
Acta Sci. Math., 48 (1985), 187—200 

Stability properties of the equilibrium under the influence 
of unbounded damping 

L. HATVANI and J. TÉRJÉK I 

•Dedicated to Professor Károly Tandori on his 60tli birthday 

1. Introduction 

It is a well-known phenomenon that damping can make mechanical equilibria 
asymptotically stable. However, as is to be expected, in the presence of too large 
damping the system can remain far from the equilibrium position. For example, the 
equation x+(2+e')x+x=0 due to LASALLE [7] admits nonvanishing solutions 
x=a(] +e~') (a=const.). Considering the second order nonlinear differential 
equation 

x+f(t, x, x)|Áf * + £(*) = 0, 

BALLIEU and PEIFFER [1] investigated which conditions on / assure attractivity őr 
nonattractivity of the origin. They have proved that if / ( • , x, x) is "not too large" 
then the equilibrium is attractive, and if it is "large enough" then the equilibrium 
is not attaractive. Now the following question arises: what happens in the second 
case? Experience suggests (see also LaSalle's example) that the deviation x tends 
to a finite limit (possibly different from zero) and the velocity x tends to zero as t— 
In other words, the point asymptotically stops (possibly far from the original equi-
librium position). 

In this paper we study the conditions of the asymptotic stop by Lyapunov's 
direct method and differential inequalities. In [12] the second author gave conditions 
assuring x-stability of the equilibrium state and the convergence of the deviation x( i ) 
as t-*oo. Recently [4] the first author got conditions for the convergence to zero of 
the velocities in a mechanical system. Here it will be pointed out that the two methods 
can be combined to get conditions for the asymptotic stop. 

Received July 4, 1984. 
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After some preliminaries (Section 2) we present a theorem for general differen-
tial systems which guarantees the stability of the zero solution with respect to a part 
of the variables, the convergence of this part to a finite limit and the convergence to 
zero of the further variables along the solutions as t—°° (Section 3). In the final 
two sections we apply this result to establish stability properties of equilibria of dissi-
pative mechanical systems and of the zero solution of nonlinear second order dif-
ferential equations. The paper is concluded by the example of the mathematical plain 
pendulum with changing length. 

2. Preliminaries 

Consider the system of differential equations 

(2.1) x = X(t, x), 

where t£R+ :=[0, and x£Rk with a norm Let a partition x=(y, z) (y£Rm, 
z£Rn; l s m s f c , n=k—m) be given. Assume that the function X is defined and 
continuous on the set r:=R+XRmXD, where DcR" is open and contains the 
origin, and X(t, 0 )=0 , i.e. x = 0 is a solution of (2.1). We denote by x(t) = 
—x(t;t0, x0) any solution with x(t0)=x0. We always assume the solutions to be 
y-continuable which means that if x(t)-(y(t), z(t)) is a solution of (2.1) and 
|z(i)| is bounded in [f„, T), then x(t) can be continued to the closed interval [/0, T]. 

The zero solution of (2.1) is said to be: 
" z-stable if for every e > 0 , t0£R+ there exists a <5(e, i 0 ) > 0 such that | x 0 | < 

<<5(e, i0) implies \z(t\ t0, x 0 ) |<£ for t^t0; 
asymptotically z-stable if it is z-stable and, in addition, for every t0£R+ there 

exists a <T(?0)=-0 such that |x 0 |< u(i0) implies |z(/; ?0, x0)|-»0 as i— 
Instead of .^-stability we will say simply stability. 
With a continuously differentiable function V: r—R we associate a function 

V: T^R by the definition 

dx v' " dt 

which is called the derivative of V with respect to (2.1). Here as well as in the sequel, 
for two vectors a, b£Rk by ab we denote the scalar product of a and b. 

Denote by U the class of the Lebesgue measurable functions / : R+ —R with 

[ / l / l y ] 1 / r < ~ (0 < V < - ) 
o 

supess | / ( s ) | (y = oo). 
s£R + 



S t a b i l i t y p roper t i es o f the e q u i l i b r i u m 189 

For a continuously differentiable function / : R+-*R, by the function of the 
positive and negative variation of the function / we mean 

f[f(s)]+ds, f lf(s)]-ds, 
o o 

respectively, where 

[a]+ := max {a,0} [a]_ := max {—a, 0} (a£R). 

