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Rate of approximation of linear processes
Z. DITZIAN*

Dedicated to Professor K. Tandori on the occasion of lis 60th birthday

The well-known Korovkin theorem [8] established that a positive linear process,
(or a sequence of positive linear operators), on Cla, b] that approximates the func-
tions 1, x and x* (for instance) also approximates any continuous function. An off-
spring of that result is the MOND-SHiSHA [11] theorem that yields the rate of approxi-
mation of a function with certain smoothness to the rate of approximation of 1, x
and x2. The rate of approximation in the Mond-Shisha theorem and in many results
that followed were forcibly uniform, that is independent of the point at which the
function was approximated. In other words, the rate of approximation prescribed
does not take into account that L,(¢;, t) could tend to ¢; (@; being 1, x and x?)
at different rates for different points 7. Recently, EssEr [6] and STRUKOV and TIMAN
[13] proved that if L, are positive linear operators on C(I), L,(1,t)=1, L,(x, t)=t
and L,(x% t)=t2+D,(¢) (in which case D,(1)=0), we have |L.(f,t)—f()|=
=15wy(f, 1/2/D,(1)) where

ey wy(f, ) = ng {Sup (4375 Ix—n, x+n] < I)},

1is [a,b] or R* or R, 4,f=4,(4;7'f) and A4,f(x)=f(x+h/2)—f(x—h/2). (The
result mentioned here is that of STRUukov and TmMAN [13]; Esser [6] proved
somewhat less but earlier).

Examining the situation on the particular but significant example of the Bern-
stein polynomials given by

1.2 sro=3r(E)()a-»

we have the following two results which do not imply each other:
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a) For O<a<2, Sup [4}f(x)|=Mhr* if and only if |B,(f,t)—f(t)] =
h<x<l-—h

t(1—10)y2
§Ml( ( )] , BERENS and LorRENTZ [1].
b) For 0<a<2, Sup [(x(1—x)"24;f(x)|=Mh* if and only if
h<x<l—h

1B.(fs )= = M=o,

[2]. (In [5] it was shown that Sup |A,,q,(x) FfG)=Mh* forp(x)=Vx when

ht<x<1
x€[0, 1/2] and, ¢(x)=V1—x when x€(1/2, 1), is also equivalent to the above).

In this paper we will be concerned only with the direct theorem, that is, in the
particular cases (a) and (b) with the “only if” aspect. For positive operators for
which L,(x, t)=¢ Strukov and Timan settled the “only if*’ question analogous to
(a) and for positive operators with several conditions on D,(t) ToTik [16] settled the
question analogous to (b).

We will not have the restriction L,(x, t)=¢ (see application in §6) nor will we
require that the operators be positive, and, therefore, higher moduli of smoothness
can enter into the discussion (see applications in §7 and §8). We will impose relatively
simple conditions on the moments and the result will be applied to many operators.
The present result will provide some new applications even for positive operators. Its
main additional strength, however, will be its uses for some non-positive operators,
for instance combinations of “Exponential-type operators” introduced by C. P. MAY
{10]. We will be aided by results using interpolation of spaces and Peetre K functionals
and will introduce those concepts when needed.

2. Rate of convergence using moduli of continuity. In this section we will establish
a direct theorem analogous to example (a) in the introduction. For a positive operator
satisfying L,(1, x)=1 we have the representation L,(f, x)= f f(t)du, .(t) where

0y, x(t) is increasing and f do, ,,(t)—l The operators whlch we will treat in thls

paper will have the representatlon

(2.1)4 ' L,(f,x) = f S da, (1) where f da, () = 1,
I I

[ 1ty (D] = 5,0 and . v, () = M

u=t

The domain I represents a finite interval, semi-infinite ray or the whole real line and
with no loss of generality we may assume that I is [0, 1], Rt or R.
We can now state our first result.
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Theorem 2.1. Let I=[0,1], I=R* or I=R, L,(f,t)  defined by (2.1),
[ fdu, (D=x" for i=0,1,..,2m~1, and [ t—x)*"dv, ()=D,(x). Then
I . i L

1) ~7 1 = (w41 + G2 w0, Do)
for I=RY or I=R and

(4m)
2m

122050 101 = (M43 4+ &0 4 L em(3) g, (1, DY)

Jor I=[0,1] where L depends only on m.

Remark 2.2. The theorem is interesting only when D,(x)=o0(1), n—eo.
Obviously, D,(x)=0 and at a point x, at which D,(xg)=0, L,(f, x¢)=f(xy).- In
applications commonly met D,(x,)=0 only at the boundary of 1. One can construct
a sequence of linear (and even positive) operators for which D,(x) has a zero at a

point internal to 7, but in general those examples seem contrived and not very inter-
esting.

Proof. We define for h=0 the Steklov-type averages

2m hi2m hI2M{ 2m

f,,(x)=(—gh2-) f f Z[Zm]( D} fe+k(uy+ .. +u2,,,))du1 dug,,,

0 0 =

and for x such that [x, x+2mh] is in I we have 1f () —fo ()| = 0o (fs B) ahdﬁ
has 2m continuous derivatives (f,?’ is absolutely continuous for j<2m) and

2m)™" m(2m k 4m)™"
7m0 = (3] 2 () ona(f pt) = () weali
We now show that for g with 2m derivatives we have

|Ln(g’ x)_ g(x)| 2nn(,l |) ” (2'")"

Using Taylor’s expansion we have
2m‘—1 1 . .
|Ln (gs x) - g(x)l = ;; 7 Ig(l) (x)|;[L,,((t—x)', x) +
1 .
_— |otm) _f\2m
gy (£ G~ 07,0

Dn(x)
-— 2m’ "g(zm)"C(I)
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For I=R* or R we write
1L, (f; X)=f )| = |Lo(f~fis X) = (SR =1 (X)) + Lo (S X) £ ()] =

2m
= (M +Dnn(fs D+ 222 EOT (1)

and choose
h = (D, (x))M®.

