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Empirical kernel transforms of parameter-estimated 
empirical processes 

LAJOS HORVÁTH 

In honour of Professor Károly Tandori on his 60th birthday 

1. Introduction. Let d s l be an integer and tet Xx, X2, ... be a sequence of 
independent ¿/-dimensional random vectors with common distribution function 
F(x), x£ Rd. We assume that a parametric family of rf-variate distribution functions 
is given, 

& = {F(x, 6): x£Rd; 9£0dRp}, 

and the common distribution function of the Xx, X2, ... belongs to this family, i.e., 
there is a parameter 9O£0 so that F(x) — F(x; 0O) = F0(x). The true value 0O is 
unknown. Consider the estimated empirical process defined by 

P„M = n^(F„(x) - F(x; 6n)), x€R", 

where F„ is the empirical distribution function of Xx, ...,X„ and 9„=(8„1, ..., 9np) 
is some estimator of 0O based on the random sample Xx, ..., X„. 

The weak convergence of the estimated empirical process was studied by several 
authors. We will use the general strong approximation result of BURKE et al [ 1] in 
this note. Introduce the notations 9=(91 , 9p) and 

VF(x; 9*) = VeF(x; 0)|fl=fl* = ( A F ( x ; 0), . . . , J - F(x; 0 ) ) ^ , 

and let 
p 

(x, y) = Z x j y j , X = (*! , . . . , xp), y = (y1,..., yp), 
1 

stand for the inner product in Rp. Let aT=(a1, ..., ap)T denote the column vector 
corresponding to the row vector a=(al, ..., ap). The norm of a vector x = ( x 1 ; ..., xp) 
and a matrix M = is defined by ||x|| = max {|x,-|: 1 ^ / S p } and 
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—max {\mij\: 1 ~i,j=p}. If converges to zero in probability we will use the 
notation £„-^-0 (w—o>). A Brownian bridge BF°(x), x£Rd, associated with the 
distribution function F0 is a d-variate Gaussian random field such that EBF°(x)=0 
and EBF°(x)BF°(y)=F0(xAy) -F 0 (x )F(y) , where x/\y=(min ( X l , ..., min (xd, yd)). 

T h e o r e m A (BURKE, M . CSÖRGŐ , S. CSÖRGŐ and RÉVÉSZ [1], and S. CSÖRGŐ 

[2]). Suppose that the sequence 8„ satisfies the following conditions: 

(i) « m - 0 o ) = » -1 '2 Í / (Xj; 0O)+en , 
j=i 

where /(•; 0n) is a measurable d-dimensional (row) vector-valued function and £„-ÍL 0 
( n - o o ) . 

(ii) El(Xi;e0) = 0. 

(iii) M(00)—ElT(X1-, 0O)1(X1; 0O) is ű finite and nonnegative definite matrix. 
(iv) The vector WeF(x; 6) is uniformly continuous in x and 0a A, where A is the 

closure of a given neighbourhood of 0O. 
(v) d= 1; Each component of the vector function l(x;0o) is of bounded variation 

on each finite interval. 
d> 1; The partial derivatives of each component of the vector function I, with 

order not exceeding d, exist almost everywhere (with respect to the d-dimensional 
Lebesgue measure) on Rd, and for any «>0 

sup 2 2 
llxil su ./=1 j, jdm o 

ji+ —+Jd=J 

dJl(x; 0O) 

dx{' ...dxfr 

if the underlying probability space is rich enough, one can define a Sequence of 
d-dimensional Brownian bridges associated with the distribution function F0 

such that 
sup \pn(x)-D„(x-, 0 „ ) | - - 0 (n -
x£Rd 

where 
Dn(x; 0O) = BZ°(x)-{fl(y, 0o) dBF°(y), WgF(x; 0O)) 

R<> 

is a sequence of copies of the Durbin process. 