One of the basic notion of the main theorem will be the integral positivity. 
A continuous function / : R+—R+ is called integrally positive if Jf—°° whenever 

/ 

1 = U \-an bi\, and <3;<I>,<a;+1, ¿¡-¿z i£<5>0 hold for all / = 1 ,2 , . . . with some 
i = l 

positive constant 5. 
In the proofs of the theorem we will need the following 

L e m m a 2.1. If the functions f : R+-+R+, g: R+-~(0, =*,) are continuous, f is 
integrally positive, and there exists an a (0<a^°°) such that 

then g is integrally positive. 

fl+V* 
J- € £ a , 

g 

P r o o f . Suppose that the statement is not true, i.e. there exists a sequence of 
intervals [a;, bi] possessing the properties in the definition of the integral positivity, 
and such that 

(2.2) 1 
i = 1« , 

Suppose that « < a n d introduce the notations />:= 1 + ]/a, q:= a + 1. By 
Holder's inequality we get the estimate 

ai ai 6 "i 6 

for all / = 1 , 2, . . . . For every fixed natural number N the application of the Cauchy 
inequality yields 

Ji ya + l"|l/« N X ' r N , , r N £i 
Z f M Z f s r i i f g* 

In consequence of (2.2) we have 

2 f ' -1 % 

in contradiction to the fact that / is integrally positive. 
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In the case of a=«>, instead of (2.3) we start from the estimate 

b, b, b, 

I I / » • 
n. n. O 

— e I 
• "i 

which leads to a contradiction because of (2.2). The lemma is proved. 

3. The main theorem 

Consider the system of the differential equations 

(3.1) y = Y(t, y, z), z =Z(t, y, z), 

where y£Rm, z£R", t£R+, and right-hand sides Y, Z satisfy the assumptions in 
Section 2. 

T h e o r e m 3.1. Suppose that there are continuous functions Vx, V2: r~*R; 
c,r: R2

+—R+; b: R3
+-~R+; a,cp,\j/,xR+-~R+ and real numbers a, /? (OSjSSa) 

satisfying the following conditions on the set T : 
(i) functions Vx, V2 are continuously differentiable and Vx(t, x)s0, V(t, x):= 

:= Vx(t, x)+V2(t, x ) £ 0 , V(t, 0) = 0; 
(ii) V(t, x)^ -<p(t) V*(t, x) + r(t, V(t, x)), where (p is integrally positive; the 

function r(t, •) is nondecreasing for every t£R+ and the zero solution of the equation 
u = r(t,u) is stable; 

(iii) IZ(t, x)| S tfr {i)V((/, x)a(V(t, x)) 

and the function a is nondecreasing; 

(iv) + y, z) - b(t, |z|, V(t, y, z% 

so that for every t£R+ the function b(t, •) is nondecreasing in its both variables, 
t 

and for every rx, r 2 > 0 the primitive J b(s, rx, r2) ds is uniformly continuous on R+; 

(v) 
dV2{t, y, z) 

dz — X(t)c{\z\> V(t,y,z)), 

where c is nondecreasing in its both variables; 
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(vi) i¡ / / (p f i ' a £L ' K ' - f \ and the function 

¡ W if 

is bounded on R+. 
Then every solution (y(t), z(t)) of (3.1) with sufficiently small initial values exists 

for large t, z(t) —const., P\(7, y(t), z(/))—0 as and the zero solution is 
z-stable. 

P r o o f . If the initial value w0 is sufficiently small then the maximal solution of 
the initial value problem 

u = r(t, u) u(t0) = u0 £ 0 

exists for all / = /0> and being nondecreasing it has a finite limit u„(t0,u0) as i — °o. 
Since the zero solution of the equation u=r(t, u) is stable, we have 

lim M„(i0, m0) = 0. 