For I=[0, 1] we choose a function Y€C= such that ¥ (x)=1 on [0, 1/3], ¥ (x)=0
on [1/3, 1] and ¢ (x) is decreasing. We define F,(x)=F£,(x)¥ (x) +/-,(x)(1 ¢ (x))
where f_,, is the same as f}, but using —h instead of h. We have |F,(x) —f(x)| = ws,, (1, 1)
and FE(x)=f#(x) in [0, 1/3] while FE™(x)=f%™ in (2/3,1]. To calculate
FE(x) in [1/3, 2/3] we write

FPm (x) = £ () = {(4() = fn () (1 = o ()}
{(AE) =LA =Y ™ = {(fF (), (D1~ ¥ () -

=2 (V) @ —Sa@) Oy = h b

and

By earlier consideration | f™(x) — 1| = ((4m)/h)*"w,,,(f, k). To estimate I, we write
N 2m-1

K= max [yP(x)|, and so |l,|=K kZ' (2I'Cn]|(ﬁ,(x)—-f,,,(x))(")l, and therefore, it
=0

x,i=2m

is enough to estimate for k<2m

2m d )k h/2m hj2m

() 4@ = |B) (L) [ [ B ) . it -
) [} 0

2m)2m[ d )k -hj2m hi2m —om

—f— —_ AT, ~uy, J(X) duy ... dus,| = J(k; b),

( h dx of of 1 2

where 4,f(x)=f(x+n)—f(x) and 4;f(x)=4(4;'f(x)). We can now estimate
J(k, h) by estimating J, (k, h) and J_(k, h) being the first and second terms in the
sum defining J(k; h) respectively.

2m 2m dk hi2m hj2m —om
J+ (k’ h’) = ‘(T) _d'F f aes f A,,l+_”+,,sz(x) dul...duzm =
1] 0

2m 2m hi2m hi2m -k .
I[T] f f Ah/2m Au:ll.*_‘_..l.usz(X) duk+1...du2m =
0 0

2mY* ., ( 2m—k)
é(T)2a)2,,,f, 2m h -
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and J_(k,h) is evaluated similarly. Therefore
0l = 28 K 3 () mP s B = hm 2K G+ 1) 0, )

and choosing h as in the earlier case, we obtain our results.

Remark 2.3. We could have used Whitney’s extension theorem (see STEIN
[12, Ch. VI)) to find a function F(x) defined on R that is identical with fin the do-
main  and whose 2m modulus of continuity w,,(F, k) in Ris bounded by Kw,,(f, h)
in 1. However, this method would still leave us with the need to estimate X and we
will still need the Steklov averaging functions and almost all the steps of the present
proof.

Remark 2.4. For m=1 and positive opeartors Strukov and Timan have a
better estimate for the constant in the theorem, as extension F of f defined on [0, 1]
or R is easily shown to satisfy w,(F,h) on R is smaller than S5w,(f, h) on I (see
TiMAN [14, p. 122]). That method is valid for m=1 even without the positivity but
will yield a somewhat different constant.

It is obvious that instead of ft"doz,,,x(t)=x" for i=0,1,...,2m—1 we could

I
have imposed f(t—x)"doc,,,,,(t)=0 for i=1,...,2m—1 and fdoc,,,x(t)zl. We

I
can now derive from Theorem 2.1 a generalization relaxing the conditions on the
moments that would be useful for applications. We note that the next theorem would
yield an estimate of the rate of convergence for pos1t1ve operators for which

f tde, () #x. ~

Theorem 2.2. Suppose 1=[0,1], I=R* or I=R, [du, ()=1 and
f(t»x)idoz,,x(t): R, x), i=1,...,2m—1 where R, (x)=0(1) n-—eco,
jlda",,(u);_v,, (O=M and f (t—X)*"dv, (1)=D,(x), then

u=t

L0 D) =f 01 = € 35 i IR CO1) + Ceomn(; R (33127)

2m -1 . '
where R,(x)=D,(x)+K 3 |R, ;(x)[*™ and where C and K depend only on m.
i=1

Proof. To prove our theorem we will construct a new operator 4,(f, x) that
will satisfy the assumptions on the operator in Theorem 2.1. For that we add oper-
ators to obtain a new operator A,(f, x) such that on the one hand A4, ((t—x)’, x)=0
for j=2m—1 and on the other hand f (t—x)2"dV, (H)=R,(x) where V, (1)

is the vatiation up to ¢ of B, .(u), the measure describing A,(f, x), that is 4,(f, x)=
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= f f(@)dp, «(u), and R,(x) would be as stated in the theorem. The function R,(x)

wxﬁ replace D,(x) and the operator A,(f, x) will replace L,(f, x) when we apply
Theorem 2.1 to the present situation. We will write 4, f(x)=f(x+h)—f(x) and
Ar=4,(4r"") and define L, (f, x)=((—1)//!) Sgn R,,,,-(x)Zl‘RM(x)Imf(x) for all
x in case /=R, or I=R, and for 0=x=1/2 in case I=[0, 1}, in which case

L, (f,x)=(—1)"*Yi' Sgn R, ,(x)A_IR Luif(x) for 1/2<x<1. Since a simple
calculation will yield L, ;((r—x), x)— —R, i(x), we can add this operator to elimi-
nate the / moment. However, for i<j=2m—1

Ln,i((t_x)ja x) = ¢ j|R,,{"(x) Sgn R, ;(x)

where ¢; ; is a constant that depends on 7 and j but not on » and x. To cancel that
effect for j=j; we add the operator

L,.,(f,x)= 1‘ 1 Sgn R, (%) Ak, o /(%)

<

(and a similar version for 1/2<x=1 in case I=[0, 1]). Of course for j;<j=2m—1
we still have L,;; ((t—x)= x)=c; ; [R,:(x)/"*" Sgn R, ;(x), the effect of
which we cancel by adding L, ; ; ; (f,x) given in a similar way. In general we will
define L, ; ; (f,x) by induction. We have

Ln, i jn ...jk_l((t—x)h‘a x) = Ci, j1, ...jk(Sgn Rn,i(x))|Rn,i(x)|j"“

and for i<ji<..<j,=2m—1 we define

L, j..i(fsx) = ‘_"}':L“J'k‘ Sgn R, ;(X)A(R,, ‘(x)l"‘f(x)

together with an appropriate modification for 1/2<x=1 in case I= [0 1. The
operator A,(f, x) is given by :

AGD=LED+ S L)+
+ 2 L .. (s x)}

1si<j;~..<j =2m—1 )
where the second sum is taken on all finite sequences jj, ..., j, for which 1<j,<

...<Jiy=2m—1. To calculate the variation of the measure defining - 4,(f, x), we
simply estimate its norm as an operator on C(/). We can write

2m—1 f Qi 2k
I =M+ 5 {T"' 2 LA o &
i=1 Ul i=mi<j <. <j,=s2m-1 Ji?
and since ¢; ;  ; are just constants that do not depend on our operator at all just

on the i and j’s (in case R, ;(x)=0 they do not count at all being multiplied by 0),
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we have a bound for the variation ¥, ,(¢) of the measure f, .(¢) given for A4,(f, x)=
= ff(t)d,B,,_,(t). To estimate J(n, x)= f(t—x)z’"dV,,,,(t), we write
I I .