The limiting Gaussian process of this theorem depends, in general, not only on F 
but also on 0O, the true, unknown value of parameter. On the other hand, the distri-
butions of the func t iona l of D ^ x ) 0O) (supremum functional, square integral func-
tional) as functions of 0„ are unknown. According to the references below, Bolshev 
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asked whether there is a kernel k such that the random variable 

/ J k(x, y)dD1(x; 0O)D1(y; 0O), d=\, x, ydR} 
— oo — oo 

have a prescribed distribution. This problem was investigated by H M A L A D Z E [6], 
[7] and D Z A P A R I D Z E and N I K U L I N [5]. The methods of Dzaparidze and Nikulin 
are based on the orthogonal expansion of the limiting Gaussian process. In the case 
d= 1 and when only shift and scale parameters are estimated they proposed statis-
tics whose limit distributions are independent of the unknown parameters and depend 
only on F, but these limit distributions are usually complicated and therefore it would 
be hard to compute percentage points for these statistics. Using the martingale prop-
erty of P„(x) if d= 1, Hmaladze proved some weak convergence results in L2 

sense. Analogous results were obtained earlier by N E U H A U S [10], [11]. He proved the 
weak convergence of P„(x), x€[0, l]d, d^ 1, in supremum metric under contiguous 
alternatives. 

The above question was generalized by S. CSÖRGŐ [2], who introduced 

fk(x,y)dp„(x), xiRd, y£R", 

a kernel transform of the parameter-estimated empirical process. Here q = \ is an 
arbitrary integer. Assuming some regularity conditions on k, he proved that 

sup | f k ( x , y)dp„(x)— f k(x, y) dD„(x; 0O)|-^ 0, n 
y£Rq Rd Rd 

Unfortunately, he cannot choose a kernel k and a functional h on the space of con-
tinuous functions on R9 such that the random variable 

h(fk(x,y)dD1(x; 0o)) 
R1 

has a distribution not depending on 0„. 
In this note we are interested in a sequence of kernel type transformations of 

P„(x), where the kernel will also depend on the sample. We are able to choose a se-
quence of kernels {kN(x,y; 0O)} such that 

(1.1) f kN(x, y)P„(x) dx, yd I\ 
R" 

converges weakly to a (/-dimensional standard Wiener process or to the standard 
Brownian bridge on l q (or, for that matter, to any prescribed Gaussian process) if 
iVand n(N) go to infinity, where Iq is the unit cube of Rq. The transformations (1.1) 
depend, in general, on the unknown parameter 90, therefore we will prove, that there 
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is a sequence of random kernels j )} based on the sample Xx, ..., Xn such that 

fk"Nim(x,y)pn(x)dx, ydl", 
«S 

converges weakly to a prescribed process, if N, m(N), n(N, m) go to infinity. Our 
methods may be extended to some more general parametric models. Section 2 pre-
sents a general result, where the role of fi„(x) is played by an arbitrary sequence of 
processes Xn(x). Section 3 will then specify the result for P„(x). 

2. Main theorem. The reproducing kernel Hilbert space H{R) generated by a 
covariance function R(t, 5) plays a fundamental role in our note. Suppose that 
X(t), tql", is a centered Gaussian process having continuous paths on Id a.s. and 
continuous covariance function: 

EX(t) = 0, EX(t)X(s) = R(t, s), t,s£ld. 

It is well known, that the space of all continuous functions Id-*R with the topology 
induced by the supremum norm is a separable Banach space and the collection 
of all linear and bounded functionals on can be identified with the space of all 
(regular) measures v on the Borel subsets of Id. If v+ and v~ denote the Hahn decom-
position of v, then || v|| ~ v+ (7d)-|-v_ (Id) is a norm on (€*. SATO [12] has shown, that 
for some complete orthonormal sequence (CONS) {et(t), / s i } in H(R) one can write 

e,(t) = f R(t,s)Vi(ds), 

where v - ^ * and 
(2.1) = 

(2-2) M = 1, 

(2.3) a, = [ f f R (t, s) v, {ds) v; (dt)]1'* > 0, 
,3 ,d 

(2.4) / f R(t, s)Vi(ds)Vj(dt) = 0, 
1' Id 

M A N G A N O [9] proved that 
(2.5) f e ^ v j i d r ) = (5,7, 

where ¿¡¡=1, <5,j = 0, i—j. The following lemma is a simple variant of Lemma 2.2 
in [9]. 