For any solution x: [r0, T)-*Rk ( / 0< T^«>) of (3.1) introduce the notations 

®i(0 := K(t, x(0), v2(t) := V2(t, x(t)) 

V(0 = vi(t) + v2(0, w(t):= V(t) + w„(/„, «0)-u(t; t0, u0), 

where u0:—v(t0). 

In view of condition (ii) function v satisfies the estimate v(t)^r(t, v(t)), hence 
by the theory of differential inequalities ([6], Theorem 1.4.1) we have = 

t0, m0) for all i£[i0, T). Therefore, 

(3.3) v v ( 0 ^ - < p ( / K ( 0 ^ 0 ( / 0 < i < T ) , 

which together with w(t) implies 

T 

J Cp(t)vf(t)dt <oo. 
'o 

Besides, the function w and, consequently, v as well, is bounded also above. 
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In order to establish z-stability and the existence of the limit of z(t) we estimate 
the variation of z(t) over an interval [A, B] making use of the Holder inequality: 

(3.4) \z(A)-z(B)| ^ / |Z(t, x(0) | dt^ j > ( t ) v { ( i ) a ( v ( t ) ) d t ^ 

b i 
^ a(u„(t0, u0)) J <p^v{ a(u„(t0, uB)) 

a ™ <P' fit" [ f c p v l f ^ 
* / ( * - « a 

== a(u„(i0, u0)) *l> 
<P' 

(W(A)-W(B)). 

First we apply (3.4) to prove the continuability of the solutions and the z-stability 
of the zero solution. Let e=>0, t0£R+ be given such that | z | < e implies z£D. 
Fix an x 0 = ( y 0 , z 0 ) ( |z0 |<e) and denote 

T*:= sup {T : t0 T, \z{t\ t0, x0)| < e for te[t0, T]}. 

We prove T*=°° provided |x0| is sufficiently small. By (3.4) 

| z ( / 0 ) - z ( / ) | == cia(um(t0, V(t0, x0)j)u„(t0, V(t0, x0)) 

for every t€(t0, T) with an appropriate constant <^>0 independent of the solu-
tion. Because of 

lim V(t0, x0) = 0, lim u„(t0, u0) = 0 

we can choose a 0 < 5 ( e , / 0 ) < £ / 3 such that |x0 |<(5 imphes |z0—z(t; t0, x 0 ) |<e /3 . 
Consequently, |z(i; t0, x0) |<2e/3 for all t£[ta, T). By y-continuability of the solu-
tions and the definition of T* this 

means that = i.e. the solutions x(t\ Iq, A~q) 
with |jc0|<<5 can be continued to all t=ta, and the zero solution of (3.1) is z-stable. 

On the other hand, function w(t) has a finite hmit as t — t h u s w(A)—w(B)—0 
as A, J B — H e n c e , by (3.4), \z(A)—z(B)| — 0 as A,B-*<*>, i.e. z(t) has also a 
finite limit as 

It remains to prove that V^t , x(/))—0 as i — T o this end, take an e 0 > 0 , 
t0£R+ and consider a solution £,(t) = (rj(t), £(/)) of (3.1) with |{( i0) |«5(e, t0). 
We know that |C(0I=C2> v(t)=c3 with appropriate constants c2, c3 and 

(3.5) J <p{f)H{t)dt-

Suppose now that t)1(i)->0 as t — This assumption together with inequality 
(3.5) and the fact that q> is integrally positive imply the existence of a y > 0 such 
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that for every Te?0 there are A=A(T), B=B(T) (T<A~=B) with the properties 

. Vl(A) = 2y/3, v1(B) = y/3 

= S 2y/3 (A (T) ^ t ^ B(T)) 

(3.6) B{T)-A(T) - 0 ( J - °o). 

