write g(t). Consequently 

ILtt(g, x)-g(x)\ S ^ f ( x - t f m $ ( g ) d v n , x ( t ) + 
2m—1 „ n 

+ C 2 |g<0(*)l f \ t - x \ i d v „ y X ( t ) ^ _ £ ^ ( p ( x T m a t " < 0 ( g ) + 
«-« tSl-d/i) <p(xfm 

2m —1 
+ c x 2 I ^ W K * ' ) - 2 " 1 * ' / k - x r ^ M ^ 

1-0 / 

2m—1 

i = 0 

and using Lemma 3.4, we complete the proof of our theorem. 

5. Rate of convergence, continued. In this section we will deal with the situation 
in which moments of lower order are different from 0. We denote 

(5.1) f(t-xyd«„tX(t) = Rnii(x). 
i 

A different result for approximation operators for which R n i i (x )^0 for some of 
the f s was given in theorem 2.2. We will first itemize what conditions the functions 
R„yi(x) have to satisfy and while these conditions are not very simple to state, they 
are relatively simple to verify in applications. 

D e f i n i t i o n 5.1. For /= [0 ,1 ] , 0 < y < l , R„ti(x) satisfies the (y, 2m, /, <t„) 
condition if 

|/?n>i(x)| ss Ma2
n
m min{max ( x ( l - x ) , o - i ' i - ^ ^ m - H ^ 

for y = 0 \Rntl{x)\^Mo2™ and for y = l | i?n i i(x) |^M<r2 m(x(l-x)) ; . 

D e f i n i t i o n 5.2. For / = / ? + (or jR) /?M(x) satisfies the (y, p,2m, i, a„) 
condition if for | x | ^ l / 2 it satisfies the condition in Definition 5.1 (x may replace 
x( l — x) but that would not change the situation) and for other x, | /? n i i(x) |s 
s i M f f f | x f . 

We are now ready to state and prove our theorem about rate of convergence. 

T h e o r e m 5.1. Suppose a sequence of linear operators on C(I), L„(f,x)= 
= Jf(t)da,lyX(t) satisfy the conditions of Theorem 4.1 except that R„ti(x) are not 

i 
necessarily 0 but satisfy the conditions in definition 5.1 and 5.2 with the same y 0 S y S 1 
and P 03§j8s=l given in theorem 4.1, then for / 6 (C , A)a, 0 < a < l , || £,„(/, & ) - / ( • ) || = 
= 0 (a^), where A={f; ^(/)=| |9>(x)2 m / ( 2 n , )(x)| |C { i )c <*> andf has 2m-\absolutely 
continuous derivatives locally in the interior of I}. 
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P r o o f . The process that we use is the same as that of Theorem 2.2 and we 
construct a new operator A„(f,x)—Jf(t)dfi„x(t). In order to complete the proof 
we have to show two things: (a) that the behaviour of J(t—x)2mdV„x(t), where 

V„x(t) is the variation of /?„,*(<)> is the same as J(t—x)2mdvnx(t) (required in Theo-
rem 4.1) where i>„jX(i) is the variation of anx(t)\ (b) that for /£ (C, A)a the operators 
we added contribute at most Ma2

n
m*. 

To prove (a) let us recall that we have introduced the operators CZfa (jc)|i/i z ^ 
sy<2/M for X<1/2 or in general in case / is not [0, 1] and C3J_\R ((jc)|i/< for 
x > l / 2 and /= [0 , 1]. Each term of this kind will add. to the variaton of oc„pX(t), 
that is to v„tX(t), to produce eventually (after the process is completed) the operator 
An(f,x)= f f ( t ) d p n x(t) where we denote the variation of P„<x(t) by V„_x(t). The 

amount added to f (t-x^dv^^x) to get f (t-x)2mdVnx(t) is for each i a con-
/ / 

stant times |/?„;i(x)|2m/i. We will now show thatthese additions with Rnji(x) restricted 
as in the conditions of our theorem will leave us with a new operator J f ( t ) d f l n x(t) 

i 
that satisfies the restriction in Theorem 4.1. 