T, ) = Dy + 3 { R P+

+ 2 ’ci,jl...jklan l(x)lzm“ l St eer Jue =

1si<j<..<j,=2m—1
2m—1 .
=D,(0)+K 2[Ry 0"
i=

since m; and m, ; ;. are numbers independent of the particular operator.
Finally, we use theorem 2.1 and obtain |A4,(f, x)—f(x)|=Cws,(f, R,(x)"*")

where an estimate for C is given in that theorem. To obtain the estimate for

\La(f, x) —f(x)], weestimate L, ; and L, ; ; ;. by |L, (f, D=1/ (£, R, :()['")

and

|Lai, . J,c(fx)l<#’]‘i"’—“ @;, (1, IR, ,(x)Il/‘)<

= Lsniid pimi (1 1R, 1)
Ji!

and this completes the proof.

3. Some preliminary Lemmas. For the result involving interpolation spaces we
will need a few preliminary Lemmas which may be of interest by themselves.

Lemma 3.1. Suppose feb[O, 3/4], fO(x) for 0=i<2m—1 islocally absolutely

continuous in (0, 3/4) and | x* ™ (x) cro, ajan = P(f) < == where O<y<1, then we
have

@) PO o = K@U+ ) for 2m—2m+i =0
and

(32 "f(i)(x)”[ ]—K(‘P(f)+||f||[ ]) for 2my 2m+1<0

Proof of Lemima 3.1. The proof follows to some extent a proof of a special
case proved earlier by the author [2, p. 280]. We have [x*"f®™(x)|=&(f) in
(0, 3/4] and therefore |f*™(x)|=M®(f) in [1/4, 3/4]. Consequently, [f*"—"(x)|=
=M (MP(f)+1flicro,@ayy) for 1/4=x=3/4 and in particular for x=1/2. (This
result follows a Kolmogorov-type inequality in a finite interval where the best
constant is not known.) Assuming by induction on 7 [x* i f®"-D(x)|=K(D(f)+
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+Ifl) i=0,..,j—1 and 2my—j=0, then

If(zm—i)(x)—f(z”'_” (—;—]| = L/l!z SEm=I=D(w) dul =

1/2
=K@+ [ urri=tau| = K@D +1f1)x

or

fE () = K(PN+ N> =2+ My(MP () +] ) =
= Ky(P(N)+I A1) x5
which concludes the proof for 2my—j=0. For jsatisfying 2my—j=0 we obtain the
estimate  |f®"D(x)|=K,(D(f)+Ifll)|log x]. Since j'/z log uldu =M and

1/2 di . y
f —l:éM for a<1, we obtain the estimate |f®" 70 (x)|=K,(®(f)+|f]l) in
u

[0, 3/4], for the first j satisfying 2my—2m+-j<0 which we denote by j,. Therefore,
also for j,=j<2m, we have

J—Jo 2m—j

702G (LI ) = K@+, 5

We will now define the interpolation space which we will need in this paper.
A will be the space of functions with 2m continuous derivatives in the interior of 1
whose i derivative for i<2m is locally absolutely continuous, and for which the
seminorm @,(f)=(@(x))*"f®(x)cuy<<e> for some fixed weight function ¢ (x).
Recall that the Peetre K functional for the pair of spaces (C, 4) is K(f,t)=
=f=ifl}£ " {Il fillcay +1P4(fD} and the interpolation space (C, 4), (or (C, A),, )

K(f, 1)

ta

is the collection of all functions for which sup =M, for some constant M.

Lemma 3.2. Let A; and A be the spaces for which
my —2mi £(i) o 2my £(2m) oo
[l® S (x)llc[o’%] <o and |x*™f (x)llc[o'%] <
respectively (the derivatives of lower order being absolutely continuous locally), then
Jfor0<y<1 and 2my—2m+i=>0 we have f€(CI0, 3/4], A), implies fe(CI0, 3/4], Ay
Proof. The Lemma follows immediately from (3.1).

Lemma 3.3. Let A(j+1) be the space of functions whose derivatives up to
S are locally absolutely continuous in (0, 3/4) and for which ||x°fY*+Y(x)|| cro, 3/a3=
=®;(f)<o for some O0<o<j+1, then fe(C, A(j+1)); where. C=C][0,3/4)
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for some O<PB<1 implies |4} f(x)|=MhY*DE and in case o=1 it also
implies feLip* jB.

Actually for o<1 the second part of the Lemma is an immediate corollary of
Lemma 3.1 and is not too interesting. The interesting part is when o=1. The first
part of the Lemma for even j+1 was proved in [5] and in fact the proof is very similar.

Proof of Lemma 3.3. For f¢(C, A(j+1)); we have for any 7 functions f;
and f; such that £;,€CJ[0, 3/4], |lf1||C[o,3/4]§Mt" and f€ A(j+1) suchthat &;(f;)=
=M+#*-1 and f=f,+f, and M does not depend on 1. For

Bk TSR b sb § 6/,i+l] [ i]
[x 2hx ,x+2hx ‘C0,4

we have
|Ah /J+1f(x)| I hxa/j+lfi(x)|+IAhxa/J+1_f2(x)| = Il+12'

Choosing t=h"*1, [[=2/+IMKrU+DP  Using Taylor’s formula, we have

. 1
RN A et ot o OIS
x—(j—+1'—l)hx°/j+1
2
=M, max 10,

and we will estimate /() for /<(j+1)/2 and I>(j+1)/2 separately. For I>(j+1)/2
we have

i
x—(ﬂ—l)hxv/-/ +1 u—

I = f

x

(j+1

_— afi+1
3 J hx

Ju £ (1) du =

u’
= MO (fHhi*1x~7x" = M®;(fo)t.

For I<(j-+1)/2 we have the same estimate provided x/2=((j+1)/2)hx°//+*,
If however x/2<((j+1)/2)hx"/#+" then

e ]

x—(%!—l)hx"/f"' 1

|u® £+ ()| du =

=MP;(f) f W= du= MO;(f) X177 = MO (f)(hx/+1)y+1x~° = M®;(f)1.
0

This completes the proof that [AL%Y..f(x)|=MhU+18,
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We are now ready to prove the second (and probably the more important)
contention of our Lemma. Using a well-known result [14, p. 105], we have

-3 =3 5 (Jarseem

v=0 p=v+1

where 4, f(x) are forward differences. We now use the former estimate on 4] /(x)=
=4541f(x+(j+1)n/2) and obtain

147 f(x)] = IA ,,f(x)|+—0 max IA’”f(X+W1)I =

_1 M 1 G+np
= E_l (x)|+ J+1 alj+1 =
[x+(v+ 3 ]11

§2i| f(x)|+ Mﬂu Sli+DU+DE,
and for o=1 we have

134100 = 7 134 S|+ 2.

