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Approximation and quasisimilarity 

L. KÉRCHY 

Dedicated to Professor Kdroly Tandori on the occasion of Ms 60 th birthday 

1. Introduction 

For an arbitrary complex Hilbert space § let JS?(§) denote the Banach algebra 
of all bounded linear operators acting on For any let Alg T denote the 
weakly closed subalgebra of generated by T and the identity I, while {T}' 
stands for the commutant of T. We call a subspace 9JI of f j to be cyclic for T if 
V 7"" SOI=§ ; 93Î is a minimal cyclic subspace if it contains no proper subspace which nmo 

is also cyclic for T. The number disc r i s defined as the supremum of the dimensions 
of all finite dimensional minimal cyclic subspaces for T. 

In this paper we are going to investigate the problems of quasisimilarity invari-
ances of the approximating property "Alg T= {T}'" and the number "disc T" 
in the class of cyclic C u -contractions. We remark that the commutant of a C u -con-
traction r i s commutative if and only if T is cyclic. So to consider only cyclic contrac-
tions does not mean the restriction of the generality in connection with the first 
problem. 

Our paper is organized as follows. In section 2 we discuss the approximating 
property "Alg T = { T } ' " and describe its connection with the reflexivity problem of 
C u -contractions. In section 3 the question of quasisimilarity invariance of " d i s c T " 
is performed. Our main goal is formulated in section 4 : to construct contractions with 
special properties, whose study may give hope to solve the previous problems. Our 
construction is given in section 7 and is based on the results of sections 5 and 6. 
Section 5 deals with injective contractions, while in section 6 it is proved that a large 
amount of cyclic Cn-contractions possesses 0 as an "approximate reducing eigen-
value". 
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2. The approximating property "Alg T={T}"' 

Let us consider the normalized Lebesgue measure m on the unit circle T of the 
complex plane C and let a be a Borel subset of T with positive measure: w(a)=»0. 
For any function <p from L°°(a) let Ma rp denote the operator of multiplication by <p 
in L2(a). (The spaces Lp(jx), p=2, are defined with respect to the measure m on 
a .) In the case of the identical function <p ( Q = £ we will use the notation M a for M ^ 9 , 
moreover MT will simply be denoted by M. We remark that for two Borel subsets 
a, /? of T the operators Mx, Mfi are unitarily equivalent, Mas=Mp, if and only if the 
symmetric difference aAjS of these sets is of measure 0, in notation a—/? [m] 
(cf. [6]). 

Let us denote by J5f°°(a) the set of multiplication operators on L2(a), i.e. 

Ji?-(a) = {M^: <p€£~(a)}. 

It is known (cf. e.g. [16, Theorem 1]) that the commutant of Ma coincides with 
i f " (a). 

Let P°°(a) be the w*-closure of the set of polynomials in L°°(a). It can be easily 
seen that the corresponding set of multiplication operators is exactly the closure of 
the set of polynomials of Ma in the weak operator topology, i.e. 

{.M<p£P-(<i)} = A l g M a . 

Furthermore, it is a remarkable fact that P°°(a)=Lc°(a) if and only if m is not 
absolutely continuous with respect to the measure %adm, where y_a stands for the 
characteristic function of a (cf. [16, p. 17]). Hence, it follows that 

Alg Ma = {Ms}', 

i.e. every operator in the commutant of Mx can be approximated by polynomials 
of Ma in the weak operator topology, exactly when a ^ T [ m \ . 

Let T be a contraction acting on a complex separable Hilbert space i.e. 
Td&(Sb) and || T || s i . Let us assume that T is of class C u , that is lim || T"h\\ jl-*-oo 
ji lim \\T*nh\\ for every and that T h a s a cychc vector f . which means that 

n-»co 

every vector h£9) can be approximated in the norm of § by vectors of the form 
p(T)f. where />(/) is a complex polynomial. Moreover, for the sake of simplicity, 
we assume that the unitary part of T(cf. [17, Theorem 1.3.2]) is absolutely continuous 
with respect to the Lebesgue measure. Let C1 denote the class of such contractions. 

