On non-modular *n*-distributive lattices: The decision problem for identities in finite *n*-distributive lattices

A. P. HUHN

To Professor K. Tandori on his sixtieth birthday

1. Introduction. It was proved in [1] that the lattice $\mathfrak{C}(\mathbb{R}^{n-1})$ of all convex sets of the n-1 dimensional Euclidean space \mathbb{R}^{n-1} is a member of the lattice variety D_n^f generated by the finite *n*-distributive lattices. It is an open question whether this variety equals D_n , the class of all *n*-distributive lattices. An answer might be based on a solution to the word problem for free lattices in D_n . In this paper we accomplish a slightly different task and solve the word problem for free lattices in D_n^f . Besides, we give a new example of a lattice in this variety, namely we show that the dual of $\mathfrak{C}(\mathbb{R}^{n-1})$ is a member of D_n^f , too.

We need some notions of universal algebra and lattice theory. By an n-distributive lattice we mean a lattice satisfying the identity

 $x \land \bigvee_{i=0}^{n} y_{i} = \bigvee_{j=0}^{n} (x \land \bigvee_{\substack{i=0\\ i\neq i}}^{n} y_{i}).$

A lattice variety is a class of lattices that can be characterized by a set of identities. The variety generated by a class K of lattices is the smallest lattice variety containing K. The decision problem for identities in a class K of lattices is the problem of finding an algorithm which, given any identity p=q, decides whether p=q holds in every member of K or not. It is equivalent to the word problem for free lattices in the variety generated by K.

We are going to use the following concepts concerning convex sets. Let $a, r_0 \in \mathbb{R}^{n-1}$. Then the set of all $r \in \mathbb{R}^{n-1}$ such that the scalar product $(a, r-r_0)$ equals 0, is called a hyperplane. The set of all r with $(a, r-r_0) \ge 0$ is called a (closed) halfspace. A finite intersection of halfspaces is a convex polyhedron. The convex closure of a finite number of points is a convex polytope. It is well-known that convex polytopes,

Received July 2, 1984.

convex polyhedra and convex sets of \mathbb{R}^{n-1} all form lattices, and that in all these three lattices the operations are the intersection and the convex closure of two convex sets. (See [2].) Convex polytopes are exactly the bounded convex polyhedra, thus, in the above list, the former lattice is always a proper sublattice of the latter one.

2. On the dual of $\mathfrak{C}(\mathbb{R}^{n-1})$. We prove the following theorem.

Theorem 2.1. The dual of $\mathfrak{C}(\mathbb{R}^{n-1})$ is a member of the variety D_n^f .

Proof. In [1], Lemma 3.1, it was shown that $\mathfrak{C}(\mathbb{R}^{n-1})$ is a member of the variety generated by the lattice $\mathfrak{C}_{fin}(\mathbb{R}^{n-1})$ of all n-1 dimensional convex polytopes, therefore, it is also a member of the variety generated by $\mathfrak{C}_{fin}^{-}(\mathbb{R}^{n-1})$ of all n-1 dimensional convex polyhedra. Thus it is sufficient to show that the latter lattice is a member of the variety generated by all finite dually *n*-distributive lattices. By Theorem 1.1 of [1], $\mathfrak{C}_{fin}^{-}(\mathbb{R}^{n-1})$ is dually *n*-distributive and its meet-irreducible elements are exactly the halfspaces of \mathbb{R}^{n-1} . Let K be a finite set of halfspaces and let $\mathfrak{C}^{-}(K)$ consist of all those convex polyhedra that are intersections of elements of K. $\mathfrak{C}^{-}(K)$ is a lattice ordered by the inclusion relation, in fact, it is a meet-sublattice of $\mathfrak{C}_{fin}^{-}(\mathbb{R}^{n-1})$. Let \mathscr{K} denote the set of all finite subsets of the set of all halfspaces of \mathbb{R}^{n-1} . The following two facts obviously include Theorem 2.1.

Lemma 2.2. For any $K \in \mathcal{K}$, $\mathfrak{C}^-(K)$ is dually n-distributive.

Lemma 2.3. $\mathfrak{C}^{-}_{fin}(\mathbb{R}^{n-1})$ is a member of the variety generated by all $\mathfrak{C}^{-}(K)$; $K \in \mathscr{K}$.

Proof of Lemma 2.2. The dual *n*-distributivity of $\mathfrak{C}_{fin}^{-}(\mathbb{R}^{n-1})$ and the meetirreducibility of halfspaces in it imply that whenever a halfspace contains the intersection of a finite number of other halfspaces, then it contains the intersection of *n* of these halfspaces. In fact, let $h, h_1, \ldots, h_m, m > n$, be halfspaces and assume that *h* contains the intersection of the $h_i, i=1, 2, \ldots, m$. Then (denoting by \lor the convex closure)

$$h = h \vee \bigcap_{i=1}^{m} h_i = \bigcap_{\substack{L \subseteq \{1, \dots, m\} \\ |L| = n}} (h \vee \bigcap_{i \in L} h_i),$$

and, by the irreducibility of h, there is an L, |L|=n with

$$h = h \vee \bigcap_{i \in K} h_i$$
, i.e., $h \supseteq \bigcap_{i \in K} h_i$.