Repeating the above process [ times,

1437 ()] = 2,, lAéqf(X)|+ M Z' 272 = op ,,f(X)I+ M 'I”’

Choosing / such that 1/8=2'y=1/4 and using the elementary estimate
|44, f(x)|=2/]| fll, we complete the proof. (Actually we proved the Lemma for
0<x<1/4 but apart from the singularity near zero the Lemma and an even better
estimate are well-known).

Lemma 3.4. For ”xmﬁf(m)(x)”cn/z,oo)<°° and | fllcpye, =< we have

I O 12 _y= CUP™S) 2 1+ 10 2 )
C[z’“’] C[z’ ] C[z’ )

Proof. In [4, A+Af] the Lemmas follows [5, p. 311] with b—a=4*. Our
Lemma follows patching together pieces of this type.

4. Rate of convergence for the intermediate space. In this section we will be inter-
ested in the analogue to the direct theorem that shows that for O<a<2
(A =X PAf())=MR* or |45, f(x)|=Mh* where ¢(x)=(x(1—x))"2 which is
equivalent (see {5, p. 312]) we have |B,(f, x)—f()|=0(1/n*?). The results here
are not corollaries of the results in section 2 and this is best illustrated by the fact
that in the particular case Bernstein polynomials after proving the analogue of Theo-
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rem 2.1 for positive operators, STRUKOV and TiMAN [13] show with a relatively lengthy
computation that | B,(x?, t)—¢"]|=0(1/n") for 0<y<1 which would have followed
from ((x(1—x))"43(x"))=Mh* (a result which follows observing that for
x(1 —x)=5h the estimate is obvious and for x(1—x)=5h the mean value theorem
yields the estimate).

Definition 4.1 (a) A function ¢(x) defined on 7=[0, 1] satisfies the y con-
dition for some 0=y=1 if 0<Ax"=y(x)=Bx" for 0<x=1/2 and O0<A(l—x)'=
=p(x)=B(1—x)" for 1/2=x<1. (b) A function on I=R* or R satisfies the
(y, B) condition for some 0=y=1, 0=8=1 if 0<Ax’=¢p(x)=Bx’ for 0<|x]<1/2
and 0<Alx/’=¢(x)=B|x|f elsewhere.

Theorem 4.1. Suppose for a sequence of linear operators on C(I) where
I=10,1], I=R* or R given by L,(f, x)= ff(t)dozn,x(t) we have
I

a) _/Itidoz,,,x(t)=x" for i=0,1,...,2m—1,
1
b= [ lda, @) = M
u=t
and
b) [ =xpm dv, (1) = a2 (@ () +n,)"

1

where o,=0(1), o(x) satisfies condition y or condition (y, §) (Definition 4.1(a) and
(b)), 1,=0(") if 0<y<l while n,=0 for y=0 and y=1. Then for f
JE(C, A), we have | f(-)—L,(f, - )“C(I)-‘O(Uzm

The spaces (C, A), were characterized in [3] for ¢ (x) given here. (See also Lemma
3.3).

Remark 4.1 (a) The addition of the term #, is important for some applications,
though it looks at first glance somewhat artificial. Of course the theorem is valid
(and easier to prove) with 7,=0.

(b) One could have different y near 0 and 1 which we call y, and y, respectively
in which case the theorem would still be valid provided that O=y;=1 and

f(t—x)z"‘dv,,,x(t)éa:‘:'"((p(x)—}-nn(i))z"' with * 7,(0)=0(g?*~%) for 0=x=1/2
I
and n,()=0(e*~") for 1/2=x=1 if 7;%0,1, and n,(})=0 otherwise. Since

the proof will concentrate at the boundary points one at a time, no other change will
be required.

(c) The special case of Theorem 4.1 dealing with positive operators was treated
by V: Totik- who had somewhat different (and more involved) conditions on ¢(x)
[16]. It can be noticed that differentiability, convexity etc. of ¢(x) are not the issue

8
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here. However, it should be noted that Totik treated, the inverse as well as the direct
- theorem for positive operators.
(d) For I=R generally y=0 "(in applications).

Proof. For fe(C, A), there exists for each 7 f; and f; such that f=f,+/,
and [|fillcay+7P(f)=K7* or [fil=Kz* and 1&(f)=K:". Choosing t=02",
we have | L,(f, x) =N =1Ly (f1, X) =N+ Lp(f2s X) =2 =(M +1) Ko7™ +
+HILa(f2, X)—Lo (2.

We will now show that for fo,€ 4 || L,(fz, x) —f2(x)| =Noi"®(f;) which is the
crucial step in the proof and which with the estimates above will complete the proof
our theorem. For g(t)€A we write the Taylor expansion

(1—x)¢ D

g =g@+({-x)g' (x)+ .. +W

(2m-—1) (x) +

1 t
+ am=1 f (u—02m-1gC®m 1y du.

For O<y<l1, Bo¥'~"=x=1/2 and for I=R* (or R) x<t, (while in case I=[0, 1]
x<1=3/4) we have

c(x—1)zm

( )2m

For t<x, 0<y<l and BoM'"7’=x=1/2 we have

| G =1 () o] = 26) = {2 0

@ (x) +1,)*"

[IA

t < and therefore for k =1, or % =t<uyx,

X
2k—1

N

X _ a1 g(em) _ X (u_t)zm-—l _ 22mv _ - -
|,f (u—1m1g (u)(_lul :C(D(g)‘f g du = C o5 (x—1*"®(g) =

D(g)

—CIW(X:—OZM. For k=1, X=t<

7 = we have,

X
2k—1
)2m—1

x
(u—t
—_ _ _ dul =
= =
,f 7

X — x/2ky2m—~1 k—1 2 u_x2k2m—i
= Co(g) fi_u/2+_du§C<D(g)2 i %_

x[2k 1=0 yjpt+1

1 1
o -z

k
= C¢ (g) ,g(: (x/21+ 1)2my

| [ =1y g%™ ) du| = Co(g)

du =

2m—1 x
] T (x—1)2m (x—r)2m
= Clé( ) xzmr - C.,(D( ) ((p(x)_'_"n)zm .
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Therefore, we use the estimate

L,(g(D—g(x), x) L ( f (u—pPm=1gCm () du, x)
for I=R* or R and Ba},’l‘7§x§1/2 to get
L(z©—g (), %) = c¢(g)§‘£—313—"§;aﬁm = Co(g)ain.