For y = 0 or for 0 < y < l and 2my—2m+i^0 we have 

l*„,i(*)|2m/i = (MoTYmli S Mer<2m)2/i = Mo»»ojMtsm/o-D =s Molm(oll1~''Ym 

since y/(l — i)^2m\i— 1 =(2m—/)// which follows 2m—i^2my and / s2m( l—y) . 
For 0 < y < l and 2my—2m+i>0 we have to distinguish two possibilities: (I) 
x( l -x)^Ao1J1~y for / = [ 0 , 1 ] (and ^ V j 1 ' 7 for I=R+ or I=R)\ (II) 
xil-x^Ao]!1-! for / = [ 0 , 1 ] (and x^Ao1^7 for I = R+ or I=R). For the 
situation (I) we have 

K i ( * ) | 2 m / i = M(af'i(o1Jï-yY2m7-îm+i)l,Jm = MoT11-1 = M<rTvT(yll-y)-

For.the estimate in case II we will be concerned with the case 0 < x < 1/2 (the 
other case being similar) and obtain 

|Z?„ ¡(x)|2m/i S yl/cr(2m)=/'x2m(2my-2m + 0/i _ ^ff2m|y2m(2m-i)/ix2m(2m)>-2m+i)/''] < 

^ ^ i f f 2 m | ^ ( l _ y ) 2 m ( 2 m - 0 / i ^ 2 m ( 2 n i ( y - l ) + >)/ij _ 

For 7 = 1 we have near x = 0 [ R„s f (x)|2m/i si M (of |x |i/i)2m ̂  Mo2
n
m x2"1 (and for x 

near 1 in case / = [ 0 , 1] the same type of estimate follows too). We are left with the 
estimate for other x but there \RnJ(x)\2m/l^Moi2mW\x\2mpili^Molm\x\tm?. 

We will now prove (b), that is, we will show that near 0 /€ (C , A)a implies 
for i ^ j < 2 m (x)|t/i/(x)|^AforJm*. It is a similar situation near x = l in 
case /= [0 ,1 ] and for other x it is substantially simpler. It is enough to prove the above 
contention for j=L First we see that for f(L(C,A)a we have / ( x ) = / 1 ( x ) + / 2 ( x ) 
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where H / J c y , ^ * « ? " and where K does not depend on n. 
We can now write 

\A\Rn lWif(x)\ == + Mitf^Mii/i/alX)! = h + h. 

Obviously, I^VKa2™ and | | / 2 | i c ^ | | / | | c + l- For 2my-2m+i<0 Lemma 3.1, 
yields \\f?\\^M{<t>(f2) + \\Mc) and ^ W ^ M o ? ' 1 or 

^ l ^ i M I I I / ^ W I i S M'ol™o-2ni(=i-i) = M ' c T . 

For 2my — 2/?z+/>-0 we estimate first for x=AalJ1'y or for 7 = 1, and x^\/2 
and write using Lemma 3.1 

i/.i = i ^ . i W i / ^ c a i ^ Ma^x^-^'if^ioi ^ M^(emy-2m+i\fino\)^ 

^ Mlffn
2»'(i)(/2) + |;/2|i) M ^ a f ^ = M2anf\ 

For x-SAoW-y we observe that | ; ( x ) | 3= Maf (a^1 ~ yfmy"2m+'=Maf~' or 
Writing 0 = \Rn<i(x)\,fi, we have | ^ / 2 ( x ) | ^ 4 / 2 ( x + ( i 0 / 2 ) ) | 

and we can use the Taylor formula with integral remainder to expand around 
x+(i0)/2 and obtain 

x+(i/2)0 

№/«(*)! = M ¿Bf j J / ( " - * - /2 (0 0 ) = M max. /(/)• 
— x+10 

For / > / / 2 we have 
x + 10 

J (I)35 / (x + W - M y - ^ / ^ ^ l rfwS 

^t'0 Cv4- Iff — i/V-1 = / / ¡ V L 
x+WW I x + y O j 

^ 0.' M ' ( i » ( / 2 ) + | | / 2 | | )a , f = W'V2'" 

For /< / / 2 we have 

AO ^ M f ( du ^ 
x+ie " 

x+oi2)e 
/ i ( i>( / 2 ) + |!/2||) 
0 

and since 2m—2my>0, as we already treated 7 = 1 , we have 

We now turn our attention to the case 2 m — 2 m 7 + / = 0 by first observing that 
/ € (C , A)x implies quite easily f£(C, Ai+1)a where Ai+1—{f; f , ..., f0) are locally 
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absolutely continuous in (0, 3/4) and | |x/ ( '+ 1 , | | < Using Lemma 3.3 with i—j, 
<7=1 and P=<x, we have 

IAn„,^nf{x)\ ^ M\Rn¡(x) S MxaT. 