L e m m a 2.1. Let R(t, s) and G(t, s) be continuous covariance functions of two 
centered Gaussian processes with a.s. continuous paths on Id. Let N be a positive integer 
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and {e,(0, / S i , teid} be a CONS in H(R) generated by measures {v;, z'Sl}. If 

(2.6) sup s)-R{t, s)| 1 /Klt 
(t ,s)€/8 < i 

then there exists an orthonormal set { f , l^i^N} of functions in H(G) generated 
by the measures {xt, lS/SiV} such that 

(2.7)' | |* ;-v,.| | *zAKa, l ^ i ^ N 
and 
( 2 . 8 ) sup | e , ( 0 - . / ; ( 0 l =5^*3, l S i ^ i V , 

teid 

where K2, K3 are suitably chosen polynomials of N, M, ||v;|[, Isi^N, with 
positive coefficients and M= ^max^ |R(t, s)|. 

P r o o f . The proof follows from the construction of Mangano. He constructed 
measures l ^ i ^ N , which are linear combinations of the measures v,-, l ^ i s N . 
It is not too difficult to check that the measures and functions f i t ) , 1 ^i^N, con-
structed by Mangano satisfy (2.7) and (2.8) with suitably chosen functions K1} K2, K3. 

Let {Xn(t), t£Id) be a sequence of stochastic processes such that 

(2.9) sup \X„(t)-Y„(t)\ 0 (n 

where {F„(/), t£Id} is a sequence of copies of a Gaussian process {F(i; 0), t£ld} 
depending on a parameter 0. We suppose, that the process Y(t\ 0) has continuous 
paths on Id a.s., its covariance function is continuous for every 0£6>, where 0czR" 
is a compact parameter set, and 

(2.10) sup |J?(f, s; G)-R(t,s; 0*)| - 0 , if 0 - 0 * . 
( f , s ) 6 i 2 d 

It is well known from functional analysis, that the kernel function R(t, s\ 0) 
has a sequence of eigenvalues {¿¡(0), / s i } and eigenfunctions {<?>;(/; 0), / s i } , 
that is 

A,(0)^( t ; 0) = ¡R(s,t; 0 ) ( s ; 0) ds, 
i" 

/<Pi(t; 0)<Pj(n S)dt = ¿¡j, A,(0) > 0. 

The sequence of eigenvalues and eigenfunctions determines a CONS in H(R(0)): 

(2.11) e,(t; 0) = (A ;(0))- i /> ;( / ; 0). 

It follows from (2.11) that in this case 

(2.12) Vi(ds) = (A i(0))_3/29,(s; 6)ds, 
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so we have 

(2.13) ¡v,.(0)|| ^ (;,.(0))-3/2M(fl), 

where M(0) = sup \R(t, s\ 0)|. (t,s)€/!d 

Let N be given. Then the polynomials Ku K2 and K3 of Lemma 2.1 which 
depend only on N, M(0) and ||v,(0)||, lgz ' s iV, are continuous positive functions 
of 0. Let 0 < e < 2 inf {1 /(Kx min (l/K2, 1 /K3))} and define <5(0)>O for every 

eee v 

9£0 in the following way: if |0* —0|<5(0), then the inequality 

(2.14) sup \R(t,s; 9)-R(t,s; 0*)| 
(T)S)£/ 2D / V A 2 A 3 J 

holds. The existence of ¿(0) follows from (2.10). Let A(e, 0) denote the open ball 
with centre 0 and radius 3(0). Then the union U A(e, 0) covers the set 0. 

oze 
Using the compactness of 0, we have that a finite sequence Ax(s, 0X), ..., A,(s, 0,) 
also covers 0. If 0£Ai(e, 0,), l s i ^ / , then we can define with Mangano's method 
an orthogonal set {/,-,¡(0), 1 =j=N} in H(R(9)) generated by the measures 
{y-jti(0), l^j^N}. As we said in the proof of Lemma 2.1, these functions and 
measures are linear combinations of {eJti, l^J^N} and {vjt;, l^J^N}, where 
{eJyh l^J^N} is an orthonormal set in //(/?(0,)). If the measures {vJ>;, 1 ^ / S i V } 
are generated by the eigenfunctions {q>ji;, 1 ^ j ^ N } of R(t,s; 9j) then can 
be written in the form 
(2.15) xui(dt) = cjticphi(i)dt, 

where the cJih l^i^l, l ^ j ^ N , are constants. It follows from the definition of At 

and from Lemma 2.1, that if 9,9*£Ai, then 

(2.16) sup \fJti(t; 9)—fJii(t; 0*)| < e, N, 
t£Id 

(2.17) 1 1 ^ ( 0 ) - * ; , ; r ) l l < e, 1 ^ } ^ N. 