For 7=[0, 1], Be}'~"=x=1/2 we have

3/4 t
IL.(2()—8(x), x) = f | [ (u—0ym=1g®™ ()| dv, () +

+§o 1) f |t —x' dv, () =

3/4
2m—1 . 1
= Co(@ai"+C 3 g9 [ li—xP"do,, (1)
1= 0

which, using Lemma 3.1, implies for the x in question |L,((g(t)—g(x)), x)|=
=C®(g)o>™. For x<Bo:'~7 we observe that 2m(1 —y) is either an integer ot not.
If 2m(1—y)=i, then 2my—2m+i=0 and therefore, using Lemma 3.3, f¢Lip* af
in [0, 3/4]. Therefore, for a given t, f=f;+f; such that |fil=M* and |f9O|=
=M1, and we write again t1=02". We observe now that

Lalfer D= = AP fle= st dono(6) =

=

VRO [ = e )™ { [ don O = KIFPY 0 041y} =
= KON a0 = Kl A0l o = Kol

For 2m(1 —y) not an integer, choose / such that 0< 2my—2m +i<1 and, using
Lemma 3.2, f¢(C, A), implies f€(C, 4;), where 4;={f, |x*™ =2+ fO(x)|| 1o, 3707 < ==}-

We write f=f;+f, where [fil=M7* and &(f)=Mz"*""' and set t=0"
Now : :

u| dv, (D).

|Lo(f2» ) fz(x)l—( 7 () f | [ (é‘m, ) du

For x<Bo~" we have for .f>x

(u—ty—
f u2my_2m+z

= Cli=x/ " am-am=i gy = G- i et
.0

=C It__xl2m 2my
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and for t<x
|f ot
But, using Holder’s inequality,
J= [Ix—ipm=dv, (1) = { [Ix— 1P do, ()} 7" { [dva (0} =
1 I I

= Clon(e () +na) J2m—

which for x=B¢!*~7 implies J=C, g™~ (¢?1-7)2m~2" =C, ¢ With the above
choice of f; and 1, we have our estimate for 0<x=1/2 and 0<y<1. For y=0 the
estimate is actually trivial. For y=1 we write

= Clx—¢]#m-tm,

|u_tll -1
< |f e

| f (w1507 () du] = @(8) 5 (=

for t=x/2 and therefore
x/2

ILa(g, ) —g ()] = | S £0de, 003 f da, (1) +

x x/2
+|(2m‘—1)' ( ){f (="~ (wydu| = 2lglc [ dv,()+
TIN{e=(x/2)} ‘e 0
+O@D gy [ w0 do, ) =

In{e=(x/2)}
2m
= [ngucz[éj [ =m0 +
I

OO =TT [, x<r)} Cighe+@(@)oi.
One can note that | gllc=|fllc+! and therefore the estimate follows). For 7=[0, 1]

near x=1 the estimate is similar to the above. We now have to estimate the rate for
x bounded away from O for R* or R. For t>x=1/2 (in R* say)

|f (u— t)z”"lg(z’”)(u)idu| = ;-(g)z—m(x-—t)z'”d?(g).

Otherwise we- distinguish the two cases x—xPld<t=x, x=1/2 and t<x—xP/4,

xz1/2. In the first case we have If [—1]*" g™ (1) du| = x—1)*"d(g)

C
( x)Zm
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and in the second case we just write g(¢). Consequently

La(8 98| = o [ = 070 (8) v, (0 +

+C S O@ [ le—xFdo,0)= S P+
i=0 t=x—(1/4)

2m-—1 . .
+C 3 1gP@NGH) [ r—x P do, () =
i=0 1

=Co"P(9)+C. X [gV )P aim,

i=0
and using Lemma 3.4, we complete the proof of our theorem.

5. Rate of convergence, continued. In this section we will deal with the situation
in which moments of lower order are different from 0. We denote

¢.1) [ =% dey, . ()) = R,,:(x).
I

A different result for approximation operators for which R, ;(x)=0 for some of
the s was given in theorem 2.2. We will first itemize what conditions the functions
R, :(x) have to satisfy and while these conditions are not very simple to state, they
are relatively simple to verify in applications.

Definition 5.1. For I=[0,1], O<y<], R, (x) satisfies the (y, 2m,f{, o,)
condition if
IR,,:(x)] = Mo®™ min {max (x(1—x), g3'1=7)imr=2m+i, 1};
for y=0 IR, (x)]=M¢?™ and for y=1 |R, (x)|=Ms"(x(1—x)).
Definition 5.2. For I=R* (or R) R,;(x) satisfies the (y, B,2m,1, q,)
~condition if for |x|=1/2 it satisfies the condition in Definition 5.1 (x may replace
x(1—x) but that would not change the situation) and for other x, |R, ;(x)|=
=Ma>"|x|F'.
We are now réady to state and prove our theorem about rate of convergence.

Theorem 5.1. Suppose a sequence of linear operators on C(I), L,(f, x)=
= f f()du,, .(t) satisfy the conditions of Theorem 4.1 except that R, (x) are not

I
necessarily 0 but satisfy the conditions in definition 5.1 and 5.2 with the samey 0=y=1
and B 0=B=1 givenintheorem4.1, then for fE(C, A),, O<a<1, |L,(f,k)—f(- )=
=0(02), where A={f; D(N)=lle()*"fE(X)|cay<< and f has 2m—1 absolutely
continuous derivatives locally in the interior of 1}. .
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Proof. The process that we use is the same as that of Theorem 2.2 and we
construct a new operator A,(f,x)= f f(t)dB, (9. In order to complete the proof
we have to show two things: (a) that the behaviour of f (t—x)¥"dv, .(t), where

V(1) is the variation of B, .(¢), is the same as f (t—x)z’" dv, .(t) (required in Theo-
rem 4.1) where v, ,(¢) is the variation of «, ,(t); (b) that for f€(C, 4), the operators
we added contribute at most Mg2™

To prove (a) let us recall that we have introduced the operators CA4/, &, copn 1=
=j<2m for x<1/2 or in general in case I is not [0, 1] and CA—[R (I for
x>1/2 and I=[0, 1]. Each term of this kind will add to the variaton of o, .(t),
that is to v, .(t), to produce eventually (after the process is completed) the operator
A,(f. x)= ff(t)dﬁ,, =(t) where we denote the variation of B, .(¢) by V, .(¢). The

amount added to f(t—x)z”'dv,, (%) to get /'(t—x)“"" dv, (1) is for each i a con-

stant times [R, ,(x)lz’"/ ‘. We will now show that these additions with R, ;(x) restricted
as in the conditions of our theorem will leave us with a new operator f Sdp, ()
I

that satisfies the restriction in Theorem 4.1.
For y=0 or for O0<y<1 and 2my-—-2m+i=0 we have

