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Homomorphically complete classes of automata with respect
to the o,-product

Z. ESIK

Dedicated to Professor K. Tandori on his 60th birthday

Homomorphically complete classes of automata with respect to the general
product were characterized by A. A. LETICEVSKI in [8]. In order to decrease the
complexity of the general product F. Gécseg introduced the concept of «;-products
in [5]. The notion of ay-product coincides with that of the loop-free product used
by J. Hart™ANIS (cf. [7]). It is known that there exists no homomorphically complete
finite class of automata for the oy- or oy-product (cf. [4]). Using a result in [3],
P. Domost (cf. [1]) succeeded in proving that there is a single automaton homomor-
phically complete with respect to the a,-product. In the present paper we show that a
class of automata is homomorphically complete with respect to the «,-product if
and only if it is homomorphically complete with respect to the general product. Thus,
LetiGevskii’s criterion can be used to describe those classes which are homomorphi-
cally complete with respect to the a,-product. Our result can also be used to show
that for every i=2, the a;-product is homomorphically as general as the general
product (cf. [2]).

By an automaton we shall always mean a finite automaton. Given a finite system
A,=(4,, X,,6,) (t=1,...,n, n=1) of automata together with a finite set of input
signs X and a family of feedback functions ¢,: 4;X...XA4, XXX, (t=1, ...,n)
we can form the general product (cf. [6]) - [T(A4, ..., A l@)=(4;X... X A4,, X, )
where 6((ay, ..., @,), x)=(61(ar, xp), ..., 8,(@,, x,)), provided that a€4,, xcX,
x,=@ay, ..., a,,x) (t=1,...,n). If i=0 is a given integer and none of the feed-
back functions ¢, depends on the states a, with t+i=s=n, then we come to the
notion of «;-products introduced in [5]. Further, if for each 7, ¢, only depends on its
last variable (the input sign) then we get the concept of the quasi-direct product.
If all the A,-s coincide then we speak about a general, «;- or quasi direct power
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according to the cases described above. We say that an automaton A=(A, X, 9)
homomorphically realizes an automaton B=(B, X, §") if B is a homomorphic image
of a subautomaton of A. 4 class & of automata is called homomorphically complete
with respect to the general product (homorphically complete, for short) if every auto-
maton can be homomorphicalily realized by a general product of automata belonging
to . Homorphically «;-complete classes are similarly defined. By Letievskii’s
result in [8], a class of automata is homomorphically complete if and only if it
contains an automaton A=(4, X, 6) having states a,, a,, a;€4 such that a,=4],
further, 3(ay, x)=a,, 6(ay, x’)=a;, 8(ar, p)=a, and (a], p’)=a, hold for some
input signs x, x’€X and strings p, p'€ X*.

We are going to show that homomorphically complete classes with respect to
the o, -product are exactly the homomorphically complete classes. For this reason we
have to prove that if an automaton satisfies Leti€evskif’s criterion then it is homo-
morphically complete with respect to the a,-product. Let us denote by
U=(U, {x1, x5}, ) an automaton with the following properties: '

(@) U={up, ..., w1 }U{ugy ..oty 1} where ki, ko=1, k=1 or k=1,
further, wy=u,, w;#u; if i#j (0=i,j<k) and uj=u; if i#j (0=i,j<k,),

(i) 8(uo, x)=uy, 6(uy, xo)=uy, O(u;, x)=u;yy (i=1, ..., k;—1, j=1,2),
o(ul, x)=u;,, (i=1, ..., k,—1,j=1,2) where we have used the notations w, =iy
and 4 =1u,,

(i) = u;.

It is obvious that if an automaton A satisfies LetiCevskii’s criterion then for some &,
and k, an automaton U having properties (i), (ii) and (iii) above can be isomorphically
embedded into an a, -power of A with a single factor. Therefore, if each automaton U
is homomorphically complete with respect to the a,-product then so is A. In this way
it is enough to show that any automaton U is homomorphically completé with respect
to the a,-product.

In the next two lemmas we fix an automaton U and denote by k the L.c.in. of
k, and k,. For every integer / we shall denote by u; and u] the states u, resp. u] with
re{0, ..., k;—1}, s€{0, ..., k,—1} and such that i=r (mod k,) and i=s (mod k).
First we prove that all the automata S,=({l, ..., mk}, {x;, x;}, ) can be homo-
morphically realized by «,-powers of U, where the transitions in S, are defined by
0(i, x))=j if and only if j=i+1 (mod mk) and

56 {j where j=i+1(mod mk) if iz 0(modk),
G*) =11 i 1= 0(mod k).

