On non-modular n-distributive lattices:
 The decision problem for identities in finite \boldsymbol{n}-distributive lattices

A. P. HUHN

To Professor K. Tandori on his sixtieth birthday

1. Introduction. It was proved in [1] that the lattice $\mathbb{C}\left(R^{n-1}\right)$ of all convex sets of the $n-1$ dimensional Euclidean space R^{n-1} is a member of the lattice variety D_{n}^{f} generated by the finite n-distributive lattices. It is an open question whether this variety equals \boldsymbol{D}_{n}, the class of all n-distributive lattices. An answer might be based on a solution to the word problem for free lattices in \boldsymbol{D}_{n}. In this paper we accomplish a slightly different task and solve the word problem for free lattices in \boldsymbol{D}_{n}^{f}. Besides, we give a new example of a lattice in this variety, namely we show that the dual of $\mathfrak{C}\left(R^{n-1}\right)$ is a member of \boldsymbol{D}_{n}^{f}, too.

We need some notions of universal algebra and lattice theory. By an n-distributive lattice we mean a lattice satisfying the identity

$$
x \wedge \bigvee_{i=0}^{n} y_{i}=\bigvee_{j=0}^{n}\left(x \wedge \underset{\substack{i=0 \\ i \neq j}}{n} y_{i}\right)
$$

A lattice variety is a class of lattices that can be characterized by a set of identities. The variety generated by a class \boldsymbol{K} of lattices is the smallest lattice variety containing \boldsymbol{K}. The decision problem for identities in a class \boldsymbol{K} of lattices is the problem of finding an algorithm which, given any identity $p=q$, decides whether $p=q$ holds in every member of \boldsymbol{K} or not. It is equivalent to the word problem for free lattices in the variety generated by K.

We are going to use the following concepts concerning convex sets. Let $a, r_{0} \in R^{n-1}$. Then the set of all $\boldsymbol{r} \in \boldsymbol{R}^{n-1}$ such that the scalar product ($\boldsymbol{a}, \boldsymbol{r}-\boldsymbol{r}_{0}$) equals 0 , is called a hyperplane. The set of all \boldsymbol{r} with $\left(\boldsymbol{a}, \boldsymbol{r}-\boldsymbol{r}_{0}\right) \geqq 0$ is called a (closed) halfspace. A finite intersection of halfspaces is a convex polyhedron. The convex closure of a finite number of points is a convex polytope. It is well-known that convex polytopes,
convex polyhedra and convex sets of R^{n-1} all form lattices, and that in all these three lattices the operations are the intersection and the convex closure of two convex sets. (See [2].) Convex polytopes are exactly the bounded convex polyhedra, thus, in the above list, the former lattice is always a proper sublattice of the latter one.
2. On the dual of $\mathbb{C}\left(R^{n-1}\right)$. We prove the following theorem.

Theorem 2.1. The dual of $\mathbb{C}\left(R^{n-1}\right)$ is a member of the variety \boldsymbol{D}_{n}^{f}.
Proof. In [1], Lemma 3.1, it was shown that $\mathbb{C}\left(R^{n-1}\right)$ is a member of the variety generated by the lattice $\mathbb{C}_{\text {fin }}\left(R^{n-1}\right)$ of all $n-1$ dimensional convex polytopes, therefore, it is also a member of the variety generated by $\mathbb{C}_{\text {fin }}^{-}\left(R^{n-1}\right)$ of all $n-1$ dimensional convex polyhedra. Thus it is sufficient to show that the latter lattice is a member of the variety generated by all finite dually n-distributive lattices. By Theorem 1.1 of [1], $\mathfrak{C}_{\text {fin }}^{-}\left(R^{n-1}\right)$ is dually n-distributive and its meet-irreducible elements are exactly the halfspaces of \boldsymbol{R}^{n-1}. Let K be a finite set of halfspaces and let $\mathbb{C}^{-}(K)$ consist of all those convex polyhedra that are intersections of elements of $K . \mathbb{C}^{-}(K)$ is a lattice ordered by the inclusion relation, in fact, it is a meet-sublattice of $\mathbb{C}_{\text {fin }}\left(R^{n-1}\right)$. Let \mathscr{K} denote the set of all finite subsets of the set of all halfspaces of \boldsymbol{R}^{n-1}. The following two facts obviously include Theorem 2.1.