IRn i(x)lzm/i = (Mo.ﬁm)Zm/i = Ma’£2m)2/i — Mo.ﬁm O.Em((2m/i)—1) = Mo.sm (o.z/l—y)Zn'l

since p/(1 —y)=2mfi—1=(2m—i)/i which follows 2m—i=2my and i=2m(l—vy).
For O<y<1 and 2my—2m+i=>0 we have to distinguish two possibilities: (I)
x(1=x)=A4¢'-? for I=[0,1] (and x=Ac*~? for I=R* or I=R); (II)
x(1—=x)=Ao*~" for I=[0,1] (and xz=Ae*~? for I=R* or I=R). For the
situation (I) we have '

R (JEI = M(o3m (a3 =) emr=mDITJem = MoZni=r = Motmofni=,

For.the estimate in case II we will be concerned with the case 0<x<1/2 (the
other case being similar) and obtain

| Rn,i(x)lzmli = Ma£2m)=/ix2m(2my—2m+i)/i = Magm[a'%m(ém—i)/ixzm(zm_zm,ui)/i] = '

=M, a'zlm[x(l_y)2m(2m-i)/i x2m(2m(y—-1)+i)/i] — Mloﬁ"‘ xmy

For y=1 we have near x=0 |[R, ;(x)* =M (¢ |x|")*=Mo>™x* (and for x
near 1 in case 7=[0, 1] the same type of estimate follows too). We are left with the
estimate for other x but there |R, ,(x)|2"'/'SMa(?'")’/'[x]?’"”'/isMaz"'lxlz”'ﬁ

We will now prove (b), .that is," we will show that near 0 . f¢(C, A), implies
for i=j<2m Mm o f)I=Moi™. 1t is a similar situation near x=1 in
case 1=[0, 1] and for other x it is substantially simpler. It is enough to prove the above
contention for j=i. First we see that for f€(C, 4), we have f(X)=£f(x)+/(x)
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where || fillcqy=Ko2™ and &(f)=Ko?™*~D where K does not depend on .
We can now write

]Z;Rn,;(x)l"‘f(x)l = IZIiR,,,,,-(x)I"‘fl(x)l + |ZIiR,,,,,(X)I"‘f2(x)| =L+ 1.
Obviously, I,=2Kc’™ and |fillc=lfllc+1. ‘For 2rrfy—2m+i<0 Lemma 3.1,
yields || fOl=M(®(f)+fillc) and |R, ;(x)["'=Mo" or

IAIR,, i fo ()] = IRy O AP ()| = M o702~ D = M’ o2™.

For 2my—2m+i>0 we estimate first for x=Ao"" or for y=1, and x=1/2
and write using Lemma 3.1

[I] = |R, ; ()9 (&) = Mogmx*mr=2m+i| £ (£)] = Maim(g2my—2m+i| £ (£)[)=
<Mlo.2m(¢(f2)+“f2“) = Mzo.am 2n(a—1) __ M o,.ma
For x=Ac!~? we observe that |R, (x)|=Mq2"(cl-7)¥m—tmtiz pgil=y or
IR, i)V '=M,0, 7. Writing 0=|R, ;(x)[", we have |4} f(x)|=4} f(x+(i0/2))]

and we can use the Taylor formula with integral remainder to expand around
x+(i8)/2 and obtain

x+(i/2)0
185 fo()] = M max| [ (u—x~10)"| £9 () |du] = M max I (D).
+10 -
For /=i/2 we have
x+10

JO = [ GHO—0) P Wldu =
x+(if2)8

x+10 . i—1

= (x+_19 ) - U =i g ()| du =

i 2my—2m+i
x+(i/2)8 (x +_2_9)

= M (Do(é{nzy)t,,‘!f” 01 - M (¢(/‘2)+”f2”)0.2m - M” Zma

For I<i/2 we have

x+(i/2)0 (u—x— l@)i—l
T pmr—emii

Jh =M |2y =tm+i gD ()| du =
x+18

x+(i[2)8

=My [ wmridu) (@O +AD)

0
and since 2m—2my=0, as we already treated y=1, we have
J() = M,0mm—2my g2mla=1) < pf. g2mgim(a=1) = Af g2ma,

We now turn our attention to the case 2m—2my+i=0 by first observing that
J€(C, A), implies quite easily f€(C, A;,,), where A, ,={f; f,....f® are locally
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absolutely continuous in (0, 3/4) and [xf¢+V|| <<}. Using Lemma 3.3 with i=/,
6=1 and f=o, we have

iz, o1 f ()] = MIR,,i(x) = My

One need now only observe that near x=1 (in case I=[0, 1]) the proof is similar
and tor other x we actually just use |4 f(x)|=n'f?(£) and obtain our result.

6. Application, some positive operators. (a) The Kantorovich operator given by

" (n k+1/n+1
©.1) ko= 3 (5 ra-oreen [ s
=0 kln+1

or by K,(f,1)=(d/dt)B,..(F,t) where F(u)= f f(v)dv and B,(f,t) are then
1}

: 1-2¢
Bernstein polynomials. It is known that K,(1,#)=1, K,(-—t )=
2(n+1)
t(1—
K,((- =1 1)= ( )+0(n 3). Using Theorem 2.2. with
_t(1=9 l(1-2t) (1] t{1—2) (i)
R, (2) = —ta +0 - +0 =
— 2t
and R,,,l(t)=§(7+—1), we have:

Theorem 6.1. For feCj0, 1] and K,(f,t) defined by (6.1), we have

1/2
62 K005 = Moy [ (0L B) g, (1 1521

(and the theorems 2.1 and 2.2 can yield a reasonable estimate on M while L can be
estimated by 1).

Using Theorems 4.1 and 5.1, we obtain with y=1/2, 6,=1/Vn, n,=1/Vn and
m=2 the following result.