Lemma 1. Each automaton S,, (n=1) can be homomorphically realized by an
as-power of U.

Proof. Let C=({l, ..., k}, {x}, 6o) beacounter, i.e. 6c-(/, x)=i+1 (mod k). It
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is quite obvious that C is isomorphic to a quasi-direct power of U with two factors.
We define an ay-product A=(4, {x, x,}, )=]J[(C, U, ..., Ulp) with
mk times

013, vy, X5) = x, . ,
x, if v, =1, -

2

/ B, 00, coes Ups Dpgns Xj ={ :
(p_1+t(: 15 s Uts Ugt1s J) b OtherWISe,

Xa if iE {1, aeey k—l} and Unk—i+1 = u]’_,
. L. ’ ’ . '
@rami(ls Vi ovv s U X = or i=k, (U1, .o, V) = (U, o0yt Usyeees Ui _1)1)s
x; otherwise, : :
X2 lf ie{l, ,k""’l} and vmk—l'+1 = u{,

Pramk(ls Uiy oo s Vs X2) = or i=k,
x, otherwise,

where 1=t<mk, i€{l;...,k}, vy, ..., 04€U and j=1 or j=2.
Let B consist of those elements (i, vy, ..., v,,)€A for which there exist an in-
teger j€{l, ..., mk} and o], ..., v{, ;€U satisfying the following three conditions:

(l) i EJ (mOd k)9 vmk—j+1 = u]’.s )
() @hers - UE:+1)k) =y, s ) OF (Ufgrs e th+1)k) = (uy, ..., u),
(lll) (vla sty Umk) - (v£+17 seey vl+mk)

It is not difficult to check that B=(B, {x;, x,}, 6) is a subautomaton of A and
S,. is a homomorphic image of B under the mapping ¢: B—{l, ..., mk} defined by

Y(( vy, .. V) )=min {jll Sj=mk, i=j (n0d k), vpy_ ;11=u}.

Note that ¢, was independent of its variables, therefore our contruction gives
rise to a homomorphic realization of S,, by an a,-power of U. As none of the func-
tions ¢4, (1=t<mk) depended on the input sign S,, can also be homomorphically
realized by an a,-power of U in such a way that the feedback functions, except the
last one, are independent of the input sign.

Next we show that all shift-registers can be homomorphically realized by an
ay-power of U. As usual, by a shift-register on a fixed alphabet X={x, ..., X,}
we shall mean any automaton isomorphic to one of the automata R,=(X", X, J)
(m=1), where X™ denotes the set of all strings y;...y, of length m on X, and

O(V1e-Yms I=V2oeeYm¥ (P15 -5 Ym» YEX).

Lemma 2. Every shift-register can be homomorphically realized by an ay,-
power of U.

Proof. AsR, isa homomorphic image of R, whenever m,=ms, it is enough
to show that shift-registers R,,, with m=n can be homomorphically realized by an
op-power of U.
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Let C=({l, ..., mk}, {x}, 60) be a counter having mk states. We shall define

an ap-product A=(4, X,0)=]J[(C, U, ..., Ulp) where the last (m-+n)mk? com-

(m+n)mk2 times

ponents will be treated as mk buffers b; of length (m +n)k. The counter will point to
the buffer used last. That is, if i€ {1, ..., mk} is the first component of a state of A
then b; contains the input sign arrived for the last time. Buffers are used in a cir-
cular way: if /<mk then b, ,, otherwise b, is the buffer available next. Consequently,
the mk signs arrived last will be contained by buffers b;.,, ..., by, b1, ..., b; in this
order. We shall use the states u,7u; to encode a sign by the fixed mapping
: X—{uy, ui)', t(x)=wfujui=/ (j=1,...,n). Therefore, in order to store a
sign x; into the next available buffer we shall set the (m+j)k-th component of this
buffer to u;, and set all the (m+;')k-th components for j'=1,...,j—1,j+1,...,n
to #, . During this transition all already stored input signs will be shifted with one place
to the left, the values of the first components of the buffers underflow.

Now we put this into a precise form by defining the feedback functions of
the product. For every i€{l,...,mk}, v, ..., v,4€U, jé{l,...,n} and t(1=t<
<(m+n)mk?) we put @,(i, v;, x)=x,

Xy if w41 =4y,

Iy 015 00,04, 0 Xx;) = .
Q14:(0, 035 .0, Uy Upyys _,) {xl otherwise,

provided that 10 (mod k), and if +=0 (mod k) then

(pl—H(l’ U1y vees Ugs Uryrs xj) =

xgif t=i'(m+n)k—(n—j)k where i’€{l, ..., mk} is determined by i+1=i’
(mod mk), )
or vy,=u; and there exists an integer i’€{l,..., mk} with i+1=i’
= (mod k), (("—1D)(m+n)k<t<i'(m+n)k,
or there exist i'€{l, ..., mk}, ré{2,...,k} such that i+r=i’ (mod k),
Vy—psr,=t; and (F'—D(m+n)k<t=i'(m+n)k,
x; otherwise,

and similarly,
(p1+m(m+n)k= (l! Ups -es vm(m+n)k29 xj) =
x, if i=mk—1; j=n,
or there exists r€{2,...,k} with i+r=mk (mod k)

7
and Yyt nps—x+r=us,
x, otherwise.

Next we give a subautomaton B=(B, X, §) of A and a homomorphism of B
onto R,,. This will be accomplished by the help of the auxiliary functions ¢;: 4—U"
(j=1,...,mk) and ¢: A—-U™* Suppose that a=(,}, ..., v}

mk
<03 Umgmks =+» Uy s eeey
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.,v;’,‘,',‘“)k), J€{l, ..., mk}. If j>i then we put

Qj(a) = v],:—i+k Uj:—i+nk€U"
else

0;(8) = viy_i—jyk - Vi - jyemk €U

By o(a) we shall denote the string

0(a) = 0:4+1(a) ... om(@)01(a) ... 0;(@)EU™™.

Now let B consist of all those elements a=(/, b}, ..., Uy, > --or Ui ..oy UK )
which satisfy the following conditions:

(i) There exists a string y;...y€X™ with g(@=1t(3)... T (Vs

@) If je{1,...,mk}, re{l,...,k} and j=i+r (modk) then {vi..vi,..,
oo Opmevier1 - Vimemp E U, Where U, denotes a set of four strings:

’ 7
U, ={up_y ... u_sthgthy ... Uy 41, Up_p .. U_jloly . Ug—ri1s

r-1 k—r+1 r—1 k—r+1

7 /’ /’ ’ 7 ’ ’ ’
Upep oo U_qlg Uy oo Up—yyy; Up—y ... Uyl Uy ... uk—r+}} >

r-1 k—r+1 r—1 k—r+1

(i) If je{l, ..., mk} then v}..vf , .=t Upynu_r+1 Where t=j—i+nk+k
if j>i and t=mk—(—j)+nk+k if j=i.

It can be seen that with the definition above B becomes a subautomaton of A
and the mapping ¢: B—~X™ determined by Y(a)=y,... vy if and only if g(a)=
=17(¥)...7(Ym) is a homomorphism of B onto R,;. As the counter C is an X-
subautomaton of S,,, by Lemma 1 and the fact that ¢, is a constant mapping, we
obtain a homomorphic realization of R,,;, by an a,-power of U.

Now we are ready to state our

Theorem. Every homomorphically complete class of automata is homomorphi-
cally complete with respect to the «,-product.

Proof. Given a homomorphically complete class of automata, by the result
of A. Letievskii in [8], there is an automaton U, in this class such that for some
ki, ko (ky, ky=1,ki#1 or ky;#1) the antomaton U can be isomorphically embedded
into an o -power of U, with a single factor. Therefore it is enough to show that every
automaton A=(4={a,, ..., a,}, X={xy, ..., X,}, 6) can be homomorphically realized
by an a,-power of this automaton U. In order to prove this statement we form an
oy-product B=(B, X, )= R, S, U, ..., Ulp) where R,, and S,, are the auto-

mk times
mata described previously, and for any y;...pu€X™, ic{l, ..., mk}, vy, ..., v.u€U,



140 : Z. Esik

Jj€{l, ...,n} and t(1=t<mk)

(pl(yl"‘ymkai:xj)=xj,
) {x2 if »,=u; and i=0 (mod k),

(pZ(yl"'men.l’ vlsxj) = x, otherwise,

Oobt(V1 oo Vous 1 U1 o0 Upy Up1, X)) =

x, if ve=uy,
or t=0(modk) and v,_,,, =u; for an integer
= r€{l, ..., k—1} with i=r(mod k),
or vy=u;, i=0, t=0(modk) and (@, Vmk—i+2--- YmkX;) = Qupics
x; otherwise,

and similarly,
(p2+mk(yl <o Ymks i, Ug; ooy Uk s xj) =

xs if vg_,p1=u; foran re{l,...,k—1} satisfying i= r(modk),
= or y,=uj,i =0(modk) and (aik, Ymk-i+2 - Ve Xj) = Gpm>
x, otherwise.