Clearly, the lattices $\mathfrak{C}^-(K)$ also satisfy this property, as it refers only to inclusion and intersection, which coincide in $\mathfrak{C}^-_{\text{fin}}(\mathbb{R}^{n-1})$ with those in $\mathfrak{C}^-(K)$. This, in turn, implies that the lattices $\mathfrak{C}^-(K)$ are also dually *n*-distributive. To prove this, let a, b_0, \ldots

..., $b_n \in \mathfrak{C}^-(K)$. Let $h \in K$, and assume that

$$h\supseteq a\vee_H\bigcap_{i=0}^n b_i.$$

Then h contains a and h also contains n of the halfspaces occurring in the meetrepresentations of the b_i 's. Thus h contains n of the b_i 's, too, that is,

$$h \supseteq \bigcap_{j=0}^{n} (a \vee_{H} \bigcap_{\substack{i=0\\i\neq j}}^{n} b_{i}).$$

Thus the meet-representations of $a \bigvee_H \bigcap_{i=0}^n b_i$ and of $\bigcap_{j=0}^n (a \bigvee_H \bigcap_{\substack{i=0\\i \neq j}} b_i)$ coincide.

Proof of Lemma 2.3. Let $p \ge q$ be an *m*-ary lattice inequality holding in all the lattices $\mathfrak{C}^-(K)$, $K \in \mathscr{K}$. Let $a_1, \ldots, a_m \in \mathfrak{C}^-_{fin}(\mathbb{R}^{n-1})$. Let A be the set of subpolynomials of p, that is, (i) let $p \in A$, (ii) for $p_1 \land p_2 \in A$ or $p_1 \lor p_2 \in A$ let $p_1, p_2 \in A$, and (iii) let A be minimal relative to (i) and (ii). Let B be the set of subpolynomials of q. Finally let C be the set of all polyhedra $r(a_1, \ldots, a_m)$, $r \in A \cup B$, and let K be the set of all halfspaces occurring in the irredundant meet-representation of one of the elements of C. (A polyhedron can be represented as an intersection of halfspaces in different ways, however, the irredundant meet-representation is unique.) Let the realization of a polynomial r in the lattice $\mathfrak{C}^-_{fin}(\mathbb{R}^{n-1})$ be also denoted by r and let its realization in $\mathfrak{C}^-(K)$ be denoted by r^K . Then

$$p(a_1, ..., a_m) = p^{K}(a_1, ..., a_m) \ge q^{K}(a_1, ..., a_m) = q(a_1, ..., a_m),$$

as K was chosen exactly to satisfy the two equalities in the above calculation.

3. On the variety D_n^f . Here we deal with the word problem for free lattices of D_n^f , in other words with the decision problem for identities in D_n^f .

Theorem 3.1. The word problem for free lattices in D_n^f is solvable.

Before the proof we introduce some notations. Clearly, every lattice polynomial p can be written in the form

(1)
$$p = \bigvee_{i_1 \in I} \bigwedge_{i_2 \in I_{i_1}} \bigvee_{i_3 \in I_{i_1}} \dots \bigwedge_{i_{2k-2} \in I_{i_1} \dots i_{2k-3}} \bigvee_{i_{2k-1} \in I_{i_1} \dots i_{2k-2}} x_{i_1 \dots i_{2k-1}}$$

if we allow I and the $I_{i_1...i_r}$'s to consist of one element. We define the depth d(p) of p by d(p):=k. m(p) denotes the length (that is, the number of components) in the longest meet:

$$m(p) = \max \{ \max_{i_1 \in I} |I_{i_1}|, \max_{\substack{i_1 \in I \\ i_2 \in I_{i_1} \\ i_3 \in I_{i_{i_2}}}} |I_{i_1 i_2 i_3}|, \ldots \}.$$

Now define

$$c_n(p) := 1 + n + n^2 \cdot m(p) + n^3 \cdot (m(p))^2 + \dots + n^{d(p)} \cdot (m(p))^{d(p)-1}$$

We are ready to formulate the following lemma.

Lemma 3.2. Let $p \le q$ be a lattice inequality holding in all finite n-distributive lattices containing at most $c_n(p)$ join-irreducible elements. Then $p \le q$ holds in every finite n-distributive lattice.

To decide whether $p \leq q$ holds in D_n^f requires now to check those finite *n*-distributive lattices having at most $c_n(p)$ join-irreducibles. This can be carried out in finite time, hence Lemma 3.2 implies Theorem 3.1.