Theorem 6.2. For f¢(C[O0, 1], 4),, O<a<1, where A={f;t(1—1)f"(1)€
€C[0, 1] and f, f’ are locally absolutely continuous in the interior of (0, 1}, then
1K, (f, ')—f(‘)”q0,1]=0(1/na)-

Remarks. (I) We cannot omit the second term in Theorem 6.1 as is 'obvious
when we observe the effect of the function x. (II) In {15, p. 54], in an added in proof
remark, V. Totik indicated that the analogous result (to Theorem 6.2 is valid for
L

P> 1<P<oo_
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(b) The integral version of the Szasz and Baskakov operators are given by

(nx)k k+1/n

6.2) S*(f, x) = Ze‘"" Al AP f f(u) du
and kin

k+1fn
63) VAR = 2;("*’,2 1]x"(1+x)‘"”"n [ fedu

kin

which can also be given by

64) SHF %) =S 8,(F %) ViD= —Vea(Fx) and F() = f ) do

where S,(f, x) and V,(f, x) are the Szasz and Baskakov operators given respectivel)"
by

65 sh= 3 e 4 4]
and
©6.6) V. x) = 2 ["“,ﬁ 1] (1 +x)-"—kf(§) .

Theorem 6.3. For fcC(R")

67 ISHU, D~/ @] = Mo, [f, ) §+%]+wl (5]

and

69 WA~ = Moy 2] T Lo, (24 1),

n 2n

Proof. One can calculate D,(x) R, ,(x) and R,(x) as D,(x)=x/n+1/3n?
R, 1(x)=1/2n and R,(x)=x/n+(7/12)(1/n?*) for the Szész operator.

We will calculate in detail for the integral version V;*(f, x) of the Baskakov
operator D,(x), R,(x) and R, (x),

D,(x) = V(=% %) =
=30 e [ ) (5 3 () -

=V,(5, x)+—V(t x)+ 1 V.1, x)—2xV,(t, x)——V(l x)+x*V,(1, x)

~ox(1 +x)
o n 3n2 >
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R, \(x)=V}*({(t—x), x)=x/n+1/(2n) and therefore R,(x) =D,(x)+R,1(x)?*=
=2x(1+x)/n+1/n2 Substituting the above in Theorem 2.1, we have Theorem 6.3.

Remarks. One cannot omit the second term from formulae (6.7) and (6.8) as
the result would fail then for the function x. The corresponding results for the opera-
tors S,(f, x) and V,(f, x) would already follow the theorem of STRUKOV and TIMAN
[13] and therefore are not stated here. Similarly, one can prove the following corollary
of Theorems 4.1 and 5.1.

Theorem 6.4. For fe(C(RY), A), where A={f; x-fcC(R*")}

69) 152 D/l = M
and
(6.10) 1,0 )~ @lorry = M.

Theorem 6.5. For fc(C(R*), A), where A={f; x(1+x)f"€¢C(R")}

611 W s 0~ Fleny = M
and
6.12) Walhs D= F ey = M.

Proof. We simply adjust the moments already calculated to the moments and
functions in Theorems 4.1 and 5.1. We observe that y=1/2, 6,=1/Vn and n,=1/¥n
in both Theorems, but f=1/2 in Theorem 6.4 and f=1 in Theorem 6.5.

Theorems 6.4 and 6.5 could be adjusted to exponential behaviour as x tends to
infinity following the treatment in [3] for instance but it is the goal here to get corol-
laries of the general theorems preceding this section rather than deal with particular
behaviour.

One should note that in Theorems 6.2 and 6.4 and 6.5 we have 3,0 and
while it looked redundant to allow such 7, in the beginning, from the point of view
of the applications it would appear quite important.

(¢) The Post-Widder Laplace transform inversion formula.
The Post-Widder Laplace transform inversion formula is in face an approxi-
mation operator given by [17, Ch. 7]

n+l oo
6.13) P.(f, t)=%(%) [ et f(u) du.
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It is an inversion of the Laplace transform given by
n n n+1 1 o
6.19) P.(f, ) =(-1)F® (T] [—t-) — where F(u) = f e ¥ f(t)dt.
: 0

n!

~ The difference between this and earlier examples is that here y (that corresponds
to Theorem 4.1) is equal to 1 rather than 1/2 in (a) and (b). Since P,(1,1)=1,
P,((- —t),t)=0 and P,((- —t)% t)=t%*n, we have:

Theorem 6.6. For P,(f,t) defined by (5.13) on C(R')
‘ t
(6.15) 1B D=1 0] = 150, 1 ﬁ]
and for fe¢(C(R*), A), where A={f; t*f"(1)€ C(R*)}

(6.16) 1PCF 0~/ Ol = M 5.

Again one can modify the result for exponential growth.

(@) the Meier—Konig and Zeller operator given by

©.17) M(f,D=0-0 zk,’(kj;"]t"f( n-kpk]

k=0
can also be treated using theorem 4.1 and it can be shown that:

Theorem 6.7. For fe(C[0, 1], A),, O0<a<1 where

A= A{f; Ix(U=xPf" Dlcro, <o 1, f/€4C (0, 1)},
we have

1
[M,(f, D—f(O] = M;m~

Proof. This immediately follows the calculation of the moments.

The interesting part about this operator is that the y’s near zero and near one
are different (1/2 and 1 respectively), a possibility mentioned in Remark 4.1(b).

For a similar operator

mrhn = a-ir ST er(),

we have M} (f, )=V,(f1, t(1—t)) where f1(x)=f(u/(1 +u)) and V,,is the Baskakov
operator given in (6.6). It is not easy to translate the behaviour of V, to that of
M} or M, and it better done directly.
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7. Non-positive approximation processes, combinations of Bernstein polynomials.
In sections 7 and 8 approximation processes that are not positive but that converge
faster depending on higher degrees of smoothness, will be discussed. In particular in
section 8 we apply our theorems to combinations of ,,Exponential-type” operators
introduced by C.P. May in [9] and [10]. In [2] the author proved a global direct and
inverse theorem for combinations of Bernstein polynomials. We will see first how the
direct part of [2] follows from the general theorems of this paper. Actually the results
in Theorems 4.1 and 5.1 were motivated by the result on Bernstein polynomials and
it seems interesting how those general theorems apply.