Let CSB contain all states b=(y;... Vs i, V1, ---, Um)€ B with the following prop-
erty: there are re{l,...,k} and t€{l, ..., m} such that i=r (modk), tk+i—r=
=mk and '

(D) Vpgmpy1ees Uy ee-Vpgmp=HUy . Ul gy ... Uy if i=k, and

(iD) vtk—r+1"’vtkvl"'vtk—rv(t+1)k—r+1"'vmkvtk+1"'v(t+1)k—r=u;.“‘ul:uk+1"'umk if
i<k. It is easy to show that C=(C, X, §") is a subautomaton of B. Indeed, assume
that b€C and the integers ¢t and r are determined as previously, and let y€X.
Then & (b, Y)=(Yz...Vmi}> i’ V)5 ..., Uly) where i’ and vy, ..., v, are determined
according to the three cases below:

Case 1. If r#k and i=k; or r=k and t1 then i’=i+1, vj=nv,, ...,
vees Ungo1=Upis U =0;. (Observe that now k=i<mk.)

Case 2. If r#k and i<k then i'=i+l, vi=v,, ..., U _;=Uy, V=0,
, _ , _ ’r
vtk+1_vtk+2, LEEE vmk—],_umk’ vmk_utk+1'

Case 3. If r=k and t=1 then i'=1, v{=0v,, ..., Vp_,=0Vgq, Up=0p, Vg =
S Ug19s oes Vg1 =Umks U =Us+1 Where - s€{1, ..., m} is determined by d&(a;,,
VYmi—ive---YmV)=ds. It can be checked that b’€C in all the three cases above.

In order to complete the proof we have to give a homomorphism i of C onto A.
Let b=(P1..-Ymx» b V15 - Oy )€ C be artibtrary. Then there are uniquely deter-
mined integers ré{l, ..., k} and t€{l, ..., m} fulfilling i=r (mod k), tk+i—r=mk
and such that either condition (i) or (ii) holds according to i=k or i<k. Put
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Y(B)=0(A@+i-ryk> Ymk—i+1---Yme)- Then, corresponding with the previously
listed three cases, one can easily verify that { is a homomorphism. On the other hand
Y is obviously surjective.

We have seen that A is homomorphically realized by B. From this the result
follows by the lemmas, the fact that S,, was homomorphically realized by an o,-
power of U in such a way that with the exception of the last feedback function none
of the feedback functions depended on the input sign, further, by observing that
in our construction of B, ¢, only depends on the input sign. This ends the proof of
the Theorem.

References

{1] P. DoMOs1, On homomorphically «;-complete systems of automata, Acta Cybernetica, 6 (1983),
85—88.

{2] Z. Esik and Gy. HorRVATH, The a,-product is homomorphically general, Papers on Automata
Theory. V, K. Marx Univ. of Economics, Dept. of Math., Budapest, 1983, No. DM
83—3, 49—62.

{3] H. B. Esrymenko, K peamuM3aniud aBTOMOTOB KACKATHBIM COCAYHCHHEM CTAHOAPTHBIX
aBTOMATOB, Aemomamuxa u eviyucaum. mexnuka, 2 (1979), 50—53.

{4] F. GECSEG, O KOMIO3MUKHM aBTOMATOB 0e3 merenb, Acta Sci. Math., 26 (1965), 269—272.

[5] F. Gécseg, Composition of automata, in: 2nd Coll. on Automata, Languages and Programming
(Saarbriicken, 1974), LNCS 14, 351—363.

[6] B. M. I'nymkx 0B, AGcTpakTHas TEOpUsi ABTOMATOB, Ycnexu mamesamuueckux Hayk, 16:5 (101)
(1961), 3—62.

[7] 3. HArRTMANIS, Loop-free structure of sequential machines, Information and Control, 5 (1962),
25—44.

{8] A. A. JleTnueBcKH#, Yca0BUA MOMHOTHI 1A KOHEYHBIX aBTOMAaTOB, JKypHaa geruuca. mam. u
mam. ¢uz., 1 (1961), 702—710.

BOLYAI INSTITUTE

A. JOZSEF UNIVERSITY
ARADI VERTANUK TERE 1
6720 SZEGED, HUNGARY



