Homomorphically complete classes of automata with respect to the α_{2}-product

Z. ÉSIK
Dedicated to Professor K. Tandori on his 60th birthday

Homomorphically complete classes of automata with respect to the general product were characterized by A. A. Letičevskiĭ in [8]. In order to decrease the complexity of the general product F. Gécseg introduced the concept of α_{i}-products in [5]. The notion of α_{0}-product coincides with that of the loop-free product used by J. Hartmanis (cf. [7]). It is known that there exists no homomorphically complete finite class of automata for the α_{0} - or α_{1}-product (cf. [4]). Using a result in [3], P. Dömösı (cf. [1]) succeeded in proving that there is a single automaton homomorphically complete with respect to the α_{2}-product. In the present paper we show that a class of automata is homomorphically complete with respect to the α_{2}-product if and only if it is homomorphically complete with respect to the general product. Thus, Letičevskiī's criterion can be used to describe those classes which are homomorphically complete with respect to the α_{2}-product. Our result can also be used to show that for every $i \geqq 2$, the α_{i}-product is homomorphically as general as the general product (cf. [2]).

By an automaton we shall always mean a finite automaton. Given a finite system $\mathbf{A}_{t}=\left(A_{t}, X_{t}, \delta_{t}\right) \quad(t=1, \ldots, n, n \geqq 1)$ of automata together with a finite set of input signs X and a family of feedback functions $\varphi_{t}: A_{1} \times \ldots \times A_{n} \times X \rightarrow X_{t}(t=1, \ldots, n)$ we can form the general product (cf. [6]) $\Pi\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \mid \varphi\right)=\left(A_{1} \times \ldots \times A_{n}, X, \delta\right)$ where $\delta\left(\left(a_{1}, \ldots, a_{n}\right), x\right)=\left(\delta_{1}\left(a_{1}, x_{1}\right), \ldots, \delta_{n}\left(a_{n}, x_{n}\right)\right)$, provided that $a_{t} \in A_{t}, x \in X$, $x_{t}=\varphi_{t}\left(a_{1}, \ldots, a_{n}, x\right)(t=1, \ldots, n)$. If $i \geqq 0$ is a given integer and none of the feedback functions φ_{t} depends on the states a_{s} with $t+i \leqq s \leqq n$, then we come to the notion of α_{i}-products introduced in [5]. Further, if for each t, φ_{t} only depends on its last variable (the input sign) then we get the concept of the quasi-direct product. If all the $A_{t}-s$ coincide then we speak about a general, α_{i} - or quasi direct power
according to the cases described above. We say that an automaton $\mathrm{A}=(A, X, \delta)$ homomorphically realizes an automaton $\mathbf{B}=\left(B, X, \delta^{\prime}\right)$ if \mathbf{B} is a homomorphic image of a subautomaton of \mathbf{A}. A class \mathscr{K} of automata is called homomorphically complete with respect to the general product (homorphically complete, for short) if every automaton can be homomorphically realized by a general product of automata belonging to \mathscr{K}. Homorphically α_{i}-complete classes are similarly defined. By Letičevskiī's result in [8], a class of automata is homomorphically complete if and only if it contains an automaton $\mathrm{A}=(A, X, \delta)$ having states $a_{0}, a_{1}, a_{1}^{\prime} \in A$ such that $a_{1} \neq a_{1}^{\prime}$, further, $\delta\left(a_{0}, x\right)=a_{1}, \delta\left(a_{0}, x^{\prime}\right)=a_{1}^{\prime}, \delta\left(a_{1}, p\right)=a_{0}$ and $\delta\left(a_{1}^{\prime}, p^{\prime}\right)=a_{0}$ hold for some input signs $x, x^{\prime} \in X$ and strings $p, p^{\prime} \in X^{*}$.