One need now only observe that near x= 1 ( incase /= [0 ,1 ] ) the proof is similar 
and lor other x we actually just use and obtain our result. 

6. Application, some positive operators, (a) The Kantorovich operator given by 

k+l/n + l 

f * ( l - 0 " - * ( n + l ) f f ( u ) du 
(c/n+l 

u 
or by Kn(f, t) — (d/dt)B„+1(F, t) where F(u)= f f(v)dv and Bn(f,t) are then 

o 
1 - 2 1 

Bernstein polynomials. It is known that ATB(1,/) = 1, K„( • — t, t)=- — and 
2(« + 1) 

K„(( • - 0 * . 0 = ~ + 0 ( h ~ 2 ) - Using Theorem 2.2. with 

1 - 2 ? 

and * (/) = — _ — , we have: 
2 ( h + 1 ) 

T h e o r e m 6.1. For / 6C[0 , 1] and K„(f,t) defined by (6.1), we have 

(6.2) \ k m ? ) - / ( ? ) | ^ M o ) 2 ( / , 

(and the theorems 2.1 and 2.2 can yield a reasonable estimate on M while L can be 
estimated by 1). 

Using Theorems 4.1 and 5.1, we obtain with y = 1/2, on = \¡fñ, t]„ = l/Yn and 
m—2 the following result. 

T h e o r e m 6.2. For /€(C[0 , 1], A\, 0 < a < 1, where A = {f\/(1 - t ) f ( t ) £ 
6C[0, l] and / , / ' are locally absolutely continuous in the interior of (0, 1}, then I I K „ ( f , • ) - / ( - ) i l a o , i ] = 0 ( i K ) . 

R e m a r k s . (I) We cannot omit the second term in Theorem 6.1 as is obvious 
when we observe the effect of the function x. (II) In [15, p. 54], in an added in proof 
remark, V. Totik indicated that the analogous result (to Theorem 6.2 is valid for 

(6.1) K n ( f , < ) = 
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(b) The integral version of the SzasZ and Baskakov operators are given by 

(6.2) S*(f, x) = f /(«) du 
*=<> fc! kfn 

and 
CO I I n k + l/n 

(6.3) vn*(f,x)= 2 \ k ^ ( 1 + * ) — f №du 
fc=0 v K ) J„ 

k t+l/n 

which can also be given by 

(6.4) Sn*(f,x) = ~Sn(F,x) Vn*{f,x)=^Vn_1(F,x) and F(u) = f f(u)dv 

where S„(f, x) and V n ( f , x) are the Szasz and Baskakov operators given respectively 
by 

(6-5) S M x ) = Z e ^ f [ L ) 

and 

(6.6) V„(f, x) = J + **(!+*)—1'/(£) . 
0 ' 

T h e o r e m 6.3. For f£C(R+) 

(6.7) \S!(f, x)-f(x)\ ^ Mco2 ( / , + ( / , 

and 

(6.8) |K„*(/, * ) - / ( * ) | ^ M a ^ / , + £ + . 

P r o o f . One can calculate D„(x) R„,i(x) and Rn(x) as Dn(x)=x/n +1/3/22, 
Rnl(x) = l/2n and (x)=x/«+(7/12) (1 jn2) for the Szasz operator. 

We will calculate in detail for the integral version V*(f, x) of the Baskakov 
operator D„(x), R„(x) and -Rnjl(x), 

Dn(x) = V:((t-x)\x) = 

»jct ' i^- i fm'fer-dm'ft inH^ 
= Vn(t\ x)+^vn{t, x)+-^Vn(\, x) — 2xV„(t, x)~Vn(l, x)+x2Vn(\, x) = 

= x ( l + x ) 1 
n 3n2' 
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K ; ( ( i - * ) , * ) = * / « + l/(2»i) and therefore R n (x )^D n (x ) + R„,i(x)2^ 
^2x(l+x)/n + l/rri. Substituting the above in Theorem 2.1, we have Theorem 6.3. 