The covariance function of the limiting process {Y(f,90), t£Id) depends on an 
unknown parameter 0O, which will be estimated with a sequence of random varia-
bles 0„, such that 
(2.18) | 0 „ - 0 o | - O (H . 

Let e = 2~m and define the following random functions and measures: if 
9n£Ai(2~m; 0,), then 1 ^ j ^ N } denotes the corresponding orthonormal 
sequence and { x " 1 ^ j ^ N ) denotes the measures corresponding to {vJ);(0,), 

JAIN and KALLIANPUR [8] proved that if {Y(t), t£/d} is a Gaussian process with 
continuous sample paths a.s., having mean zero and continuous covariance R(t, s), 
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then the sums 

(2-19) 2Zj<Pj(f) 
j=i 

converge uniformly in t£Id to Y(t) a.s. as where {(joey's 1} is a CONS in 
H(R) and { i j j ' s 1} is a suitable sequence of independent standard normal random 
variables. On the other hand, in case d— 1, if G is a covariance such that there exists 
a Gaussian process with this covariance and with almost all sample paths continuous, 
{£*, j=\) is a sequence of independent standard normal variables, and if 
{¡l/j, / s l } is a CONS in H{G), then the sums 

(2.20) ¿ № ( 0 
j=i 

converge uniformly a.s. in /€[0, 1] to a Gaussian process whose covariance is G and 
almost all of whose sample paths are continuous, as AT— °° (Theorem 2 in [8]). 
If 1, then some further conditions on G are needed to retain this statement. 

We will assume in this section, that Z is a Gaussian process with almost all 
sample paths continuous, 

EZ(t) = 0, EZ(t)Z(s) = G(t, s), /, s£I9, g S i , 

and for every sequence of standard normal random variables 1} there is a 
centered Gaussian process Z* having continuous sample paths a.s. and covariance 
G such that 

(2.21) sup | Z # (0 ~Z*(0| — 0 (JV - oo), 
til" j=i 

where {^¡(t), y s l } is a CONS in H{G). 
Let X*(s) denote the empirical kernel transform of Xn(t) 

<2.22) X „ * ( s ) = Z f x „ ( t ) ^ ( s ) ^ i ( d t ) , if 6meA,(2-m,dd s£I". 
j=i /3 

If the sequence {vj -^ySl} is generated the eigenfunctions {(pJti, , / s 1} of R( • ,0,), 
then the transform can be written in the form 

<2.23) X„*(s) = JX„(t)k"Nm(t, s)dt, stl", 
f 

where 

<2.24) k"Nim= 2 chVi.ii-MM ^ 0d, 
7=1 

is a random kernel function. 
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T h e o r e m 2.2. If the underlying probability space is rich enough, then we can 
define a sequence {Z„(s)} of copies of Z(s) such that we have 

sup | j e ( s ) - z „ ( s ) | ^ 0 , 
sgl* 

if N, m(N) and n(N, m) go to infinity. 

P r o o f . Let £ and & be arbitrary positive constants. The distribution of 
sup |F„(0l is independent of n, so there is a constant Mx such that we have 
>g/«< 
(2.25) P i s u p l J ^ O I ^ M j ^ / S . 

tgjd 

Using condition (2.21) we have that 

(2.26) ¿>{sup| 2 C,<A,(s)| > £/3} < <5/4, 

sill j=N+1 

if N^N0 for every sequence of independent standard normal random variables. Set 

M2 = max sup 

Let m—m(N) be so large that 
(2.27) 2 - m < e/(3NM1M2). 

The sequence 0„ goes to 0O in probability, therefore there is a paramater subset 
Ai(2~m, 0;) such that 

(2.28) /»{0„^ i (2 - m , 0,)} > l - < 5 / 2 , 
if n ^ n ^ N f t n ) . 

The transformed process X* can be decomposed as 

Xn*(s) = f (X„(0~Yn(t)) J \jjj(s)xn
hi(dt) + 

¡d j = 1 

+ fY„(t) 2<l>j(s)(xli(dt)~y.j,i(e0)(dt))+ f Yn(t) 2^j(s)y.j,i(60)(dt) = 
¡d j=l jd • j=l 

= ai„(s) + a2n(s) + «3„(s); 

say. We assume that 00eA;(2~m, 0,). Using (2.9) we have that 

^{sup |fl ta(s)| > £/3, en£Ai(2-m, 0J} ^ 
sill 

^ P{sup \Xn(t)—Y„(t)\NM2( max ||vu¡|| +2"" ' ) > e/3, Qn£A,(2-", 0;)} s <5/8, 
t£Id lSjSiV 

if n ^ n 0 = m a x m), w 2 W >"))• The second term also goes to Zero in proba-
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bility, because it follows from ( 2 . 2 5 ) , and ( 2 . 2 7 ) that 

P {sup K ( s ) | > E/3, 9m€A,(2—, 0,)} s 
sil* 

^ P {Mr M2NmaxN (|| x'j, , (0O) ¡i) > £/3} - 0. 

The orthonormal set {/j,;(0o)> l=j=N} corresponding to the measures {xJyl(0o), 
l ^ j ^ N } can be completed to a CONS {./},; (0O), y ' s l } in H(R(0o)). The sequence 
M 

2 £j,ifj,i(t) converges uniformly in / £ / to Yn(t), as M — a . s . with a suit-
J = I 

ably chosen sequence of independent standard normal variables 7 = 1 } 
(see Theorem 1 of JAIN and K A L L I A N P U R [ 8 ] ) . So by ( 2 . 5 ) , a3n(s) can be decomposed 
as a finite sum 

a 3 „ ( s ) = ZZhtji*)-
J"=I 

Using the condition ( 2 . 2 1 ) , the partial sums 

converge (as uniformly in s£Jq to a separable Gaussian process denoted by 
Z„(s). On the other hand, we have that 

{(zn(s), 2 fl.«(«)), = {(z(s), 2 Zj(s)), st /% 
i j=i 

where 

Z ( s ) = a.s., 

and = denotes equality in distribution. So it follows form ( 2 . 2 6 ) that 

i> {sup K , ( s ) - Z „ ( s ) | > 8/3} <5/4. 
seii 

Summing up, we proved that if N^N0(e, <5), m^m0(N, e, d) and n^n0(N, m, e, <5), 
then 

P{sup | z , r ( s ) - z „ ( s ) | > £ } ^ 
sil* 

^ P{sup |X*(s)-Z„(s) | > £, e,£Ai{2-m, 0 , ) } + P R M i ( 2 " m , 00} < «5, 
sill 

which is the desired conclusion. 

3. Applications. So far q=\ was arbitrary, and from now on we choose 
q=1 since univariate limit processes are more convenient to handle. First we study 
the estimated empirical process when d= 1. Let F~1(t \ 0) denote the inverse func-
tion to F(f,d), 

F "l(t; 0) = inf {s: F(s; 0) s t). 

14 
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It follows from Theorem A, that 

sup \pn{F-i(t; en))-D„(F-\t; 0O); 0O)| — 0 (n 
o s t s i 

and 
EDn(F-\v, e0y, 0„) = o, 

EDn{F-\t\ 0O); 0o)Z>n(JF-1(s; 0O); 0O) = R^t, s; 0O) - M s - ( s -
-J{F~\f, 0O); 0 „ ) V j F { F - \ s ; 90); 90)-J(F~\s; 0O); 90)VjF(F-^t; 90); 90) + 

+VeF(F~1(t; 0O); ^ M ^ V j ^ - H s ; 0„); 0«), 
where 

> 

J(t;B0)= f l(u;90)dF(u;90). 