We are going to show that homomorphically complete classes with respect to the α_{2}-product are exactly the homomorphically complete classes. For this reason we have to prove that if an automaton satisfies Letičevskiï's criterion then it is homomorphically complete with respect to the α_{2}-product. Let us denote by $\mathbf{U}=\left(U,\left\{x_{1}, x_{2}\right\}, \delta\right)$ an automaton with the following properties:
(i) $U=\left\{u_{0}, \ldots, u_{k_{1}-1}\right\} \cup\left\{u_{0}^{\prime}, \ldots, u_{k_{2}-1}^{\prime}\right\} \quad$ where $k_{1}, k_{2} \geqq 1, \quad k_{1}>1$ or $k_{2}>1$, further, $u_{0}=u_{0}^{\prime}, \quad u_{i} \neq u_{j}$ if $i \neq j\left(0 \leqq i, j<k_{1}\right)$ and $u_{i}^{\prime} \neq u_{j}^{\prime}$ if $i \neq j\left(0 \leqq i, j<k_{2}\right)$,
(ii) $\delta\left(u_{0}, x_{1}\right)=u_{1}, \delta\left(u_{0}^{\prime}, x_{2}\right)=u_{1}^{\prime}, \delta\left(u_{i}, x_{j}\right)=u_{i+1}\left(i=1, \ldots, k_{1}-1, j=1,2\right)$, $\delta\left(u_{i}^{\prime}, x_{j}\right)=u_{i+1}^{\prime}\left(i=1, \ldots, k_{2}-1, j=1,2\right)$ where we have used the notations $u_{k_{1}}=u_{0}$ and $u_{k_{2}}^{\prime}=u_{0}$,
(iii) $u_{1} \neq u_{1}^{\prime}$.

It is obvious that if an automaton \mathbf{A} satisfies Letičevskii's criterion then for some k_{1} and k_{2} an automaton \mathbf{U} having properties (i), (ii) and (iii) above can be isomorphically embedded into an α_{1}-power of \mathbf{A} with a single factor. Therefore, if each automaton \mathbf{U} is homomorphically complete with respect to the α_{2}-product then so is \mathbf{A}. In this way it is enough to show that any automaton \mathbf{U} is homomorphically complete with respect to the α_{2}-product.

In the next two lemmas we fix an automaton U and denote by k the 1.c.m. of k_{1} and k_{2}. For every integer i we shall denote by u_{i} and u_{i}^{\prime} the states u_{r} resp. u_{s}^{\prime} with $r \in\left\{0, \ldots, k_{1}-1\right\}, s \in\left\{0, \ldots, k_{2}-1\right\}$ and such that $i \equiv r\left(\bmod k_{1}\right)$ and $i \equiv s\left(\bmod k_{2}\right)$. First we prove that all the automata $\mathrm{S}_{m}=\left(\{1, \ldots, m k\},\left\{x_{1}, x_{2}\right\}, \delta\right)$ can be homomorphically realized by α_{2}-powers of \mathbf{U}, where the transitions in \mathbf{S}_{m} are defined by $\delta\left(i, x_{1}\right)=j$ if and only if $j \equiv i+1(\bmod m k)$ and

$$
\delta\left(i, x_{2}\right)= \begin{cases}j & \text { where } j \equiv i+1(\bmod m k) \quad \text { if } \quad i \neq 0(\bmod k) \\ 1 & \text { if } \quad i \equiv 0(\bmod k)\end{cases}
$$

Lemma 1. Each automaton $\mathbf{S}_{m}(m \geqq 1)$ can be homomorphically realized by an α_{2}-power of \mathbf{U}.

Proof. Let $\mathbf{C}=\left(\{1, \ldots, k\},\{x\}, \delta_{\mathrm{C}}\right)$ be a counter, i.e. $\delta_{\mathrm{C}}(i, x) \equiv i+1(\bmod k)$. It
is quite obvious that \mathbf{C} is isomorphic to a quasi-direct power of \mathbf{U} with two factors. We define an α_{2}-product $\mathbf{A}=\left(A,\left\{x_{1}, x_{2}\right\}, \delta\right)=\Pi(\mathbf{C}, \mathbf{U}, \ldots, \mathbf{U} \mid \varphi)$ with $m k$ times
$\varphi_{1}\left(i, v_{1}, x_{j}\right)=x$,
$\varphi_{1+t}\left(i, v_{1}, \ldots, v_{t}, v_{t+1}, x_{j}\right)= \begin{cases}x_{2} & \text { if } v_{t+1}=u_{1}^{\prime}, \\ x_{1} & \text { otherwise, }\end{cases}$
$\varphi_{1+m k}\left(i, v_{1}, \ldots, v_{m k}, x_{1}\right)= \begin{cases}x_{2} & \text { if } i \in\{1, \ldots, k-1\} \text { and } v_{m k-i+1}=u_{1}^{\prime}, \\ & \text { or } i=k,\left(v_{1}, \ldots, v_{m k}\right)=\left(u_{1}^{\prime}, \ldots, u_{k}^{\prime}, u_{1}, \ldots, u_{(m-1) k}\right), \\ x_{1} & \text { otherwise, }\end{cases}$
$\dot{\varphi}_{1+m k}\left(i, v_{1}, \ldots, v_{m k}, x_{2}\right)= \begin{cases}x_{2} & \text { if } i \in\{1, \ldots, k-1\} \text { and } v_{m k-i+1}=u_{1}^{\prime}, \\ & \text { or } i=k, \\ x_{1} & \text { otherwise, }\end{cases}$
where $1 \leqq t<m k, i \in\{1 ; \ldots, k\}, v_{1}, \ldots, v_{m k} \in U$ and $j=1$ or $j=2$.
Let B consist of those elements $\left(i, v_{1}, \ldots, v_{m k}\right) \in A$ for which there exist an integer $j \in\{1, \ldots, m k\}$ and $v_{1}^{\prime}, \ldots, v_{(m+1) k}^{\prime} \in U$ satisfying the following three conditions:
(i) $i \equiv j(\bmod k), \quad v_{m k-j+1}=u_{1}^{\prime}$,
(ii) $\left(v_{t k+1}^{\prime}, \ldots, v_{(t+1) k}^{\prime}\right)=\left(u_{1}, \ldots, u_{k}\right)$ or $\left(v_{t k+1}^{\prime}, \ldots, v_{(t+1) k}^{\prime}\right)=\left(u_{1}^{\prime}, \ldots, u_{k}^{\prime}\right)$,
(iii) $\left(v_{1}, \ldots, v_{m k}\right)=\left(v_{i+1}^{\prime}, \ldots, v_{i+m k}^{\prime}\right)$.

It is not difficult to check that $\mathbf{B}=\left(B,\left\{x_{1}, x_{2}\right\}, \delta\right)$ is a subautomaton of \mathbf{A} and S_{m} is a homomorphic image of \mathbf{B} under the mapping $\psi: B \rightarrow\{1, \ldots, m k\}$ defined by $\psi\left(\left(i, v_{1}, \ldots, v_{m k}\right)\right)=\min \left\{j \mid 1 \leqq j \leqq m k, i \equiv j(\bmod k), v_{m k-j+1}=u_{1}^{\prime}\right\}$.

Note that φ_{1} was independent of its variables, therefore our contruction gives rise to a homomorphic realization of S_{m} by an α_{2}-power of U. As none of the functions $\varphi_{1+t}(1 \leqq t<m k)$ depended on the input sign S_{m} can also be homomorphically realized by an α_{2}-power of \mathbf{U} in such a way that the feedback functions, except the last one, are independent of the input sign.

Next we show that all shift-registers can be homomorphically realized by an α_{2}-power of U. As usual, by a shift-register on a fixed alphabet $X=\left\{x_{1}, \ldots, x_{n}\right\}$ we shall mean any automaton isomorphic to one of the automata $\mathbf{R}_{m}=\left(X^{m}, X, \delta\right)$ ($m \geqq 1$), where X^{m} denotes the set of all strings $y_{1} \ldots y_{m}$ of length m on X, and $\delta\left(y_{1} \ldots y_{m}, y\right)=y_{2} \ldots y_{m} y \quad\left(y_{1}, \ldots, y_{m}, y \in X\right)$.

Lemma 2. Every shift-register can be homomorphically realized by an $\alpha_{2}-$ power of \mathbf{U}.

Proof. As $\mathbf{R}_{m_{1}}$ is a homomorphic image of $\mathbf{R}_{m_{2}}$ whenever $m_{1} \leqq m_{2}$, it is enough to show that shift-registers $\mathbf{R}_{m k}$ with $m \geqq n$ can be homomorphically realized by an α_{2}-power of \mathbf{U}.

Let $\mathrm{C}=\left(\{1, \ldots, m k\},\{x\}, \delta_{\mathrm{C}}\right)$ be a counter having $m k$ states. We shall define
 $(m+n) m k^{2}$ times
ponents will be treated as $m k$ buffers b_{i} of length $(m+n) k$. The counter will point to the buffer used last. That is, if $i \in\{1, \ldots, m k\}$ is the first component of a state of \mathbf{A} then b_{i} contains the input sign arrived for the last time. Buffers are used in a circular way: if $i<m k$ then b_{i+1}, otherwise b_{1} is the buffer available next. Consequently, the $m k$ signs arrived last will be contained by buffers $b_{i+1}, \ldots, b_{m k}, b_{1}, \ldots, b_{i}$ in this order. We shall use the states $u_{1} \neq u_{1}^{\prime}$ to encode a sign by the fixed mapping $\tau: X \rightarrow\left\{u_{1}, u_{1}^{\prime}\right\}^{n}, \quad \tau\left(x_{j}\right)=u_{1}^{j-1} u_{1}^{\prime} u_{1}^{n-j} \quad(j=1, \ldots, n)$. Therefore, in order to store a $\operatorname{sign} x_{j}$ into the next available buffer we shall set the $(m+j) k$-th component of this buffer to u_{1}^{\prime}, and set all the ($m+j^{\prime}$) k-th components for $j^{\prime}=1, \ldots, j-1, j+1, \ldots, n$ to u_{1}. During this transition all already stored input signs will be shifted with one place to the left, the values of the first components of the buffers underflow.

Now we put this into a precise form by defining the feedback functions of the product. For every $i \in\{1, \ldots, m k\}, v_{1}, \ldots, v_{m k} \in U, j \in\{1, \ldots, n\}$ and $t(1 \leqq t<$ $\left.<(m+n) m k^{2}\right)$ we put $\varphi_{1}\left(i, v_{1}, x_{j}\right)=x$,

$$
\varphi_{1+t}\left(i, v_{1}, \ldots, v_{t}, v_{t+1}, x_{j}\right)= \begin{cases}x_{2} & \text { if } v_{i+1}=u_{1}^{\prime} \\ x_{1} & \text { otherwise }\end{cases}
$$

provided that $t \not \equiv 0(\bmod k)$, and if $t \equiv 0(\bmod k)$ then

$$
\varphi_{1+i}\left(i, v_{1}, \ldots, v_{t}, v_{t+1}, x_{j}\right)=
$$

$\left\{\begin{array}{l}x_{2} \text { if } t=i^{\prime}(m+n) k-(n-j) k \text { where } i^{\prime} \in\{1, \ldots, m k\} \text { is determined by } i+1 \equiv i^{\prime} . \\ (\bmod m k),\end{array}\right.$
$=\left\{\begin{array}{l}\text { or } v_{t+1}=u_{1}^{\prime} \text { and there exists an integer } i^{\prime} \in\{1, \ldots, \\ (\bmod k),\left(i^{\prime}-1\right)(m+n) k<t<i^{\prime}(m+n) k, \\ \text { or there exist } i^{\prime} \in\{1, \ldots, m k\}, r \in\{2, \ldots, k\} \text { such th } \\ v_{t-k+r}=u_{1}^{\prime} \text { and }\left(i^{\prime}-1\right)(m+n) k<t \leqq i^{\prime}(m+n) k, \\ x_{1} \text { otherwise, }\end{array}\right.$
and similarly,

$$
\varphi_{1+m(m+n) k^{2}}\left(i, v_{1}, \ldots, v_{m(m+n) k^{2}}, x_{j}\right)=
$$

$$
=\left\{\begin{array}{l}
x_{2} \text { if } i=m k-1, j=n, \\
\quad \text { or there exists } r \in\{2, \ldots, k\} \text { with } i+r \equiv m k(\bmod k) \\
\text { and } v_{m(m+n) k^{2}-k+r}=u_{1}^{\prime}, \\
x_{1} \text { otherwise. }
\end{array}\right.
$$

Next we give a subautomaton $\mathbf{B}=(B, X, \delta)$ of \mathbf{A} and a homomorphism of \mathbf{B} onto \mathbf{R}_{m}. This will be accomplished by the help of the auxiliary functions $\varrho_{j}: A \rightarrow U^{n}$ $(j=1, \ldots, m k)$ and $\varrho: A \rightarrow U^{m n k}$. Suppose that $a=\left(i, v_{1}^{1}, \ldots, v_{(m+n) k}^{1}, \ldots, v_{1}^{m k}, \ldots\right.$,
$\left.\ldots, v_{(m+n) k}^{m k}\right), j \in\{1, \ldots, m k\}$. If $j>i$ then we put

$$
\varrho_{j}(a)=v_{j-i+k}^{j} \ldots v_{j-i+n k}^{j} \in U^{n}
$$

else

$$
\varrho_{j}(a)=v_{m k-(i-j)+k}^{j} \cdots v_{m k-(i-j)+n k}^{j} \in U^{n} .
$$

By $\varrho(a)$ we shall denote the string

$$
\varrho(a)=\varrho_{i+1}(a) \ldots \varrho_{m k}(a) \varrho_{1}(a) \ldots \varrho_{i}(a) \in U^{m n k}
$$

Now let B consist of all those elements $a=\left(i, v_{1}^{1}, \ldots, v_{(m+n) k}^{1}, \ldots, v_{1}^{m k}, \ldots, v_{(m+n) k}^{m k}\right)$ which satisfy the following conditions:
(i) There exists a string $y_{1} \ldots y_{m k} \in X^{m k}$ with $\varrho(a)=\tau\left(y_{1}\right) \ldots \tau\left(y_{m k}\right)$,
(ii) If $j \in\{1, \ldots, m k\}, r \in\{1, \ldots, k\}$ and $j \equiv i+r(\bmod k)$ then $\left\{v_{1}^{j} \ldots v_{k}^{j}, \ldots\right.$, $\ldots, v_{(m+n-1) k+1}^{j} \ldots v_{(m+n) k}^{j} \subseteq \bigcup_{r}$ where U_{r} denotes a set of four strings:

$$
\begin{gathered}
U_{r}=\{\underbrace{u_{2-r} \ldots u_{-1} u_{0} u_{1} \ldots u_{k-r+1}}_{r-1} \underbrace{u_{2-r} \ldots u_{-1} u_{0} \underbrace{\prime}_{r-1} \ldots u_{k-r+1}^{\prime}}_{k-r+1}, \underbrace{\prime}_{k-r+1} \\
\underbrace{u_{2-r}^{\prime} \ldots u_{-1}^{\prime} u_{0}^{\prime}}_{r-1} \underbrace{u_{1} \ldots u_{k-r+1}}_{k-r+1}, \underbrace{u_{2-r}^{\prime} \ldots u_{-1}^{\prime} u_{0}^{\prime}}_{r-1} \underbrace{u_{1}^{\prime} \ldots u_{k-r+1}^{\prime}}_{k-r+1}\}
\end{gathered}
$$

(iii) If $j \in\{1, \ldots, m k\}$ then $v_{t}^{j} \ldots v_{(m+n) k}^{j}=u_{1} \ldots u_{(m+n) k-t+1}$ where $t=j-i+n k+k$ if $j>i$ and $t=m k-(i-j)+n k+k$ if $j \leqq i$.

It can be seen that with the definition above \mathbf{B} becomes a subautomaton of \mathbf{A} and the mapping $\psi: B \rightarrow X^{m}$ determined by $\psi(a)=y_{1} \ldots y_{m k}$ if and only if $\varrho(a)=$ $=\tau\left(y_{1}\right) \ldots \tau\left(y_{m k}\right)$ is a homomorphism of \mathbf{B} onto $\mathbf{R}_{m k}$. As the counter \mathbf{C} is an X subautomaton of \mathbf{S}_{m}, by Lemma 1 and the fact that φ_{1} is a constant mapping, we obtain a homomorphic realization of $\mathbf{R}_{m k}$ by an α_{2}-power of U.

Now we are ready to state our
Theorem. Every homomorphically complete class of automata is homomorphically complete with respect to the α_{2}-product.

Proof. Given a homomorphically complete class of automata, by the result of A. Letičevskiï in [8], there is an automaton \mathbf{U}_{0} in this class such that for some $k_{1}, k_{2}\left(k_{1}, k_{2} \geqq 1, k_{1} \neq 1\right.$ or $\left.k_{2} \neq 1\right)$ the automaton U can be isomorphically embedded into an α_{1}-power of U_{0} with a single factor. Therefore it is enough to show that every automaton $\mathbf{A}=\left(A=\left\{a_{1}, \ldots, a_{m}\right\}, X=\left\{x_{1}, \ldots, x_{n}\right\}, \delta\right)$ can be homomorphically realized by an α_{2}-power of this automaton \mathbf{U}. In order to prove this statement we form an α_{2}-product $\mathbf{B}=\left(B, X, \delta^{\prime}\right)=\Pi\left(\mathbf{R}_{m k}, \mathbf{S}_{m}, \mathbf{U}, \ldots, \mathbf{U} \mid \varphi\right)$ where $\mathbf{R}_{m k}$ and $\mathbf{S}_{m i}$ are the automata described previously, and for any $y_{1} \ldots y_{m k} \in X^{m k}, i \in\{1, \ldots, m k\}, v_{1}, \ldots, v_{m k} \in U$,
$j \in\{1, \ldots, n\}$ and $t(1 \leqq t<m k)$
$\varphi_{1}\left(y_{1} \ldots y_{m k}, i, x_{j}\right)=x_{j}$,
$\varphi_{2}\left(y_{1} \ldots y_{m k}, i, v_{1}, x_{j}\right)=\left\{\begin{array}{ll}x_{2} & \text { if } v_{1}=u_{1}^{\prime} \\ x_{1} & \text { otherwise },\end{array} \quad i \equiv 0(\bmod k)\right.$,
$\varphi_{2+t}\left(y_{1} \ldots y_{m k}, i, v_{1}, \ldots, v_{t}, v_{t+1}, x_{j}\right)=$
$= \begin{cases}x_{2} & \text { if } \quad v_{t+1}=u_{1}^{\prime}, \\ & \text { or } t \equiv 0(\bmod k) \text { and } v_{t-r+1}=u_{1}^{\prime} \text { for an integer } \\ \quad r \in\{1, \ldots, k-1\} \quad \text { with } i \equiv r(\bmod k), \\ & \text { or } v_{1}=u_{1}^{\prime}, \quad i \equiv 0, \quad t \equiv 0(\bmod k) \text { and } \delta\left(a_{i / k}, y_{m k-i+2} \ldots y_{m k} x_{j}\right)=a_{t / k}, \\ x_{1} & \text { otherwise, }\end{cases}$
and similarly,

$$
\begin{aligned}
& \varphi_{2+m k}\left(y_{1} \ldots y_{m k}, i, v_{1}, \ldots, v_{m k}, x_{j}\right)= \\
& =\left\{\begin{array}{lll}
x_{2} & \text { if } \quad v_{m k-r+1}=u_{1}^{\prime} \text { for an } r \in\{1, \ldots, k-1\} \quad \text { satisfying } i \equiv r(\bmod k), \\
& \text { or } v_{1}=u_{1}^{\prime}, i \equiv 0(\bmod k) & \text { and } \delta\left(a_{i / k}, y_{m k-i+2} \ldots y_{m k} x_{j}\right)=a_{m}, \\
x_{1} & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Let $C \subseteq B$ contain all states $b=\left(y_{1} \ldots y_{m k}, i, v_{1}, \ldots, v_{m k}\right) \in B$ with the following property: there are $r \in\{1, \ldots, k\}$ and $t \in\{1, \ldots, m\}$ such that $i \equiv r(\bmod k), t k+i-r \leqq$ $\leqq m k$ and
(i) $v_{t k-r+1} \ldots v_{m k} v_{1} \ldots v_{t k-r}=u_{1}^{\prime} \ldots u_{k}^{\prime} u_{k+1} \ldots u_{m k}$ if $i \geqq k$, and
(ii) $v_{t k-r+1} \ldots v_{t k} v_{1} \ldots v_{t k-r} v_{(t+1) k-r+1} \ldots v_{m k} v_{t k+1} \ldots v_{(t+1) k-r}=u_{1}^{\prime} \ldots u_{k}^{\prime} u_{k+1} \ldots u_{m k}$ if $i<k$. It is easy to show that $\mathbf{C}=\left(C, X, \delta^{\prime}\right)$ is a subautomaton of \mathbf{B}. Indeed, assume that $b \in C$ and the integers t and r are determined as previously, and let $y \in X$. Then $\delta^{\prime}(b, y)=\left(y_{2} \ldots y_{m k} y, i^{\prime}, v_{1}^{\prime}, \ldots, v_{m k}^{\prime}\right)$ where i^{\prime} and $v_{1}^{\prime}, \ldots, v_{m k}^{\prime}$ are determined according to the three cases below:

Case 1. If $r \neq k$ and $i>k$; or $r=k$ and $t \neq 1$ then $i^{\prime}=i+1, v_{1}^{\prime}=v_{2}, \ldots$, $\ldots, v_{m k-1}^{\prime}=v_{m k}, v_{m k}^{\prime}=v_{1}$. (Observe that now $k \leqq i<m k$.)

Case 2. If $r \neq k$ and $i<k$ then $i^{\prime}=i+1, v_{1}^{\prime}=v_{2}, \ldots, v_{t k-1}^{\prime}=v_{t k}, v_{t k}^{\prime}=v_{1}$, $v_{t k+1}^{\prime}=v_{t k+2}, \ldots, v_{m k-1}^{\prime}=v_{m k}, v_{m k}^{\prime}=v_{t k+1}$.

Case 3. If $r=k$ and $t=1$ then $i^{\prime}=1, v_{1}^{\prime}=v_{2}, \ldots, v_{s k-1}^{\prime}=v_{s k}, v_{s k}^{\prime}=v_{1}, v_{s k+1}^{\prime}=$ $=v_{s k+2}, \ldots, v_{m k-1}^{\prime}=v_{m k}, v_{m k}^{\prime}=v_{s k+1}$ where $s \in\{1, \ldots, m\}$ is determined by $\delta\left(a_{i / k}\right.$, $\left.y_{m k-i+2} \ldots y_{m k} y\right)=a_{s}$. It can be checked that $b^{\prime} \in C$ in all the three cases above.

In order to complete the proof we have to give a homomorphism ψ of \mathbf{C} onto \mathbf{A}. Let $b=\left(y_{1} \ldots y_{m k}, i, v_{1}, \ldots, v_{m k}\right) \in C$ be artibtrary. Then there are uniquely determined integers $r \in\{1, \ldots, k\}$ and $t \in\{1, \ldots, m\}$ fulfilling $i \equiv r(\bmod k), t k+i-r \leqq m k$ and such that either condition (i) or (ii) holds according to $i \geqq k$ or $i<k$. Put
$\psi(b)=\delta\left(a_{(t k+i-r) / k}, \quad y_{m k-i+1} \ldots y_{m k}\right)$. Then, corresponding with the previously listed three cases, one can easily verify that ψ is a homomorphism. On the other hand ψ is obviously surjective.

We have seen that \mathbf{A} is homomorphically realized by B. From this the result follows by the lemmas, the fact that S_{m} was homomorphically realized by an α_{2} power of \mathbf{U} in such a way that with the exception of the last feedback function none of the feedback functions depended on the input sign, further, by observing that in our construction of \mathbf{B}, φ_{1} only depends on the input sign. This ends the proof of the Theorem.

References

[1] P. Dömösi, On homomorphically α_{i}-complete systems of automata, Acta Cybernetica, 6 (1983), 85-88.
[2] Z. Ésik and Gy. Horváth, The α_{2}-product is homomorphically general, Papers on Automata Theory. V, K. Marx Univ. of Economics, Dept. of Math., Budapest, 1983, No. DM 83-3, 49-62.
[3] Н. В. Евтушенко, К реализации автомотов каскагным соедунением стандартных автоматов, Автоматика и вычислит. техника, 2 (1979), 50-53.
[4] F. GécSeg, O композиции автоматов без петель, Acta Sci. Math., 26 (1965), 269-272.
[5] F. Gécseg, Composition of automata, in: 2nd Coll. on Automata, Languages and Programming (Saarbrücken, 1974), LNCS 14, 351-363.
[6] В. М. Глушков, Абстрактная теория автоматов, Успехи математических наук, 16:5 (101) (1961), 3—62.
[7] J. Hartmanis, Loop-free structure of sequential machines, Information and Control, 5 (1962), 25-44.
[8] А. А. Летичевский, Условия полноты для конечных автоматов, Журнал вычисл. мат. и мат. физ., 1 (1961), 702-710.