R e m a r k s . One cannot omit the second term from formulae (6.7) and (6.8) as 
the result would fail then for the function x. The corresponding results for the opera-
tors S„(f, x) and V n ( f , x) would already follow the theorem of STRUKOV and TIMAN 
[13] and therefore are not stated here. Similarly, one can prove the following corollary 
of Theorems 4.1 and 5.1. 

T h e o r e m 6.4. For f£(C(R+),A)x where A = { f \ x-f£C(R+)} 

(6.9) 

and 

(6.10) 

T h e o r e m 6.5. For fe{C(R+), A\ where A = { f ; x(l+x)f'^C(R+)} 

(6.11) 

and 

(6.12) 

P r o o f . We simply adjust the moments already calculated to the moments and 
functions in Theorems 4.1 and 5.1. We observe that 7 = 1/2, o„=\Hn and T/„ = 1/ /« 
in both Theorems, but >3=1 /2 in Theorem 6.4 and /? = 1 in Theorem 6.5. 

Theorems 6.4 and 6.5 could be adjusted to exponential behaviour as x tends to 
infinity following the treatment in [3] for instance but it is the goal here to get corol-
laries of the general theorems preceding this section rather than deal with particular 
behaviour. 

One should note that in Theorems 6.2 and 6.4 and 6.5 we have t]n?±0 and 
while it looked redundant to allow such tj„ in the beginning, from the point of view 
of the applications it would appear quite important. 

(c) The Post-Widder Laplace transform inversion formula. 
The Post-Widder Laplace transform inversion formula is in face an approxi-

mation operator given by [17, Ch. 7] 

IIW, *)-/(*)!«*•> s M -

I I C ( / , * ) - / ( * ) | | c ( r + ) S M -

(6.13) Pn(f, 0 = ± (y)"+1 / e-"l'u"f(u) du. 
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It is an inversion of the Laplace transform given by 

(6.14) ^ a ^ C - i r ^ f y j f y ) + where F(u) = f e~«f(t)dt. 

The difference between this and earlier examples is that here y (that corresponds 
to Theorem 4.1) is equal to 1 rather than 1/2 in (a) and (b). Since P„( 1, 0 = 1, 
/>„((• - t ) , t ) = 0 and P „ ( ( - - t ) 2 , t ) = t2/«, we have: 

T h e o r e m 6.6. For P„(f\ t) defined by (5.13) on C(R+) 

(6.15) | P n ( f , 0 - / ( 0 1 S 15co2(/, 

and for f£(C(R+),A\ where A = { f , t*f"(t)iC(R+)} 

(6.16) | | p „ ( / , 0 - / ( 0 l l c ( « + ^ M - l . 

Again one can modify the result for exponential growth, 

(d) the Meier—Konig and Zeller operator given by 

(6.17) ^ D - l l - ^ f i " ) ^ ) 

can also be treated using theorem 4.1 and it can be shown that: 

T h e o r e m 6.7. For f£{C[0,\],A\, 0 < a < l where 

A = { / ; |U( l - x ) 2 / " ( x ) | | C T o , i ] f f'iACXoc{0,1)}, 
we have 

P r o o f . This immediately follows the calculation of the moments. 
The interesting part about this operator is that the y's near zero and near one 

are different (1/2 and 1 respectively), a possibility mentioned in Remark 4.1(b). 
For a similar operator 

we have M+{f, t)=Vn{f, t ( l - t ) ) where f1(u)=f{ul(\ +w)) and V„ is the Baskakov 
operator given in (6.6). It is not easy to translate the behaviour of V„ to that of 
M+ or Mn and it better done directly. 
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7. Non-positive approximation processes, combinations of Bernstein polynomials. 
In sections 7 and 8 approximation processes that are not positive but that converge 
faster depending on higher degrees of smoothness, will be discussed. In particular in 
section 8 we apply our theorems to combinations of „Exponential-type" operators 
introduced by C. P. May in [9] and [10]. In [2] the author proved a global direct and 
inverse theorem for combinations of Bernstein polynomials. We will see first how the 
direct part of [2] follows from the general theorems of this paper. Actually the results 
in Theorems 4.1 and 5.1 were motivated by the result on Bernstein polynomials and 
it seems interesting how those general theorems apply. 