The processes D„(F _ 1 ( / ; 0O); 0o) have continuous sample functions a.s. if 
V 0 F ( F - 1 ( / ; 90); 0O) and 0o)) are continuous functions of /. The cova-
riance function Rx(t, s; 9*) will be continuous in 9* if M(0*), 0*); 0*) 
and V f l F(F - 1 ( i ; 0*); 6*) are continuous functions of 0*£@. The random function 
/?x(i, s; 0„) is an estimate of the covariance function of the limit process. So we can 
define /?*, the empirical transform of /?„(F-1(Z; 0„)) as it was defined by (2.22) or 
(2.23). The sample X l t ...,X„ from a distribution belonging to the parametric family 

determine only the random measures (and functions) in the definition of the empir-
ical transform, so we can choose the eigenfunctions {^- , . /=1} of the limit process 
without restriction. For example, if 

(3.1) i]/k(s) =(/2/&Tt)sin kits, O ë s S l , 

then the limit process will be the Brownian bridge. If 

(3.2) <Ms) = s, 

(3.3) «A*+i(s) = ( f ï / k n ) sin kns, O ë s S l 

then P*(s), O ^ J S I , will converge weakly to the Wiener process. 

T h e o r e m 3.1. We suppose, that the conditions (i), (ii), (v) of Theorem A are 
satisfied and 

(iii)* M(9*)—El1(X*; 9*)l(X*; 9*) is a finite, nonnegative definite matrix and 
M(0*) is continuous in 0*<E0, where P(X*<t) = F(t;9*), 

(iv)* J(F~1(t; 9*); 9*) and V0F(F~l(f, 9*);0*) are uniformly continuous in 
t, and 0*d6, where 0czRp is a compact parameter set and the true value 
0O is an interior point of 0. 

Then we can define a sequence {Z„(s)}of copies of Z(s) on the probability space of 
Theorem 2.2 such that we have 

sup |&*(s)-Z„(s)| - - 0, 
O S s S l 

if N, m, n go to infinity. 
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P r o o f . It follows from the conditions of the theorem that R ^ t , s; 0), OS/ , s S l , 
0£&, satisfies (2.10) and |0„ -0 o | - ^O, as The processes Dn(F~1(t; 0); 0) 
have continuous sample path functions a.s., so this theorem is a consequence of 
Theorem 2.2. 

The most important special case of this theorem is when we estimate shift and 
location parameters only, i.e., the parametric family can be written in the form 

= — 0 , i e * 1 } . 

The covariance function of the limit process for the shift and location estimated empir-
ical process was computed by D A R L I N G [3] and D U R B I N [4] (cf. [5]). They proved 
that the covariance function of D „ ( F - 1 ( i ; 0j, 0g); 0j , 0^) does not depend on 
Co > 01): 

ED^F-Kf, Oh, 01); 91, Ol)Dn(F-i(s; 0J, 0§); 0J, 0O
2) = R.,(t, s) = 

= tAs-ts-[InI22-7f2] -i [/22 Wl (i) wx (s) + 

+ hiw2 (0 w2 (s) - /12 (wx (t) w2 (s) + w2 (t) (s))], 
where 

wi(0 =f(E~1(t)), w2(0 = F-i(t)f(F~i(t)), 

= I VMi^^
 /i2 =- i ^ 722 = / 

and / , / ' are the first and second derivatives of F assumed to exists. In this special 
case we do not have to estimate R2 f rom the sample, so the transformation of 
/?„(F_1(<; 0Bl, 0„2)) will be non-random. If {(p*, / s i } is a C O N S in H(R2) generated 
by the measures {v*, / s i } then the transformation of P„(F~1(t; 0*, 0^)) 

K(s) = f Pn(F~\f, 0„1,0„2)) 2 rlfj(.s)v* (dt) 
o J = 1 

is also non-random, and 

sup | j 8 * ( s ) - Z „ ( s ) | - - 0 ( « - c o ) , 
OSsSl 

where {Zn} is a sequence of copies of Z. 
Finally we study the general case, when d is an arbitrary positive integer. The 

transformation of the parameter estimated empirical process into the unit interval 
was very simple in the one dimensional case, but in the general case it is a bit more 
complicated. Let Fj(xj; 0) denote the / ' h maiginal distribution of F(x; 0), 
x=(xi, ..., xd). There is a ¿/-variate distribution function H(x\ 0), all the univariate 

14* 
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marginals of which being uniformly distributed on [0,1], such that 

F(x; 0) - HiF^Xu 0), ..., Fd(xd; 0); 0), x = ( X l , ..., xd). 

Let Fj1 denote the left-continuous inverse of Fj and define the following function 
F(t; 0) = H(F,~\t,- 0),..., Fd\td- 0)- 0), t = (h, ...,td). 

So the process fin(F(t; 0„)) is defined on ld, and it follows from Theorem A, that 

sup \p„(F(t; On))—D„(F(/; 0O); 0 o ) | i~ 0 (n - co). 
tii" 

The covariance function of D„(F(t; 0O); 0O)) can be computed from the representation 
of the Durbin process. We have, for t=(t1, ..., td), s=(sx, ..., sd), that 

EDn(F(f, 0O); 0O) = 0, 

EDa(F(t; 0O); 0O) D.(F(s; 0O); 0O) = R3(t, s; 00) = 
= F(F(tAs; 0O); B0)-F(F{t; 0O); 80)F(F(s; 0O); 0 O ) -

-J(F(t; 80); 0o)VjF(F(s; 0O); 0o)-J(F(s; 0o);0o)VJ F(F(t; 0O); 0O) + 

+V 9 F(F( i ; 0O); 0 o ) ^ ( 0 o ) V j / t F ( s ; 0O); 0O). 

The following theorem is a generalization of Theorem 3.1 for arbitrary d. Let /?* 
denote the empirical kernel-transformed empirical process defined by (2.22) or (2.23). 

T h e o r e m 3.2. We suppose, that the conditions (i), (ii), (v) of Theorem A are 
satisfied and 

(iii)* M(0*)=ElT(X*; 0*)l(X*; 0*) is a finite, nonnegative definite matrix and 
M(0*) is continuous in 0*0.0, where Pf**1«^, ..., X*d^td}=F(t; 0*), i = (/l5 ... 
...,td),X* = (X*\...,X*d), 

(iv)* J(F(t;Q*y,0*) and V„F(F(f; 0*)-, 6*) are uniformly continuous in t<ild 

and 0*£0, where 0aRP is a compact parameter set, and 0O is an interior point of 0. 
Then we can define a sequence {Zn(s), O^i^l} of copies of Z(s) on the proba-

bility space of Theorem 2.2 such that we have 

sup |/?*(s)—Z„(s)|—- 0, 
0 S S S 1 

if N, m, n go to infinity. 

The proof of this theorem is very similar to the proof of Theorem 3.1, therefore 
it is omitted. These conditions are stronger than the conditions of Theorem A in 
order to guarantee the applicability of Theorem 3.1. 

We proved only the existence of the empirical kernel transform with nice limit-
ing properties, but so far we said nothing about the decomposition A^s; 0f), 
i = l , . . . , I, of the compact parameter set 0 and hence about the concrete choice of 
the <pJti functions and the quantities cJti in (2.24). We noticed in Section 2, that the 
eigenvalues and eigenfunctions of R(t,s;0) determine a CONS in H(R(0)). Let 
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Aj(0), . . . , / j V(0) denote the first N largest eigenvalues of R(9). W e can choose a 0* 
ne ighbourhood of 0O, such tha t there is a posit ive lower b o u n d of /.¡(0), 
l ^ j ^ N , 0 £ 0 * . I t fol lows f r o m (2.12) a n d f r o m the cont inui ty of K¡, i= 1, 2, 3 , 
tha t we have 

Kt(N, Miß), IIVj(0)| | , . . . , | M 0 ) | | ) =§ Lt, i = 1, 2, 3, 

if 0 € 0 * . Using (2.13) we see tha t every 0 £ 0 * can be the centre of the balls A¡(s; 0) 
and the radii of A¡(s; 0) does n o t a l ready depend on 0. There fore an arbi t rary devision 
of 0* will suffice if this devision is fine enough ( for example, t he c o m m o n rad ius o f 
the balls is small enough) . But because 0„-^-0o , in pract ice we may assume tha t 
0„€ 0*, a n d hence the devision of 0\0* is completely arb i t rary . This choice of t he 
A(e; 0,) will be suitable for us, if we use the first N largest eigenvalues a n d the cor -
responding eigenfunct ions of R(0) t o make the empirical kernel t r ans format ion . 
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