On the other hand, the sum vx(t) + v2(t) has a finite limit; consequently, there exists 
a t=-0 such that the positive variation of v2(t) over [A(T), B ( r ) ] is greater than z 
for every T. But, by conditions (iii)—(v) of the theorem we have 

b b b 
(3.7) r == / [v2(t)]+dt = / [V2(t,at)J] + dt^ f b(t, m\,v(t))dt + 

a a a 

+ f xW(t)v?(t)c(\at)\, v(t))a(v(t))dt 
a 

b b 
^ f b(t,c2,c3)dt + c(c2,c3)a(c3) J yipv^ 

a a 

Using the Holder inequality, for the last integral we get the estimate 

¡ ^ ' [ f ^ r y ^ r -
(3.5)—(3.8) and condition (iv) imply 

b(t) 
0<tS f [v2{t)]+ dt-0 (r-=o), 

a(t) 

which is a contradiction proving that vt(t)-+ 0 as / — The theorem is proved. 

R e m a r k 3.1. It can be proved that the zero solution of the equation u=r(t, u) 
is stable (see condition (ii) in Theorem 3.1) if and only if 

J r{t,u)dt<°= 
0 

for every sufficiently small w£0, and the function « ( 0 = 0 is the unique solution 
of the initial value problems 

u = r(t,u), u(t0) = 0 ( f , s 0 ) . 

R e m a r k 3.2. It is clear from the proof that in condition (iv) the "positive 
part" [•]+ on the left-hand side can be replaced by the "negative part" [ • ]_ , the 
theorem remains true. 

13 
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R e m a r k 3.3. By Lemma 2.1, in consequence of condition (vi) in the theorem 
we can require of function i¡t to be integrally positive instead of (p. 

R e m a r k 3.4. Analysing the proof of the theorem one can easily see that esti-
mates (3.7)—(3.8) are not needed if we know the function v2(t) to be uniformly con-
tinuous on [/„, oo). Consequently, if it is a priori known that the function 
V2(t,y(t), z ( / ) ) is uniformly continuous on [i„, for every solution (y(/) , z( i )) 
of (3.1), such that z(/)-*const., V(t, y(t), z(t)) is bounded as and 

f <p(t)V?{t, y(t), z(t))dt 
0 

then after dropping conditions (iv)—(v) and (3.2) the theorem remains true. In the 
next section we show how this condition can be checked directly in a special case. 

4. Applications to damped mechanical systems 

Consider a holonomic scleronomic mechanical system of r degrees of freedom. 
Assume that there act upon the system potential and dissipative forces depending 
also on the time. Let the motions be described by the Lagrangian equation ([10], 
Appendix II) 
.... ddT dT dn 

where q£D(zRr is the vector of the generalized coordinates (D is open and contains 
the origin of Rr), q£Rr is the vector of the generalized velocities; T= T{q, q) 
denotes the kinetic energy which is a quadratic form of the velocities; J7=J7(f, q) 
is the potential energy, the vector Q=Q(t, q, q) is the resultant of frictional and 
gyroscopic forces, i.e. Q{t,q,q)q^0 for all t^O, q£D, q£Rr. Suppose that 

n(t, 0) = 0, 0) = 0, 
dq 

which means that q=q=0 is an equilibrium state of the system. 
Many authors have investigated the conditions of the asymptotic stability of the 

equilibrium state (see [10,11, 9, 2]). As the simple example in the Introduction shows, 
for this property it is necessary to bound above the damping in some way. 

In this section we examine what happens under the action of damping not re-
stricted above at all. It will turn out that if the damping is sufficiently large then the 
system asymptotically stops, i.e. for every motion of (4.1) ^(i)—const, (maybe 
different from the origin), q(t)-~0 as t — 
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T h e o r e m 4.1. Suppose that there exist constants h, y > 0 and continuous func-
tions <p: r: R2

+ — such that the following conditions are satisfied on the 
set r:={(t,q,q): t£R+, \q\rSh, \q\^h): 

(i) n ( t , q ) ^ 0 ; 

(") [tF('>?)] S r(t, n(t, q)), 

where the function r(t, •) is nondecreasing for every t£R+, and the zero solution of 
the equation ii—r(t,u) is stable; 

(iii) the dissipation is complete and large enough in the sense that the inequality 

Q(t,q,q)q^-(p(t)\q\i+y 
holds so that 

(4.2) f (p-VVcoo; 
0 

(iv) the function 

/ max | (s,q) : \q\ S fcj ds 

is bounded on R+. 