Combinations of Bernstein polynomials that would yield faster rates of conver-
gence are given by

(7.1) @ -1)B,(f,r,x)=2"B,,(f,r—1,x)—B,(f, r—1,x)

and B,(f,0, x)=B,(f, x). Other combinations are possible (see [2, p. 278]) but
these seem to be the simplest form with the given rate of convergence. To establish
results as corollaries of the theorems of this paper we have to compute moments of
B,(f,r—1,x). (We choose B,(f,r—1, x) with r—1 use the same notation used in
[2]). First we observe that

r—1
(1.2) B,(f,r—1,x) = 2 C;By,(f, x)
j=0
and C; are constants independent of » which among other properties satisfy
r—=1 r—-1
(1.3 >C=1 and 3 Cin7'=0 for I=1,..,r—1.
i=0 =0

We set 2m=2r and calculate D,(x). Using (6.2) and [2, (4.2) p. 285], we have

D,(x) = 2‘ |Ci Bein((t—x), x) = (ZICl) maxlei (t—x, x)| =

i=0

= (50 IC) B, (1= %) x) =
= (éj |C.|)[i ( Ay (x(L—x)Y + Ao (x )(x(l x))" ot 4,09 x(1— x)) -
= Kn—" [(X(l—X))'f'%] = K,n~" [m+n_1/2]2’,

To calculate R, ;(x) we use formulae (4.2) and (4.3) of [2, p. 285] together with for-
mula (7.3) here to obtain first R, ;(x)=0 for i=1,...,r and then for i=r+1
we have

ii r (x(l x)).l

R = 55 3 Bul)
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or for i=r+1,
1 —1\i-r 1 -1\]r— i
|R,, ()| §B7{(x(l—x))+n = By [max (e(1—x), n7 )=+
We can estimate R,(x) by R,(x)=Kyn~"[Vx(1—x)+n~Y2]* and this implies the
following theorem.

Theorem 7.1. For B,(f,r—1, x) defined by (6.1) and f(x)€C[0, 1] we have

- 12
00 B9l = K a7 (FE )4

n
2r—1 . 1 J-ri
+ 2 w; (f, n=rli [x(l—x)+—] )} .
j=r+1 n
This result is new and was not proved in [2]. In particular for B,(f, 1, x)=

=2B,,(f, x)—B,(f,x) we have

(1.5) 2By, (f, X)— B, (f, ©)—f(9)| = K {% [ﬁ ( x(1—x)

n

+w3[j; n23 [x(l—x)+ 1 ]mJ}.

n

1/2
+n‘2] +

We recall that for x® w,(f, h) ~ Kh® which will fit exactly here in view of the fact that,
as we observed in [2, p. 279],

oy af2
128, ~ By~ o) = (222

n
is not equivalent to f€Lip* a. As a corollary of Theorem 5.1 we have:
Theorem 7.2. For fe(C, A,,), where
Aoe ={f; 1o f¥TIEAC (0, 1) and  |[(x(1—x)) fE(x)|| <=}
and for B,(f,r—1, x) given by (6.1), we have

(66) 1B, (fs r—1, )~ llctony = M —

n™ ‘

This theorem is the direct theorem proved in [2, p. 284].

8. Combinations of exponential-type operators. Exponential-type operators were
defined first by C. P. May in [9] and [10] by

@®.) Sy %) = f W (2, 1, 1) f(u) du
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where 4 and B may be infinite and W (2, t, ) is a measure in u satisfying

/] Y

(8.2) ET W, t,u) = mW(A, tuwy(u—t)
(where the derivative 1s taken in the distribution sense). C. P. May restricted himself
to p(t)=0 being a polynomial of degree less than or equal to two for which many
well-known applications are valid (Bernstein, Baskakov, Szasz, Post-Widder and
Gauss-Weierstrass). Later ISMAIL and MAY [7] showed that if p(f)=0 is analytic
in (4, B), we still have some of the properties and results of [10]. MaY [9], [10] proved
that for combinations of exponential-type operators local, direct and inverse theo-
rems are valid and IsMaiL and MAY [7] showed that a local direct and inverse theorem
is valid for S, (f, x)—f(x) (no combinatons). We will show that in those cases global
direct theorems follows Theorems 4.1 and 5.1. (The global result in this case is new.)
The result in section 6(c) and the result in section 7 about Bernstein polynomials
are included in this but the result in section 7 is important, being the motivating result
for much of this paper; and in fact Bernstein polynomials were the motivation
for exponential-type operators.

We are now ready to define the combinations of S,(f, x) for finite, fixed but
arbitrary constants d,, ..., d;:

83) Sk = 3 CU RS )

where T

(8.4) C@, k) = ]k] ddfd k=0 and C(0,0)=1.
S

We are now in a position to state and prove our result.

Theorem 8.1. For f€C[4,B] abd f€(C, A(k+1)), where A(k+1)=
={f;f, s fE*D  are absolutely continuous locally in (4,B) and &,(f)=
= p )+ FFD (D)l cpa, =< ), when p(x)=0 is a polynomial of degree 2, we have

®.5) 15,0, ks ¥)—f g, m = MA=*+ =

For other analytic posititve p(x) where ¥ p(x) behaves like the ¢ (x) of definition 4.1
near the boundary points 4 and B, we have (8.5) for k=0.

Remark 8.2. (a) IsMalL and MAy [7] do not deal with the convergence of
combinations of the operators there but, following their properties 2.2 of [7, p. 448],
some of these results will still be valid. Here we just want to show the applicability
of our earlier result and not get involved in various generalizations of particular
situations.
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(b)- As MAyY [10] and IsMAIL and MAY [7] observed, and as was also observed
earlier in this paper, exponential behaviour of the functions is allowed in case 4 or
B (or both) are not finite.

Proof. The key to the proof is proposition 3.2 of May’s paper [10], p. 227].
The moments

(8.6) A, (A 1) = Am jB W4, t, u)(u—1y" du

are studied and, using the recursion relation

8.7 Api1(A, 1) = Amp (D) A1 (4, t)+p(t) 7 An(2, 1),

May showed that 4,,(4, {) are polynomials in 4 (and in f when p(#) is a polynomial of
degree less than or equal to 2) of degree [m/2] in 4 and that the coefficient of A™ in
Ao, 1) is cp(t)™ and in Ay, 1(4, t) is ¢(t)p(1)™. What is not exactly stated but
still follows from (8.7) is that A=A, (4, t) is a sum of the type

t)k ! k—1 f k—2
Li_k_-}-cl(t) pik)_l +¢5(1) pﬁ,‘)_2 +...
. f k k~—1
and that 2~%*'4,(2, 1) is a sum of the type %,i—)l Yot )p () ... where if

the corresponding y in Theorem 4.1 is 1, ¢;(¢) may have a zero at the boundary
(cz(t) a double zero, etc.). Observing that the combinations in (8.3) will cause

Lk
Z c(fy k) —rep @ k),
obtam the correct estimate on the moments. For p(#) analytic we just claim that if

¥ p(¢) satisfies the condition on ¢(x) in theorem 4.1, then the result is valid, which is
obvious as A~ p(#)=D,(?) and the first moment is equal to 0.

=0 for I=k, we will following the Bernstein polynomials case,
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