Combinations of Bernstein polynomials that would yield faster rates of conver-
gence are given by 

(7.1) ( 2 ' - l ) £ „ ( / , r, x) = TB2n(/, r - 1 , x ) - B n ( f , v 1, x) 

and B n ( f , 0, x ) = B „ ( f , x). Other combinations are possible (see [2, p. 278]) but 
these seem to be the simplest form with the given rate of convergence. To establish 
results as corollaries of (he theorems of this paper we have to compute moments of 
£„(/ , r — 1, x). (We choose B„(f, r — 1, x) with r— 1 use the same notation used in 
[2]). First we observe that 

( 7 . 2 ) B „ ( f , r - l , x ) = 2 C j B 2 j n ( J , x) 
i=o 

and Ct are constants independent of n which among other properties satisfy 

(7.3) ' Z Cj = 1 and C jn - 1 = 0 for 1 = 1, ..., r - 1 . 
¡=o /=o 

We set 2m —2r and calculate D„(x). Using (6.2) and [2, (4.2) p. 285], we have 

2 \Ci\B2in((t—x)2r, x) ^ ( S V i l ) max|f i 2 i„(( / -x) 2 ' , x)| . 
¡=o ¡=i 1 

s ( S V , l ) B „ ( ( t - x r ; x ) = 
¡=o 

- ( 2 \ Q \ ) - x ) Y + a 2 ( x ) ( x ( 1 7 ) y " 1 + . . . + A r ( x ) -

^ Kn-r [(x:(l-JC»+-i-] ^ K i n - r [ l ^ ( l - ^ + n - ^ . 

To calculate Rnii(x) we use formulae (4.2) and (4.3) of [2, p. 285] together with for-
mula (7.3) here to obtain first Rn i ( x ) = 0 for z ' = l , . . . , r and then for / ^ r + 1 
we have 
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or f o r i S r + 1 , 

^ - ^ { ( x a - ^ + n - 1 } ' - ' == ^ - I C m a x i x O - * ) , « - 1 ) ] ' - ^ ' . 

We can estimate Rn(x) by Rn(x) ^K2n~r[/x(l - x ) + n ~ 1 / 2 ] ^ and this implies the 
following theorem. 

T h e o r e m 7.1. For Bn(f,r-1, x) defined by (6.1) and / (x)£C[0, 1] we have 

(7.4) | Bn(f, r - 1 , x ) - / ( x ) | s *{a> 2 r [ / ; + « - 2 f 2 ) + 

This result is new and was not proved in [2]. In particular for Bn(f, 1, x) = 
= 2B2n(fx)-Bn(f,x) we have 

(7.5) | 2 B 2 n ( f , x)-Bn{f, x)-f(x)| K {«, ( / , ( *(1 + n ~ 2 ] 1 V 

+ a ) 3 ( / ; n - ^ [ x ( l - x ) + i ] 1 / 3 ] J . 

We recall that for x3 

£03(/, hi)~K№ which will fit exactly here in view of the fact that, 
as we observed in [2, p. 279], 

\2Bn(f, x)-Bn(x)~f(x)\ m m[X{V~X)) ' 

is not equivalent to /GLip* a. As a corollary of Theorem 5.1 we have: 

T h e o r e m 7.2. For f£{C, A2r)x where 

A2r = {/; f , ..., f-^A.C.^i 0, 1) W | | (x( l -x)X/ ( 2 r ) (x) | | 

/ o r Bn ( / , /' — 1, x) g/uen (6.1), we /zay<? 

(6.6) ||5„(/, r - 1 , x)-/(x) | | c [ 0 > 1 ] ^ 

This theorem is the direct theorem proved in [2, p. 284]. 

