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Multiplicative functions with nearly integer values 

I. KÁTAI and B. KOVÁCS 

Dedicated to Professor Károly Tartdori on the occasion of his 60th birthday 

We shall say that a realvalued arithmetical function f(n) is completely multi-
plicative if f(mri)=f(m) •/(«) holds for each pairs of integers. Let ||z|| denote the 
distance of z to the nearest integer, and [z] denote the integer part of z. 

We are interested in to determine the class of those completely multiplicative 
functions for which 
( 1 ) L L / O O I L - O ( n - c o ) . 

It is obvious that the validity of (1) does not depend on the sign o f / (« ) , since 
llzll = 11—zll> so w e m a y assume that / (w)S0. 

We shall say that a real number 0 is a Pisot-number, if it is an algebraic integer, 
0 > 1 , and if all conjugates 62, ..., 0 r , are in the domain | z |< 1. It is well known 
for a Pisot-number the relation 
(2) | | 0 " | | -O 
holds. (See [1].) 

Let now the whole set of primes & be divided into two disjoint subsets 
and/ («) be defined for p^SP as follows: 

_ r o if 
/ ( P ) - \0*(P> if p e ? 2 j 

where x(p) is a positive integer for each '2 and x(p)-*°° if p — °°, furthermore 
0 is a Pisot-number. Then the completely multiplicative f(n) determined by these 
values satisfies the relation (1). 

For an algebraic a let Q(a) denote the simple extension of the rational number 
field generated by a. 
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L e m m a 1. Let P be an algebraic number, f(n) be completely multiplicative with 
values in Q(P). Let p2, • ••, P, be the conjugates of p over Q. Let q>}(n) denote the con-
jugate of f{n) defined by the substitution P-*Pj. Then <Pj(n) are completely multipli-
cative functions as well. 

P r o o f . L e t f(n)=rniP). Then <Pj(n)=rnipj). Since rmn(P)=f(mn) = 
=f(m) •f(ri)=rmip) • r„iP), t he r e fo re <Pj(mn)=rmn(pj)=rmipj)r„(p3)=<Pj(m)<ps(«). 

L e m m a 2. Let p be an algebraic number and/(«) a completely multiplicative 
function the values f(n) of which are integers in Q(P). Assume that 

(3) <pj(p)~ 0 .as 0 = 2 , . . . r), 

where p runs over the set of primes. Then (1) holds. 

P r o o f . It is obvious that (3) involves that <Pj(n) —0 ( « - » ) . Furthermore 
<Pj(n) are algebraic integers, and so 

f(n)+<p2(n) + ... +<pr(n) = E„ = rational integer, 

whence (1) follows immediately. 

To give a partial answer for our problem we shall use the following known theo-
rems [1] as Lemma 3 and 4. 

L e m m a 3. Let a > 1 be an algebraic number, A^O be a real number and 

(4) ||Aan|| 0 ( i , - - ) . 

Then a is a Pisot-number, A = <x~flp, where N^O is a suitable integer, /i€<2(a)~ 

L e m m a 4. Let a > l , A^O be a real number and 

(5) 2 
0S«<"> 

Then a is an algebraic number, consequently the assertion stated in Lemma 3 holds. 

L e m m a 5. Let f(n)^0 be a completely multiplicative function for which (1} 
holds. If /(«0)>1 for at least one n0, then f(n)^l or f(ri)—0 for each values of n. 

P r o o f . Assume in contrary that 0 < / ( m 0 ) < l . Let b—fin0), a=f(m0)y 

a—f(m0), -v0=[—3 log a] + l. For infinitely many k, I pairs of positive integers we 
have 

- 2 x 0 log b -x0 - > k + l-: > "j , 
log a log a log a 

—, 1 is at least three. For such pairs 
log a log a ) 
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k, I we have 2 2x<><akbl<2~x<>, consequently 

^ \\f(mWo)\\ = l!afci>'|| <2-o. 

But this contradicts to (1). 

L e m m a 6. Let / s 0 be a completely multiplicative function satisfying (1). 
Assume that there exists an m for which /(/w)>l and f(m) is algebraic over O. Let 
be the set of those primes p for which f ( p ) ^ 0. Then the values f ( p ) are Pisot-numbers 
for each and for every px,p£@x we have Q(ccPj) = Q(<xPt), aPi =f(Pi), 
«„2 =f(Pi)-

P r o o f . Let f(m)=K. Since « > 1 , a algebraic; and ||/(m*)|| = ||a*|| —0 (& — 
by Lemma 3 we get that f(m) is a Pisot-number. 