Proof of the lemma. Let L be a finite lattice, let p and q be lattice polynomials in m variables and let $a_1, ..., a_m \in L$. Let K denote the set of join-irreducible elements of L. For a lattice polynomial r, let r^L denote the realization of r on L. Let $b \in K$ and let $b \leq p^L(a_1, ..., a_m)$. Under the hypotheses of the lemma, we shall prove that $b \leq q^L(a_1, ..., a_m)$. Let us introduce the following notations for subpolynomials of p. (p is defined by (1).)

$$p_{i_1} = \bigwedge_{i_2 \in I_{i_1}} \bigvee_{i_3 \in I_{i_1 i_2}} \dots \bigwedge_{i_{2k-2} \in I_{i_1 \dots i_{2k-3}}} \bigvee_{i_{2k-1} \in I_{i_1 \dots i_{2k-2}}} x_{i_1 \dots i_{2k-1}}, \quad i_1 \in I,$$

$$p_{i_1 i_2} = \bigvee_{i_3 \in I_{i_1 i_2}} \dots \bigwedge_{i_{2k-2} \in I_{i_1 \dots i_{2k-3}}} \bigvee_{i_{2k-1} \in I_{i_1 \dots i_{2k-2}}} x_{i_1 \dots i_{2k-1}}, \quad i_1 \in I, \quad i_2 \in I_{i_1},$$

etc. Now, by the assumption on b, we have

$$b \leq \bigvee_{i_1 \in I} p_{i_1}^L(a_1, \ldots, a_m).$$

Each $p_{i_1}^L(a_1, ..., a_m)$ is a join of join-irreducibles. By the *n*-distributivity of *L*, we may choose *n* of these join-irreducibles, say $b_1, ..., b_n$ such that

$$b \leq \bigvee_{j=1}^n b_j.$$

(A detailed proof of this fact can be given by dualizing and generalizing the first part of the proof of Lemma 2.2.) Now assign to each b_j one (and only one) $p_{i_1}^L(a_1, ..., a_m)$ such that

$$b_j \leq p_{i_1}^L(a_1,\ldots,a_m).$$

Then, for every b_j , if $p_i^L(a_1, ..., a_m)$ is assigned to b_j , we have

 $b_j \leq p_{i_1 i_2}^L(a_1, \ldots, a_m), \quad i_2 \in I_{i_1},$

that is,

$$b_j \leq \bigvee_{i_3 \in I_{i_1}, i_2} p^L_{i_1 i_2 i_3}(a_1, \ldots, a_m), \quad i_2 \in I_{i_1}.$$

Now we carry out the same construction in these $|I_{i_1}|$ different cases on b_j and on $\bigvee_{\substack{i_3 \in I_{i_1i_2}}} p_{i_1i_2i_3}^L(a_1, a_2, ..., a_m)$, with which we started on b and on $\bigvee_{\substack{i_1 \in I}} p_{i_1}^L(a_1, ..., a_m)$: For arbitrary fixed $i_2 \in I_{i_1}$ choose join-irreducibles $b_{ji_11}, ..., b_{ji_2n}$ of L such that

$$b_j \leq \bigvee_{l=1}^n b_{ji_2l}.$$

Again, each $b_{j_{i_2l}}$ is less than or equal to one of the $p_{i_1i_2i_3}^L(a_1, ..., a_m)$'s. Assign a $p_{i_1i_2i_3}^L(a_1, ..., a_m)$ to $b_{j_{i_2l}}$ such that

$$b_{ji_2l} \leq p_{i_1 i_2 i_3}^L(a_1, \ldots, a_m),$$

etc. Let K_0 be the set of join-irreducibles defined during this procedure, that is,

$$K_{0} = \{b\} \cup \{b_{1}, \dots, b_{n}\} \cup \bigcup_{\substack{j=1 \\ i_{1} \text{ is } \\ assigned \\ \text{to } j}}^{n} \{b_{ji_{2}1}, \dots, b_{ji_{2}n}\} \cup \dots$$

Clearly, $|K_0| \leq c_n(p)$. Let $\tilde{a}_i = \bigvee_{\substack{c \in K_0 \\ c \leq a_i}} c$.

Let, furthermore, L_0 consist of all joins of elements of K_0 . Then, by the definitions of K_0 , L_0 and of \tilde{a}_i , $b \leq p^{L_0}(\tilde{a}_1, ..., \tilde{a}_m)$. By the hypotheses, $p^{L_0}(\tilde{a}_1, ..., \tilde{a}_m) \leq$ $\leq q^{L_0}(\tilde{a}_1, ..., \tilde{a}_m)$. (Here we need the *n*-distributivity of L_0 , which is a consequence of the fact that whenever a join-irreducible element in L_0 is less than or equal to a join of elements of L_0 , then it is less than or equal to an *n*-element subjoin of that join.) We obviously have $q^{L_0}(\tilde{a}_1, ..., \tilde{a}_m) \leq q^L(\tilde{a}_1, ..., \tilde{a}_m) \leq q^L(a_1, ..., a_m)$. Hence $b \leq$ $\leq q^L(a_1, ..., a_m)$, as claimed.

References

A. P. HUHN, On non-modular n-distributive lattices: Lattices of convex sets, to appear.
 V. L. KLEE (editor), Convexity, Proc. Symposia in Pure Math., 7, AMS (Providence, R. I. 1963).

BOLYAI INSTITUTE ATTILA JÓZSEF UNIVERSITY ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY