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Representation of functions in the space (L)
by Vilenkin series

S. FRIDLI, V. IVANOV and P. SIMON

To Professor K. Tandori on his 60th birthday

1. Let @ be the set of all even real functions, which are nondecreasing on [0, + <o)
and have the following properties:

(@) 00 = o(+0)=0
(i) p(x)>=0 (x=0)
(iif) P(2x) = 0(9(x)) (x — +) (@eD).

{The last property is called <4,-condition™.) For every @€ ® let us define the space
@(L) as the set of measurable and almost everywhere finite functions f defined on
[0, 1], for which '

1

1fle:= f(p(f(x))dx<+oo

0

holds. If the functions f, g belong to ¢(L), then let their ¢-distance be defined as
| f—&ll,, which determines the @-convergence in the usual way. It is well-known [1]
that ¢ (L) is a linear space if and only if the A,-condition holds. Furthermore, as
special cases we get the L, spaces for O<p<+oo (@(x):=|x[’ (x€R)), the Orlicz
spaces (if ¢ is convex), the space of a.e. finite functions with the convergence in
|x|

o CeR)

The system of functions g,€@(L) m€N:={0, 1, ...}) is called a system of rep-
resentation in @ (L), if for every f€ (L) there exists a series > a, g, with coefficients

measure [go (x):=

a, (n€N) such that lim ||/— Zn'akgk||¢=0. We remark that the uniqueness of
n—-oo k=0

such series for all f is not assumed. If this holds too, then the system is a Schauder
basis. The following problem is due to P. L. ULsaNov [1]: by what means can be
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characterized the spaces ¢ (L), in which the classical systems of functions are systems
of representation? He himself gave in [2] a necessary and sufficient condition for this
with respect to the Faber—Schauder system. The analogous question was answered
by P. Oswald [3], [4] for ¢(L)cL,:=L,[0,1] and for the trigonometric, resp. the
Haar system. In [5) we formulated whithout proof the next statement.

Theorem 1. If ¢€®, oL)¢L, (i.e. 1im+inf"’(x)=o], =1 and
X+ oo X

. o(x
lim sup

X+ oo xP
in (L), whereas the representation is not unique.

< + oo, then every orthogonal basis in L, is a system of representation

The aim of this work is to solve the above mentioned Uljanov’s problem with
respect to the Vilenkin systems [6]. To the definition of these systems we fix a sequence
of natural numbers m=(my, m,, ...) for which m,=2 (k€ N) holds. Define the
group G, as the set of all sequences x=(x4, x;,...) (O=x,<my, €N, kEN)
with the group-operation x+y:={((xo+¥yo)(modmy), (x;+y)(modmy), ...)
(x, ¥€G,). The topology of G, is given by the neighborhoods I,(x):={y€G,,:
Yo=Xos ---s Yuo1=Xp-1} (X€G,, n€EN), thus G, forms a compact Abelian group.
Let us introduce in G,, the normalized Haar measure. If My:=1, M, ,:=m M,
(k€N), then the group G, can be transformed in the interval [0, 1] by means of the
following mapping

= X
G ox— jé; M1 €[0, 1].
1t is easy to see that this correspondence is almost one-to-one and measure-preserv-
ing.

The system of characters of G,, can be given in the following way. For k¢N
define the function r, as '
2zix;

(x€G,,,i:= }/—_1)

r.(x):= exp

and arrange the finite products of r,’s as follows. If n€N, then there exists a unique
representation

n= SnkMk 0 = n, = my, mEN, kEN).
K=o

Let y,:= [] ri*, then the functions ¥, are uniformly bounded and form a complete
k=0

orthonormal system in L,, which is called Vilenkin system (generated by the
sequence m).

It is known, {7) [8], [16] that every Vilenkin system is a Schauder basis in L,
(1<=p=< +), from which it follows by means of interpolation the same statement
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* for all reflexive Orlicz spaces. Taking into account Theorem 1 and the fact that the
Vilenkin systems are bases in L, (1<p<oo) we get

Theorem 2. The assumptions @€, o(L)d L, imply that all Vilenkin systems
are systems of representation in @(L). (The representation is not unique.)

In the case @(L)cL, the Vilenkin systems may be at most Schauder bases in
(L), since they are uniformly bounded systems of functions. In this connection
P. OswaLD [9] showed that if a complete orthonormal system of uniformly bounded
functions is basis in @ (L) (for some ¢¢€ @), then ¢(L) is equivalent to an Orlicz
space. (We consider L, as Orlicz space too.) It remains to answer only the question,
in what Orlicz spaces are the Vilenkin systems bases? We know that the reflexivity
of the space is sufficient for this. The next theorem shows that this condition is also
necessary.

Theorem 3. The Vilenkin systems are Schauder bases in a separable Orlicz
space if and only if the space is reflexive.

Furthermore, it follows from Theorem 2 and 3 the next statement.

Theorem 4. If @€ ®, then the Vilenkin systems are systems of representation
in (L) if and only if either @(L)d L, or (L) is equivalent to a reflexive Orlicz space.

2. To the proof of Theorem 1 we need the following lemma.

Lemma 1. Let 1=p< o and the orthogonal system (g,, n€¢N) be basis in L, and

dC =0, limsup * )

@€ @ such that lim inf
x>t x x>+ XP

< + 0. Then for all fep(L), >0 and

R
NeN there exist REN and a polynomial P= D) a,g, with respect to the system
k=N
(8,, NEN), for which

M - I—~Pl, =
and
M
@ 1 2 aglly = 41710 +e (V=M= R),

where the constant A,=0 depends only on ¢@.

Proof. It suffices to show that the statement is valid for the function f=ay, |
where a€R and y is the characteristic function of an arbitrary closed subinterval
[a, b] of [0, 1]. To this end define the functions u, (n€N) as follows.

—n [xe(o, ﬁﬂ]
| [xe(;%, 1)]

U, (x):=
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and let u,(x+1D)=u,(x) (x€R). Thus

1

G [ ay=0 gl = (f Tl = 21
6 o
We can suppose (see [10]) that
) P(x+) = Co(o (M) +o (), 0f1 e(f)dx =y(Ifl,) (. y=0, fL),
where Y€ is a suitable function and C,>0 is a constant depending only on ¢.

o (x)
X

=0, thus for all >0 there exits n€N such that

p(a(n+1)) _ ¢t
n+1 T 4C,’

Since lim inf
X—+ + oo

®)

Denote C, the Banach constant in L, with respect to the system (g,, n€N), i.e. for
all series > oy g, we have that

M oo
||k§)‘°‘kgk“p = Cpllk,§ . 8udl, (MEN).
Choose jéN so that

1-1/p
©) v (41/vc,,a" ] =

jlip
J

Let | 4, be a decomposition of [a, b], where 4,’s are disjoint intervals and the
k=1

b—a
length of 4, (k=1, ...,j) is ——. Furthermore, denote y, the characteristic func-
J

tion of 4, (k=1,...,j). If t,...,t; are natural numbers having the property
4,=T(j) (k=1, ...,j) with some 0<T(j)EN, then applying the Fejér lemma [11]
(p. 77) we get from (5) that

[ o@- Zam@u@)ix= 3 [o@l-u6)dx=
(] = =14,

7 .
O b—a @(a(n+1)) _ .t

; 0f o(a(l—u@)dx 52— ——— = T

=23
k=1

In virtue of (3) we have for fixed s¢N that

1
im [ ttmg, =0 (I1=k=)),
0

-+ oo

where the function u,, is defined by u,,(x):=u,(t,x) (x€R). Because of this and
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since the system (g, k€N) is a basis in L,, there exist natural numbers R,, N, and
polynomials
Rk
pi= 2 458 (N < R < Niyy, k€N)

s=N,

such that if N,=M=R, (McN), then

M
“ ZN' asgs“g = Cz’z, “anunkug =
S=N

©®) b_a

J

nP-1
J

1
= C2lal [ lual = 2C2lal? [ lulr = 4Cglal?
Ay 1] .

and

= .——8
”axk ullk_pk"lp = 2]Cé .
We shall show that

is the desired polynomial. Indeed, in virtue of (4), (7) and (8) we have that

j J . i
(10) ||°‘X— kzl pk”qp = an(”“X—kZl an unk"(a +C$_1 k;]'. “an unk—pkn(p) =¢

and thus inequality (1) is proved.
Let S, be the Mth (M€N) partial sum of P, i.e.

q-1 M
Swi= 3 pt > ag. 2=q=),Ny= M =Ry, qeN).
= s= '
Then )

g—1 M
(11) “SM”(IJ = C(o(”kg]’- pk”(p+ ” s-%' asgs”qa) = C¢(JI+J2)

As in the proof of (1) we obtain

g—1
=13 plle=
(12) B

q—1 q—-1 g-1
= Cg(”d k;]'. Xk”(p+”a kzl Xk (1 _unk)||¢+” k%'- 2% ¢ unk_pk||¢) = Cg(H“X“¢+ 28)'
From (4), (6) and (9) it follows that
M M
13) Jo = HS=ZN' asgille = w(”s=21v’ a.gll,) = e

10*
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Using the estimations (11), (12) and (13) we get (2), which completes the proof of
Lemma 1.

Proof of Theorem 1. Let f¢o(L). Applying Lemma 1 we consider the
series >a.g.=2 p,, where

n M n—1
-3 ple 527 M) and | 3 aedle = A,00= 2 pilo+27)

(N, =M =R,, MEN).
It is not hard to see that this series converges to f in ¢(L). Theorem 1 is proved.

3. Let n be a natural number not less than 2. Denote Z, the discrete cyclic group
of order n, ie. Z,:={0,1,...,n—1}. Furthermore, let

s 2mijt
ps,n(t) = 2 cj €xp ﬂ:] (t> SEZn)
Jj=0

be a discrete trigonometric polynomial of order s defined on Z, (c¢;’s are arbitrary
complex numbers) and | p; allee: =max |Ps,2(1)]. We introduce the discrete measure

on Z,, i.e. let mes {t}:=1/n (teZ,,)

Lemma 2. For all O<a<1 and for all discrete trigonometric polynomials
Ps,n (0<s€Z,, n€N) the inequality

mes{t€Z,: |ps ()] = a|ps A} = —

27ts

is true.

Proof. We denote by P .. the following trigonometric polynomial

2mi jt

s n(t) — Z C exp (IER)a

where

P = 3e;exp ™ (€7, neN, 0<s€2,)
j=0

is a given discrete trigonometric polynomial. Let

124 ol = max 1Py, 0.

On account of the well-known Bernstein inequality we have for the derivative of
P, , that

1P ol = 222 1P, e
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If 1,€[0, n) is a point for which |P, ,(t))|=|P; .ll~, then

=12, b (122 )] (ecl0, ).

P, . ()] =

t
Ps,n(’0)+j Ps,,n
o
Hence there exists an interval Ac|0, n], the measure of which is not less than
(1—a)n/ns such that
|Ps,n (D] = [Py uller (1€4).

The number of the integers being in 4 is at least [(1 —a)n/ns] (where [x] denotes the
integer part of the real number x) and since | P, ,|l-=[ ps,,ll, therefore

) - - 1 _l_ (1—a)n]}>1—a
mes (1€ 9.0 = el oy = max {1, L[ G20} = 2

Thus Lemma 2 is proved. ‘
We shall show that the analogue of Lemma 2 is true for the Vilenkin systems too.

Lemma 3. For all O<a<1 and for all Vilenkin polynomials

Pn= 2 ¥
) k=0
of order (0<)nEN (c¢’s are arbitrary complex numbers) the inequality

1—e
27n

mes {x€Gp: |p,(x)] = ap,]} =

is true, where | p,|l<:=max [p,(x)}.
X€G,,

Proof. i p, is the above Vilenkin polynomial and jM,=n<(j+1)M, (n¢N,
J€Z,), then

M,—1 J=1 +DM —1 n -
= 2 alt 2 2 alhit 2 ah=
= =1 k=M, k=iM,

n—jM,

M, -1 -1 M1 . J
= kZ; W+ 21 rs kz(; Comy+ kWit 1l kZO s ju Wk = Po+ Z;r;Pta
= = = = 1=

where the Vilenkin polynomial P, (¢=0, ..., ) depends only on the first s coordina-
tes of the argument. Let z€G, such that |p,(2)|=|p.l-, then [p(x)|=|p.ll-

j 2rity,
(x€L,32(@) and p,()=Po(D+ Jexp =2 P(2) [(3E1,(). Denote p,,, the
= s a

following discrete trigonometric polynomial

2rmity
ms

Pyom,()i= Po(z)+t=z"1 P,() exp 0€Z,),
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then [p; , le=lpll= and |p;, (z)I=1p;,)l=. On the other hand we have by
Lemma 2 that

' 1—a,

2nj

mes {v€Z,,.: |Pj,m (V)| = P m]=} =
Hence

mes {x€Gp: [Po(x)| = allpyll} = mes (x€L,(2): 1P, (D) = el poll} =

_omy . - . S Sl l1—a
= o mes (062, [0y, O] = alpym ) = 5 = 5

which proves our lemma.
We get by standard argument from Lemma 3 the next

Corollary. If O<g=p=+-<o, then for all Vilenkin polynomials p, of order
(0<)n€N the following inequality is valid
' 11

I2als = Cpgn® 2 [Pl
where C, ,>~0 depends only on p and q.

We remark that the special case 1=¢=p=+< can be found in [12].
Let n,5€¢N, n=2, 1=s<n and

s omiis
K..()= SexpL (1€Z,).
Jj=1 n
. TS
v Sin 7 i .
Since for 0>t€Z, we have IK”"(t)lz—_t and (2/m)x=sin x=x (0=x=n/2),
. T .
sin — ‘

n
therefore by [K; ,(t)|=|K (n—t)| it follows that

(14) card{tzl,...,n——lz K, . ()| %—i—s}§2[§ns-]—l_ (1 §s§[%]).

A simple calculation shows the existence of an absolute constant A=1, such that

n

n s
15) card{t=1,...,n—1: ]Ks,,,(t)léy}éAy (lésé[—z—],-léyé—z].-s

Define the numbers o, (k€N) as follows. If m,=64, then let a,=1. If k, h are
natural numbers such that m, =64, m,,,=64 but m,, ;<64 (0<j<h), then let
o 4;=0 (if jis even) and o, ;=1 (if jis odd). Let us consider now the set of natural
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numbers having the form

"t my m,
(16) N,= 3 o [—] M,+a,M, (1 =neN, 1 =q, = [———]),
k=0 2 2

where in the case m,=64 let a,=34. Thus a,M,=N,<(a,+1)M, and

Nusa max—(iA—_l_l)—Aﬁ‘il =334+1).

a7 . N, keN [mk

fiA

Let D,:= 2 Y, (n€N) the nth Dirichlet kernel with respect to the Vilenkin system.

To the proof of Theorem 3 we need the following lemma.

Lemma 4. If N, (n€N) is of the form as in (16),-then

Ay, (x):= mes {z€G,,: |Dy, (2)] = x} = % (1 =x= ivnl]

(Here and later on C=0 denotes an absolute constant.)