Then the equilibrium state q — q—0 o/(4.1) is stable, asymptotically q-stable, and 
along every motion with sufficiently small initial values [#(/0)|> !g(/0)| the vector of the 
generalized coordinates has a finite limit as t — °° (i.e. the system asymptotically 
stops). 

P r o o f . It is known ([10], Appendix II) that the matrix in the quadratic form of 
the kinetic energy is positive definite, so by introducing the new variable y :=q 
system (4.1) can be rewritten into the explicit form 

(4.3) y = Y(t, y, q), q = y. 

Take the auxiliary functions 

Vi(y, ?) •= T(q, y) v2(t, y) := il(/, q). 
An easy computation shows (see [10]) that the derivative of V(t,y,q):= 
'•= V\{y, q) + V2(t, y) with respect to (4.3) reads * 

(4.4) V(t, y, q) = Q(t, q, y)y+d-§it, q) = i - < p ( 0 l > f + y + r(í , i7(í, q)) {{t, y, q)tr). 

Because the kinetic energy T i s a positive definite quadratic form, there are 0 < A < A 
such that 

A 2 | j f = K(y, q) s A2\y\2 (\q\ s h,y£Rr). 

13» 
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Therefore, from (4.4) we got the estimate 

(4.5) V(t, y, q) q) + r(t, V(t, y, q)) 

on the set r. By setting <x:=(l +y)/2, JS:= 1/2, 

1^(0:= 1/A, b(t, rx, r2):= r(/, r2), c(r l 5 r2):= 1 

* ( / ) : = m a x № ( t , q ) : \q\^h} 
dq 

all the conditions of Theorem 3.1 are met on the set f (for the integral positivity of 
<p see Remark 3.3). Thus if we have proved ^-stability of the zero solution of (4.3), 
the further statements of the theorem follows from Theorem 3.1. 

Function V is positive definite with respect to y and in view of (4.5) it satisfies 
the differential inequality u = r(t, u). The zero solution of the associated differential 
equation ii=r(t, u) is stable; therefore, by C. Corduneanu's theorem [5] (see also 
[6]) the equilibrium state q=q=0 is ^-stable. The theorem is proved. 

R e m a r k . It is worth noticing that either the stronger version 

(ii') 
d n ( f ^ 
jr(t>q), 

r(t,U{t,q)) 

of condition (ii) or the condition that H(t, q) is uniformly continuous for t£R+, 
\q \^h can replace condition (iv) in the theorem. 

Indeed, according to Remark 3.4 it is enough to prove that for every motion 
q(t) with sufficiently small initial values |<?(i0)|, |<j(io)| the function JJ{t, q(t)) is uni-
formly continuous on R+, provided that <?(i)-"-const. as t-+ This is obviously 
satisfied if Il(t, q) is uniformly continuous. On the other hand, for any q fixed suf-
ficiently small, from condition (ii') we get the estimate 

B 

\n(A,q)-II{B,q)\*\f r(t,u(t; t0, i7(/0 , <?„)) dt\ = 
a 

= \u(A.-, t0, II(t0, q0))-u(B; t0,II(t0, ?0))l - 0 (A, B -co). 

Therefore, iJ(i, q)-*Il*(q) uniformly in a small ball around the origin as 
hence II(t, q(t)) also has a finite limit, which is sufficient for the uniform continuity 
of Il(t,q(t)). 
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5. Application to second order equations 

In this section we apply our main theorem to study of asymptotic behaviour of 
the motions of a rheonomic mechanical system of one degree of freedom. In differ-
ential equation language, consider the equation 

(5.1) (p(t)x)- + g(t, x, x)x + q(t)f(x) = 0 (xtR), 

where p, q: /?+ — (0, <*>) are continuously differentiate, and g: R+XR2-~R, 
f : R-+R are continuous functions, and 

x f ( x ) s 0 (t£R+,x£R). 