It is known (cf. [11, p. 15]) that for any operator TdCx there exists a unique 
Borel subset a of T such that w ( a ) > 0 and Tis quasisimilar to Ma\ T~Ma, which 
means that appropriate quasiaffinities X, Y (i.e. operators with zero kernels and dense 
ranges) interwine T a n d Mx: XT=MaX, YMa=TY. (In connection with the theory 
of contractions we refer to our main reference [17].) 
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Now the question naturally arises: 

P r o b l e m A. Is the approximating property A\gT={T}' a quasisimilarity 
invariant in the class CX1 

The answer for this question is negative, as^it was pointed out for me by Hari 
Bercovici. Indeed, let T be a completely non-unitary (c.n.u.) contraction from Cx 

which is quasisimilar to Mx, where a ^ T [ m \ . We can choose Tsuch that its spectrum 
covers the whole unit disc: a(T)=D~ (cf. [4, Proposition 3.1]). Since T is a Cxx-
contraction, its essential spectrum coincides with a(T). So we can infer that the 
Sz.-Nagy, Foia§ functional calculus for Tis an isometry and Alg T coincides with the 
iv*-closure of the set of polynomials of r ( c f . [1, Corollary 1]), consequently Alg T— 

• =H~(T):={u(T): (the Hardy space)}. 
On the other hand, the commutant {T}' of T never coincides with H"°{T), and 

so Alg 7 V {T}' contrary to the fact that Alg Mx~ {Ma}'. 
The following argumentation proving the inequality {T}' v^H^iT) is slightly 

different from the one given by Bercovici. 
Let us say that the subalgebra si of i?($j) has the property (P*) if every non-zero 

operator in si is a quasiaffinity. Since every non-zero function udH°° differs from 0 
a.e., it is immediate that Hc°(Mx)={u(MJ: u£Hm} has the property (P*). Let us 
assume that T£CX is quasisimilar to Mx, i.e. XT—MaX and TY=YMX with some 
quasiaffinities Xand Y. Then for any non-zero function the relations Xu{T) — 
=u{M^X and u(T)Y=Yu(Ma) imply that u(T) is a quasiaffinity. (The first one 
implies that u(T) is injective, while the second one implies that its range is dense.) 
So we infer that H°°(T) possesses the property (P*). 

Let us consider now an arbitrary operator S from Then YSX<E {T}\ 
XY, XYSXYe {Ma}' and since {Ma}'=•£?-(«) is commutative, it follows that 
X(YSX)Y=(XY)S(XY) = S(XYY={XYfS. These relations show that if SV0, 
then YSX^Q, and if YSX is a quasiaffinity, then so is S also. Since {Ma}' = Jz?~(oc) 
does not have obviously property (P*), the statements above result that {T}' does not 
possess (P*) too. 

Consequentlyj for every contraction TdCx we have {T}'. 
Owing to the negative answer for Problem A we introduce the operator class C[ 

consisting of those elements of Cx for which Alg T^H°°(T). For example every 
contraction T£ Cx whose spectrum does not include T belongs to Cx (cf. [2, p. 337]). 
Now we formulate our question in the following form: 

P r o b l e m A'. Is the property Alg T= {T}' a quasisimilarity invariant in C[1 

This problem seems to be relevant in connection with the reflexivity problem 
of Cu-contractions. (As for the notion of reflexivity see for instance [8, chapter 9].) 
Indeed, the operators in some subclasses of C x \ C i , e.g. operators with dominating 
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essential spectrum (so-called (BCP)-operators) belonging to C1 are reflexive by a 
recent result of BERCOVICI, FOIA§, LANGSAM and PEARCY [1] . On the other hand, it is 
well-known that quasisimilarity preserves the reflexivity of the commutant (cf. [3, 
Proposition 4.1]). So an affirmative answer for Problem A' would reduce the refle-
xivity problem to certain subclasses of C z \ C i at least in the case of contractions 
from Ci which are quasisimilar to some MX with a ^ T [m]. Conversely, a counter-
example for Problem A' might be a candidate for a non-reflexive Cu-contraction. 

3. The number "disc T" 

The second problem we are interested in was posed by Nikolskii and Vasjunin. 
In connection with questions concerning controllable systems they have introduced 
the number "disc" of an arbitrary Hilbert space operator (cf. [13]). Namely, for an 
operator let Cyc T be the set of finite dimensional cyclic subspaces: 

Cyc T:= {9JI subspace of § : dim 2R V rn9K = §}. 
nso 

Then disc T denotes the number 

disc T:= sup {min {dim 91: 9t<ECyc T, 9 tc®t}: 2R<ECyc T). 

Nikolskii and Vasjunin posed the question of quasisimilarity invariance of disc T in 
general (cf. [13, p. 330]). In particular, it would be interesting to know the answer for 
the following problem: 

P r o b l e m B. Is the number disc T a quasisimilarity invariant in the class Cx? 

This question seems to be of considerable interest, because disc Ma takes on 
different values according to the case that a ^ T [ w ] or not. Namely, the following is 
true: 

P r o p o s i t i o n 1. disc Ma= 1 if a ^ T [ m ] , while d i s c M = 2 . 

P r o o f . If a ^ T [ m ] then Alg Ma= {AQ'===.£?-(a), and so Lat M a = { ^ L 2 ( a ) : 
P<zci}, where xp is the characteristic function of /?. This implies that /(EL2(a) is 
cyclic for Ma if and only if f(x)^0 a.e. On the other hand by Szego's theorem (cf. 
[10]) we know that the cyclic vectors of M are the functions / such that f(x)?± 0 
a.e. and J log \ f\dm= — 

T 

Now, if a^T[m] , ati^Cyc M a and {/¡}?=1 is a basis in 9Jt, then 2 1 / iWMO 
¡=i 

a.e.. An elementary argumentation shows that f i x ) ^ 0 a.e. on a for a suitable linear 
n 

combination f— 2  ctfi • 
i = l 
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Indeed, proceeding by induction on w, we can reduce the proof to the case n = 2 . 
So let us assume that |/I(A:)| + | / 2 (X ) |^0 a.e., and let aj = {x£a: f j ( x ) = 0} ( / = 1 , 2 > 
and a'=a\(a!Ua2). Then m ( a i n a 2 ) = 0 and so it is enough to show that ft(x) + 
+c/2(x)=^0 a.e. on a ' with some non-zero complex number c. Taking different 
numbers c and d the sets Ec={x£ot': fx(*) + c / 2 (x)=0} and Ed={x£a': 
f1(x)+df2(x)=0} will be disjoint. Therefore, for all but countably many points c 
of C \ { 0 } the set Ec will be of measure 0, but for such a number c we have 
f1(x)-\-cf2(x)7i0 a.e. on a. 

Therefore, we conclude that disc Mx= 1. 

Let us determine now disc Ml Let T + and T~ denote the upper and lower semi-
circle, respectively, and let SCR be the 2-dimensional subspace spanned by ~/T+ and 
Xx- . Then 9316Cyc M, but SJt does not contain any cyclic vector of M. Therefore 
disc Af s 2 . 

Now let 9Ji£ Cyc M be a subspace with dim sM=n^2. We want to show that 
min {dim 9t: 9l<ECyc T, 5ilc9K}s2. As before, we can infer that f(x)^0 a.e. for 
some /€9M. It can be assumed that f log [/1 dw > — for these functions. It is 

T 
well-known (cf. [9, Theorems II. 2 and 3]) that the invariant subspace lattice of M 
has the form: 

Lat M={L2(a): « c T } U { ^ 2 : q is a unimodular function on T}. 

Let us assume that there exists a function g £ 9Jt such that 0<m({x£T: ^ 0}) < 1. 
Then 9W,:= V Mkg=L2(x) with a ^T[m], while 9K,:= V Mkf=qH2 wi thaunimod-

ular q. Since, for every h£H2, / log \h\dm> — °° (cf. [17, Sec. III. 1]) we infer that 

mg\jmf=L2((x)\JqH2=L2(T). T 

Hence we have only to deal with the case when for every nonzero we have 
J log ]f\dm> — We prove by induction on « that V ,a=Z,2 (T) for some 
T 
l ^ / j , h ^ h ' where SR—SOt^ for / = 1 , . . . , « . For « = 2 this is obvious. 

' n—i 
Let us assume that it is true for « — 1 («S3) . If V 9Mi=£2(T)> then we can apply 

¡=i • n - i n - i 
our assumption. If V '¡0li9iL2(T), then V $Ri = qH2 for a unimodular function q. 