Proof. If z€G,,, then (see e.g. [7])

_— omii
(18) Dy, @) =| > 3 exp %Dy, (2),

k=0 j=1 m
where ;= [—-’;i] (0=k=n—-1) and t,:=a,. It is also known [6] that
19 Dy (2) = {M" L) N
( ) a Mk(z) - 0 (ZEGm\Ik) ( € )'

(I stands for IL(0) = {y€Gn: o=0, ..., yo-1=0}) Let M, =x<(j+1)M,
1¢m, .
(s=0,l,...,n,1§j§z[m7[—-2 for s<n and 1§j§%—2 for s=n, jEN),

where we assume as the first case that m,=64. Then by (15), (18) and (19) it follows
for suitable z€INJ;., that

. 1. H s—

IDa, ()] = M. | > exp 2ritz, —k_z: % [1”;] M= (+DM— M, = (j+ DM, = x

and )

(20) Ay, (9 = mes {2€ [NLpsa: 1Dy, D] = (+DMY = AT = &
s+1 A(.’+2) X

N, .
Now, let ,,éx,<(j+1)M x=—2,m,=64 and -Z—lfjéa,,. Then for suitable
. : 7
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261, \I,41 we get by (14), (18) and (19) that

2
[Dy, (z)|_—.—aM -M, = TM

and

Iy, (%) = mes {zEI,,\I,,+1: Dy (2)] zi} = (2[’""]_1] 1 ;%.

s

N,
If M,=x=— and m,<64, then
i

1 C
1 iy, (x) = mes {z€G,: [Dy ()| = N,} = =

Mn+1

Finally, let M =x<(+1)M,, s=n—1, m<64 and 1=j=m,—1. If
a,=0, then there exist five cases: 1) s=n—1 and m,, =64, 2) s=n—2,m,, <64
and mg,,=64, 3) s=n—1 and m,<6A4, 4) s=n—3, m,,;<64 and m  ,<6A4,
5) s=n—2,m,_,<6A4 and m,<6A4. In the case 1) we get by (20)

1 C
= -_—.
Ms+1 T ox

2y, (%) = mes {z€ L. \Ls: [Dy (D) = 2M 0} =

The case 2) follows by same argument. In the case 3) it follows from (21) that
iy (X)Z=1/M, 1 =C[x. We get similarly the case 5). Hence it remains only the case
). Since 0,170, a,,,=0 and for z€l  ,\J .3

s+1 m
DN"(Z) = ké’) O(k [‘7" Mk = MS+1 =X

is true, therefore it follows 2y (x)=1/2M,,,=C/x.
If a,=1, then «,,;=0 or m,,,=64 andthese cases can be examined as above.
Since we showed already that 1, (M)=C/M, (0=s=n), therefore for jM, Sx<

<(j+D)M,, 0=s=n—1, m=6A4 and —[—]—lsjsm —1 we get N, (x)>
EZNH(MHI)EC/x. This completes the proof of Lemma 4. :

Proofof Theorem 3. It is well-known that the Vilenkin systems are not bases
in L,. (This follows from Lemma 4 too.) Let L,, be a separable Orlicz space generated
by the N-function M and let p:=M’. Furthermore, let N be the.conjugate function
of M in Young’s sense and

[f1lae:= sup ffg (feLy)

where the supremum is taken over all g, for which f N(g)=1 1s true. (For more de-

talls see e.g. [13].) If the Vilenkin system is a basxs in the spacé L,,, then applymg
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Lemma 3 for a:=1/2 it can be shown by same argument as in [14] that for the
Dirichlet kernels the following estimation holds

o

L n+M A
Dy = Cint B < 0ot (e,

On the other hand, we get by Lemma 4 (as in [14] again) for the indices N, (n€N)

D = CrIn e (xp() =1).

n - N’l
xp(x) " MTYN,)
A,-condition and (17) this estimation holds for all n€N, from which the reflexivity
of L,, follows by similar method as in [15]. Thus Theorem 3 is proved.

Therefore xp(x)=1 implies p(x)In

(nEN). In virtue of the
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