Let now n be an arbitrary natural number for which / ( « ) ^ 0 . Since \\f(nmk)\\ = 
= | | / («)a k | | - r0 (k—from Lemma 3 we deduce that f(n)=a~Ny, TVsO, integer, 
y€Q(a). Hence P=f(n)=a~Ny£Q(a). Since /2^0, f rom Lemma 3 we get that 
J?>1, and so by repeating the above argument with J? instead of a, we deduce that fi 
is a Pisot-number and a€£(/?)• The assertion is proved. 

C o r o l l a r y . Let / ( « ) SO be a completely multiplicative function satisfying (1). 
If 1 < / (« )€ Q holds for at least one n, then f(n) takes on integer values for every n. 

L e m m a 7. Let / ( w ) s 0 be a completely multiplicative function satisfying the 
relation 

(6) l / ( i ! ) | | ^ £("), 

where e(ri) is a monotonically decreasing function, with 

(7) ¿ 8 » ( 2 * ) < ~ . 
ii=i 

Then the following possibilities are: 
a) / takes on integer values for every n. 
b) For a suitable n 0 < / ( « ) < 1. Then f(n) — 0 as n — °=>. 
c) For a suitable m / ( w i ) > l . Let denote the whole set of those primes p for 

which f(p)r60. Then there exists a Pisot-number 0 such that Q{f(p))—Q(&) for 
each 1. 

P r o o f . The relation (6) involves (4). If 0 < / ( « ) < 1 then from Lemma 5 
/ ( n i ) s l for every m. If f(m) = 1, then ||/(ww*)|| =||/(/i)| | as k-+ that contradicts 
to (1). Consequently / ( m ) < 1 for each . Assume that there exists a subsequence 
« 1 < « 2 < . . . such that /(«,•) — 1. Then f(nnj)^f{n) ( /—«0 that contradicts to (1). 
Consequently / (m)—0 as m — 
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Let us considei the case c). Taking into account (6) and (7), the conditions of 
Lemma 4 are satisfied with ?.=1, a = / (m) > 1. Consequently a is an algebraic number, 
and the assertion is an immediate consequence of Lemma 6. 

T h e o r e m 1. Let / ( « ) s 0 be a completely multiplicative function that takes on 
at least one algebraic value f(n0)=a > 1. Let denote those set of primes p for which 

/ ( ¿ M O . 

If (1) holds, then the values f ( p ) = <xp are Pisot-numbers, for each 
we have Q(ap) = Q(aPi). Let 0 denote one of the values ocp (p£^i), 02, ..., 0r 

its conjugates, cp2(n), ..., <pr(ri) be defined as in Lemma 1. Then 

(8) <Pj(n)-+ 0 as n — j = 2, ... r. 

In contrary, let us assume that the values f ( p ) are zeros or Pisot-numbers from a given 
algebraic number field £2(0). If 

(9) (pj(p) 0 as p-+ °o ( j = 2 , . . . , r) 
then (1) holds. 

P r o o f . Let us assume that (1) holds. From Lemma 6 we get that the values/ (n) 
are zeros or Pisot-numbers taken from a given number field £2(0). Let us consider 
the vector 

W(n) = (<p2(n), ...,<Pr(n)), 

and denote by X the set of the limit points of t/> (n) (n—°°). Let (x2, ..., x^dX. Since 

/ ( n ) + <p2(n) +... + (p,(n) = rational integer, 
||/(h)||->-0, we get that x 2 + . . . rational integer. Let m} be such a sequence for 
which 

T(nij) - (x2, ...,xr). 

Then !P(/n5)—(j^, ..., x?), x% + ... +xh
r =rational integer, consequently 0 < 1 

is impossible, that is Xj=0 or |JCJ| = 1. Let now n be fixed such that f(n)^0. 
Then ( p M ^ O , 

^(nmj) - (<p2(n) x2,..., <pr(n)xr)£X. 

If x,9^0 for a suitable/, then 0 ¡<P/ («) 1 < 1, which is impossible. Consequently 
we have (8). 

The converse assertion is an immediate consequence of Lemma 2. 
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T h e o r e m 2. Let / ( « ) s 0 be a completely multiplicative function satisfying the 
conditions (6), (7). Let us assume that /(«)-1*0, and that /(«) takes on at least one 
nonintegral value. Then f(n) takes on algebraic values, and the first assertion, stated in 
Theorem 1, holds. 

P r o o f . This is an immediate consequence of Lemma 7 and Theorem 1. 

[1] J. W. S. CASSELS, An introduction to Diophantine approximation, Cambridge Univ. Press (1957), 
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