Lemma 2.2. For any $K \in \mathscr{K}, \mathbb{C}^{-}(K)$ is dually n-distributive.
Lemma 2.3. $\mathbb{C}_{\text {fin }}^{-}\left(R^{n-1}\right)$ is a member of the variety generated by all $\mathbb{C}^{-}(K)$; $K \in \mathscr{K}$.

Proof of Lemma 2.2. The dual n-distributivity of $\mathbb{C}_{\mathrm{fn}}^{-}\left(R^{n-1}\right)$ and the meetirreducibility of halfspaces in it imply that whenever a halfspace contains the intersection of a finite number of other halfspaces, then it contains the intersection of n of these halfspaces. In fact, let $h, h_{1}, \ldots, h_{m}, m>n$, be halfspaces and assume that h contains the intersection of the $h_{i}, i=1,2, \ldots, m$. Then (denoting by \vee the convex closure)

$$
\left.h=h \bigvee \bigcap_{i=1}^{m} h_{i}=\bigcap_{L \subseteq\{1, \ldots, m\}}^{\rceil L=n}\right\}
$$

and, by the irreducibility of h, there is an $L,|L|=n$ with

$$
h=h \bigvee \bigcap_{i \in K} h_{i}, \quad \text { i.e., } \quad h \supseteqq \bigcap_{i \in K} h_{i} .
$$

Clearly, the lattices $\mathbb{C}^{-}(K)$ also satisfy this property, as it refers only to inclusion and intersection, which coincide in $\mathbb{C}_{\text {fin }}^{-}\left(R^{n-1}\right)$ with those in $\mathbb{C}^{-}(K)$. This, in turn, implies that the lattices $\mathbb{C}^{-}(K)$ are also dually n-distributive. To prove this, let a, b_{0}, \ldots
$\ldots, b_{n} \in \mathbb{C}^{-}(K)$. Let $h \in K$, and assume that

$$
h \supseteqq a \bigvee_{H} \bigcap_{i=0}^{n} b_{i}
$$

Then h contains a and h also contains n of the halfspaces occurring in the meetrepresentations of the b_{i} 's. Thus h contains n of the b_{i} 's, too, that is,

$$
h \supseteqq \bigcap_{j=0}^{n}\left(a \vee_{H} \bigcap_{\substack{i=0 \\ i \neq j}}^{n} b_{i}\right)
$$

Thus the meet-representations of $a \bigvee_{H} \bigcap_{i=0}^{n} b_{i}$ and of $\bigcap_{j=0}^{n}\left(a \bigvee_{H} \bigcap_{\substack{i=0 \\ i \neq j}} b_{i}\right)$ coincide.
Proof of Lemma 2.3. Let $p \geqq q$ be an m-ary lattice inequality holding in all the lattices $\mathbb{C}^{-}(K), K \in \mathscr{K}$. Let $a_{1}, \ldots, a_{m} \in \mathbb{C}_{\text {fin }}^{-}\left(R^{n-1}\right)$. Let A be the set of subpolynomials of p, that is, (i) let $p \in A$, (ii) for $p_{1} \wedge p_{2} \in A$ or $p_{1} \vee p_{2} \in A$ let $p_{1}, p_{2} \in A$, and (iii) let A be minimal relative to (i) and (ii). Let B be the set of subpolynomials of q. Finally let C be the set of all polyhedra $r\left(a_{1}, \ldots, a_{m}\right), r \in A \cup B$, and let K be the set of all halfspaces occurring in the irredundant meet-representation of one of the elements of C. (A polyhedron can be represented as an intersection of halfspaces in different ways, however, the irredundant meet-representation is unique.) Let the realization of a polynomial r in the lattice $\mathfrak{C}_{\text {fin }}^{-}\left(R^{n-1}\right)$ be also denoted by r and let its realization in $\mathbb{C}^{-}(K)$ be denoted by r^{K}. Then

$$
p\left(a_{1}, \ldots, a_{m}\right)=p^{K}\left(a_{1}, \ldots, a_{m}\right) \geqq q^{K}\left(a_{1}, \ldots, a_{m}\right)=q\left(a_{1}, \ldots, a_{m}\right),
$$

as K was chosen exactly to satisfy the two equalities in the above calculation.
3. On the variety D_{n}^{f}. Here we deal with the word problem for free lattices of D_{n}^{f}, in other words with the decision problem for identities in \boldsymbol{D}_{n}^{f}.

Theorem 3.1. The word problem for free lattices in D_{n}^{f} is solvable.
Before the proof we introduce some notations. Clearly, every lattice polynomial p can be written in the form

$$
\begin{equation*}
p=\vee \hat{i}_{1} \in I i_{i_{2} \in I_{i_{1}}} \bigvee_{i_{3} \in I_{i_{1} i_{2}}} \cdots \underbrace{}_{i_{2 k-2} \in I_{i_{1} \ldots i_{2 k-3}}} \bigvee_{2 k-1} \in I_{i_{1} \ldots i_{2 k-2}} x_{i_{1} \ldots i_{2 k-1}} \tag{1}
\end{equation*}
$$

if we allow I and the $I_{i_{1} \ldots i_{r}}$'s to consist of one element. We define the depth $d(p)$ of p by $d(p):=k . m(p)$ denotes the length (that is, the number of components) in the longest meet:

$$
m(p)=\max \left\{\max _{i_{1} \in I}\left|I_{i_{1}}\right|, \max _{\substack{i_{1} \in I \\ i_{2} \in I_{i_{1}} \\ i_{3} \in I_{i_{1}} i_{2}}}\left|I_{i_{1} i_{2} i_{3}}\right|, \ldots\right\}
$$

Now define

$$
c_{n}(p):=1+n+n^{2} \cdot m(p)+n^{3} \cdot(m(p))^{2}+\ldots+n^{d(p)} \cdot(m(p))^{d(p)-1}
$$

We are ready to formulate the following lemma.
Lemma 3.2. Let $p \leqq q$ be a lattice inequality holding in all finite n-distributive lattices containing at most $c_{n}(p)$ join-irreducible elements. Then $p \leqq q$ holds in every finite n-distributive lattice.

To decide whether $p \leqq q$ holds in \boldsymbol{D}_{n}^{f} requires now to check those finite n-distributive lattices having at most $c_{n}(p)$ join-irreducibles. This can be carried out in finite time, hence Lemma 3.2 implies Theorem 3.1.

Proof of the lemma. Let L be a finite lattice, let p and q be lattice polynomials in m variables and let $a_{1}, \ldots, a_{m} \in L$. Let K denote the set of join-irreducible elements of L. For a lattice polynomial r, let r^{L} denote the realization of r on L. Let $b \in K$ and let $b \leqq p^{L}\left(a_{1}, \ldots, a_{m}\right)$. Under the hypotheses of the lemma, we shall prove that $b \leqq q^{L}\left(a_{1}, \ldots, a_{m}\right)$. Let us introduce the following notations for subpolynomials of p. (p is defined by (1).)

$$
\begin{aligned}
& p_{i_{1}}=\wedge_{i_{2} \in i_{i_{1}}} \bigvee_{i_{3} \in I_{i_{1} i_{2}}}^{\vee} \underbrace{}_{i_{2 k-2} \in i_{i_{1} \ldots i_{2 k-3}}} \bigvee_{i_{2 k-1} \in I_{i_{1} \ldots i_{2 k-2}}} x_{i_{1} \ldots i_{2 k-1}}, \quad i_{1} \in I, \\
& p_{i_{1} i_{2}}=\bigvee_{i_{3} \in I_{i_{1} i_{2}}} \cdots{ }_{i_{2 k-2} \in I_{i_{1} \ldots i_{2 k-3}}} \bigvee_{i_{2 k-1} \in I_{i_{1}} \ldots i_{2 k-2}} x_{i_{1} \ldots i_{2 k-1}}, \quad i_{1} \in I, \quad i_{2} \in I_{i_{1}},
\end{aligned}
$$

etc. Now, by the assumption on b, we have

$$
b \leqq \bigvee_{i_{1} \in I} p_{i_{1}}^{L}\left(a_{1}, \ldots, a_{m}\right)
$$

Each $p_{i_{1}}^{L}\left(a_{1}, \ldots, a_{m}\right)$ is a join of join-irreducibles. By the n-distributivity of L, we may choose n of these join-irreducibles, say b_{1}, \ldots, b_{n} such that

$$
b \leqq \bigvee_{j=1}^{n} b_{j}
$$

(A detailed proof of this fact can be given by dualizing and generalizing the first part of the proof of Lemma 2.2.) Now assign to each b_{j} one (and only one) $p_{i_{1}}^{L}\left(a_{1}, \ldots, a_{m}\right)$ such that

$$
b_{j} \leqq p_{i_{1}}^{L}\left(a_{1}, \ldots, a_{m}\right)
$$

Then, for every b_{j}, if $p_{i_{1}}^{L}\left(a_{1}, \ldots, a_{m}\right)$ is assigned to b_{j}, we have
that is,

$$
b_{j} \leqq p_{i_{1} i_{2}}^{L}\left(a_{1}, \ldots, a_{m}\right), \quad i_{2} \in I_{i_{1}}
$$

$$
b_{j} \leqq \bigvee_{i_{3} \in I_{i_{1} i_{2}}} p_{i_{1} i_{2} i_{3}}^{L}\left(a_{1}, \ldots, a_{m}\right), \quad i_{2} \in I_{i_{1}}
$$

Now we carry out the same construction in these $\left|I_{i_{1}}\right|$ different cases on b_{j} and on $\underset{i_{3} \in I_{i_{1} i_{2}}}{ } p_{i_{1} i_{2} i_{3}}^{L}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, with which we started on b and on $\bigvee_{i_{1} \in I} p_{i_{1}}^{L}\left(a_{1}, \ldots, a_{m}\right)$: For arbitrary fixed $i_{2} \in I_{i_{1}}$ choose join-irreducibles $b_{j i_{2} 1}, \ldots, b_{j i_{2} n}$ of L such that

$$
b_{j} \leqq \bigvee_{l=1}^{n} b_{j i_{2} l}
$$

Again, each $b_{j i_{2} l}$ is less than or equal to one of the $p_{i_{1} i_{2} i_{3}}^{L}\left(a_{1}, \ldots, a_{m}\right)$'s. Assign a $p_{i_{1} i_{2} i_{3}}^{L}\left(a_{1}, \ldots, a_{m}\right)$ to $b_{j i_{2} l}$ such that

$$
b_{j i_{2} l} \leqq p_{i_{1} i_{2} i_{3}}^{L}\left(a_{1}, \ldots, a_{m}\right),
$$

etc. Let K_{0} be the set of join-irreducibles defined during this procedure, that is,

$$
K_{0}=\{b\} \cup\left\{b_{1}, \ldots, b_{n}\right\} \cup \bigcup_{j=1}^{n} \bigcup_{\substack{i_{2} \in I_{i_{1}} \\ \text { ais is } \\ \text { asisned } \\ \text { to } j}}\left\{b_{j i_{2} 1}, \ldots, b_{j i_{2} n}\right\} \cup \ldots
$$

Clearly, $\left|K_{0}\right| \leqq c_{n}(p)$. Let $\quad \tilde{a}_{i}=\underset{\substack{c \in K_{0} \\ c \leq a_{i}}}{ } c$.
Let, furthermore, L_{0} consist of all joins of elements of K_{0}. Then, by the definitions of K_{0}, L_{0} and of $\tilde{a}_{i}, b \leqq p^{L_{0}}\left(\tilde{a}_{1}, \ldots, \tilde{a}_{m}\right)$. By the hypotheses, $p^{L_{0}}\left(\tilde{a}_{1}, \ldots, \tilde{a}_{m}\right) \leqq$ $\leqq q^{L_{0}}\left(\tilde{a}_{1}, \ldots, \tilde{a}_{m}\right)$. (Here we need the n-distributivity of L_{0}, which is a consequence of the fact that whenever a join-irreducible element in L_{0} is less than or equal to a join of elements of L_{0}, then it is less than or equal to an n-element subjoin of that join.) We obviously have $q^{L_{0}}\left(\tilde{a}_{1}, \ldots, \tilde{a}_{m}\right) \leqq q^{L}\left(\tilde{a}_{1}, \ldots, \tilde{a}_{m}\right) \leqq q^{L}\left(a_{1}, \ldots, a_{m}\right)$. Hence $b \leqq$ $\leqq q^{L}\left(a_{1}, \ldots, a_{m}\right)$, as claimed.

References

[1] A. P. HuHn, On non-modular n-distributive lattices: Lattices of convex sets, to appear.
[2] V. L. Klee (editor), Convexity, Proc. Symposia in Pure Math., 7, AMS (Providence, R. I. 1963).