The following two theorems illuminate how to get different conditions for the same 
asymptotic property of the solutions of the same equation by different choices of the 
auxiliary functions. The first theorem concerns the case of bounded q, the second 
one can be applied also to unbounded q. 

T h e o r e m 5.1. Suppose that 
(i) there exists a function y: 2?+ — R+ such that 

?(i)Sg(i,M) (t£R+; u, v£R) 

(iii) either (2y -f p)\p or 1 /)/p is integrally positive. 

Then the zero solution of (5.1) is x-stable and for every solution x(t) with suffi-
ciently small initial values JC(/)—const. p(t)x2(t)-*0 as t—°°. 

P r o o f . Introducing the notations y=p(t)x, z—x, we can write equation (5.1) 
in the form iy =- q(t)f(z)-g(t, z, y/p(t))y/p(.t) 1 ' \ i = ylp(t). Define z nz)-= f f(r)dr S 0, y2I2p(t), V2(t, z) := q(t)F(z). o 

The derivative of the total mechanical energy V:= Vx + V2 can be estimated as fol-
lows : 

t=J*+L)Vl+4Fs-*!+lVl+\±] v. 
\ p p ) p Vq J + 
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By Lemma 2.1, condition (iii) implies the function (2y +p)/p to be integrally positive. 
Because of (ii) the function q is bounded, so the conditions of Theorem 3.1 are met by 
the choices /?:= 1/2, ^•.— 'flip, %.=q and 

c(r, s) := max {|/(z)|: \z\ r}. 
The theorem is proved. 

T h e o r e m 5.2. Suppose that 

(i) there exist a constant h>0 and a function y: R+-~R+ such that 

y(t)^g(t,u, v) (t£R+,\u\^h,v£R), 

(") / J p(\n (pq))- + 2y 

(iii) either Yqjp or 0 n (py))' +2y/p is integrally positive. 
Then the zero solution of (5.1) is x-stable, and for every solution x(t) with suf-

ficiently small initial values x(i)—const., p(t)x2(t)/q(t)—0 as t— 

P r o o f . After setting 

and computing 

(Vi + V2y =-[{in(pq)y + ^-]vl 
P 

the proof of the theorem can be concluded in the same way as in Theorem 5.1. 

Finally, in order to illuminate these results we give sufficient conditions for the 
asymptotic stop of a mathematical plain pendulum whose length changes by the law 
l= l ( t ) (see [3]). Assume that there acts viscous friction on the material point such 
that the damping force is proportionate to the velocity. Let the position of the mate-
rial point in the plain be described by the length l(t) of the thread and the angle <p 
between the axis directed vertically downwards and the thread. Then the kinetic 
energy T, the potential energy 77 and the dissipative force Q are 

T =jm[l\t)(pH2(t)l II = mgl(t)(l —cos cp) +1, Q =-h{f)P(t)q>, 

where m is the mass of the material point, g denotes the constant of gravity and 
h(t) is the frictional coefficient at the moment t. The motions are described by the 
Lagrange's equation 

. (ml2(i)<p)' + hl2(t)<p + mgl(t) sin cp — 0. 
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C o r o l l a r y 5.1. If 

(0 

(Ü) 

then the equilibrium state (р = ф=0 is (p-stable; every motion <p(t) has a finite limit, 
and /(/)<p(i)—0 as 

C o r o l l a r y 5.2. If 
(i) 3m(In l(t))'+2h(t) > 0 ( i € i ? + ) ; 

°° l/l 
0 0 / 3m(In l)'+2h 

(iii) «;/?<?/- 1 / / / ( / ) or 3 m ( l n / ) ' + 2 / i tó integrally positive, 
then the equilibrium state <р = ф = 0 is (p-stable, every motion q>(t) has a finite limit 
and 1/7(7)0(0—0 

P r o o f . They immediately follow f r o m Theorems 5.1 and 5.2, respectively. 
One can observe tha t Corol lary 5.2 concerns the case of nonincreasing length 

(perhaps l{t)-+0 as < — and Corollary 5.2 works mainly if l(t) is nondecreasing 
(possibly, / ( / ) — °° as i — 
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