8. Combinations of exponential-type operators. Exponential-type operators were 
defined first by C. P. May in [9] and [10] by 

b 
(8.1) SX(J- x)= f fV(A, t, U)/(W) du 
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where A and B may be infinite and W(?., t, u) is a measure in u satisfying 

(8.2) W(X, t, u) = W(X, t, u)(u -1) 

(where the derivative is taken in the distribution sense). C. P. May restricted himself 
to /> (0=0 being a polynomial of degree less than or equal to two for which many 
well-known applications are valid (Bernstein, Baskakov, Szasz, Post-Widder and 
Gauss-Weierstrass). Later ISMAIL and MAY [7] showed that if p ( t ) ^ 0 is analytic 
in (A, B), we still have some of the properties and results of [10]. MAY [9], [10] proved 
that for combinations of exponential-type operators local, direct and inverse theo-
rems are valid and ISMAIL and M A Y [7] showed that a local direct and inverse theorem 
is valid for S x ( f , x)—f(x) (no combinatons). We will show that in those cases global 
direct theorems follows Theorems 4.1 and 5.1. (The global result in this case is new.) 
The result in section 6(c) and the result in section 7 about Bernstein polynomials 
are included in this but the result in section 7 is important, being the motivating result 
for much of this paper; and in fact Bernstein polynomials were the motivation 
for exponential-type operators. 

We are now ready to define the combinations of S x ( f , x) for finite, fixed but 
arbitrary constants d0, ..., dk: 

(8.3) S , ( / , k, x) = 2 CU, k) Sdjl(f x) 
j'=o 

where 

(8.4) C(j, k)= Jl d j fc ^ 0 and C(0,0) = 1. 
¡=o d j — d i 

We are now in a position to state and prove our result. 

T h e o r e m 8.1. For f£C[A,B] abd /<E(C, A(k + \)\ where A(k + 1) = 
= {/;/> •••,/(2M"1) are absolutely continuous locally in (A, B) and <Pk(/) = 
= ||p(x)fc+1/(2,t+2)(x)||CU)B]< when p(x)^0 is a polynomial of degree 2, we have 

(8.5) | S x ( f k, x)-f(x)\\ciA,n S 

For other analytic posititve p(x) where ip{x) behaves like the q>(x) of definition 4.1 
near the boundary points A and B, we have (8.5) for k = 0. 

R e m a r k 8 .2 . (a) ISMAIL and MAY [7] do not deal with the convergence of 
combinations of the operators there but, following their properties 2.2 of [7, p. 448], 
some of these results will still be valid. Here we just want to show the applicability 
of our earlier result and not get involved in various generalizations of particular 
situations. 
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(b) As M A Y [ 1 0 ] and I S M A I L and M A Y [ 7 ] observed, and as was also observed 
earlier in this paper, exponential behaviour of the functions is allowed in case A or 
B (or both) are not finite. 

P r o o f . The key to the proof is proposition 3.2 of May's paper [10], p. 227]. 
The moments 

B 
(8.6) Am(X, t) = Xm f W(X, t, u)(u-t)mdu 

a 

are studied and, using the recursion relation 

(8.7) Am+1(X, t) = Xmp(i)Am-x(X, t)+p(t)-^ Am(X, 0, 

May showed that A„,(X, t) are polynomials in X (and in t when p(t) is a polynomial of 
degree less than or equal to 2) of degree [m/2] in X and that the coefficient of Xm in 
A^X, t) is cp{t)m and in A2m+1(X, t) is c(t)p(t)m. What is not exactly stated but 
still follows from (8.7) is that X~2kA2k(X, t) is a sum of the type 

Pit)' ^ pjt)"-1 , p(t)k~2 , 
~ J * ~ + C iCO Xt-1 Xk-2 + • • • 

P(.t)k P i t ) " - 1 

and that t) is a sum of the type — — — w h e r e if 
A A 

the corresponding y in Theorem 4.1 is 1, cx(i) may have a zero at the boundary 
(c2(/) a double zero, etc.). Observing that the combinations in (8.3) will cause 

t 1 2 c(j, k) = 0 for l^k, we will following the Bernstein polynomials case, 
j=o (djky 
obtain the correct estimate on the moments. For p(t) analytic we just claim that if 
y p(t) satisfies the condition on cp(x) in theorem 4.1, then the result is valid, which is 
obvious as X~1p(t)—Dx(t) and the first moment is equal to 0. 
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