>=i /—I 
On account of Beurling's theorem there are inner functions u^H™ such that 
W—qiiiH2 for i = 1, (cf. [9, Sec. II. 4]). Since ( V ^ / S R , ^ 

=(qH2) V (qn H2)—L2(T) (q„ unimodular), and the multiplication by an inner func-
tion is a unitary operator on L2(T), we conclude that L2(T) = u1L2(T) = 
= {u1qH2)\/(u1qnH2) = mi\/(qn(u1H2))cmi\jmn(zL2(r), and so ^ V » i „ = i 2 ( T ) . 

Consequently we obtain that disc M = 2 . 
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Of course the values of disc (c<?iT[/77]) and disc M can be computed from 
the general formula of the Theorem of [13]. We have given the above simple proof 
for the sake of the reader's convenience.* 

4. Our programme 

First of all we remark that in virtue of Wu's results the answers for Problems A 
and B are affirmative, if we assume that the defect indeces of the contraction TdC l 

are finite. (Cf. [18, Corollary 4.6], [11, Corollary 1] and [13, p. 330].) 
We have seen in section 2 that the answer for Problem A is negative in general. 

Another fact which points out that the general case is more complicated is the follow-
ing. 

For an arbitrary unitary operator U let us denote by Latx U the lattice of the 
reductive subspaces of U. It follows by section 2 that if a ^T[/?;], then Lat Ma = 
= LatxMa , while Lat M ^ L a t t M. A natural generalization of a reductive subspace 
for a C1X-contraction T is an invariant subspace fig Lat 7" such that 7 ' |£gC1 1 . 
Lat! 7" stands for the set of "Cn-invariant subspaces": LatL T= Lat T: 
r|5>t£Cu}. It was shown in [4] (cf. Remark 3.4) that the property of reductivity 
"Lat 7 ,= ;Lat1 T" is not a quasisimilarity invariant in C1. 

In order to study Problems A' and B in the general setting it would be very 
useful to have contractions which are close in a certain sense to some Ma with 
a ^T[m] and to M at the same time. The aim of the present paper is to provide such 
operators, which may clarify the real situation, perhaps they can be candidates to be 
court terexa m pies. 

Our construction is based on theorems concerning injective contractions and the 
approximate reducing point spectrum, which will be proved in the next two sections. 

5. Injective contractions 

We begin by proving two lemmas which are refinements of [4, Lemma 3.2]. 

L e m m a 2. Let 7"6 .£?(?>) be a contraction. Then for every g, u£§> we have 

| |rg + 7)2
r iM||2s | |g | |2+| |7) r^| |2 . 

(Dt = (I-T*TY12 and Dt*—(I—TT*)1/2 are the defect operators of T.) 

* After this paper had been submitted, prof. Vasjunin informed me that a direct proof, of 
this proposition can be found in their paper "Control subspaces of minimal dimension, and spectral 
multiplicities" published in the Proceedings of the 6 lh Operator Theory Conference, held in Romania. 
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P r o o f . Using the identity DT*T=TDr, we obtain (Tg, D\tu) = (DT,Tg, 
DT*u) = (TDTg, DT*u)=(DTg, T*DTt u). Applying this and the Schwartz inequality, 
it follows that 

||Tg+D\*u\\2 = |7g | | 2 +2 Re (Tg, D%.u) + \\D\,u\\2 = \Tg\* + 

+2Re<Z>Tg, T* DT*u) + \D\*u\2 S ||7g||2+2||i>rg||\T*DT<u\\ + 

+ |Z>2
T*«[|2S \\Tg\\*M\DTg\\2 + \\T*DT*u\\2 + \\DT*DT.ur- = llgp + p ^ t e 

We recall that, for an operator Td&($) and a vector / € § , ( / , T)dJ§?(C©§) 
denotes the operator defined by 

(/, r ) ( ; .©g) := o©(; /+r g ) (;.ec, (cf.[4]). 

L e m m a 3. Let Td^Cb) be a non-ivertible infective contraction. Then for 
every £>0 there exists a vector fd§) such that ||/|| —e and ( / , T) is an injective 
contraction. 

P r o o f . If « € § \ r a n T, then f=D2
Ttu=(I-TT*)ud?>\rdn T, and so ( f T) 

is an injective operator. On account of Lemma 2 ( f T) is a contraction if ||DT*«|| s i , 
so if IMISl. Since II«112 = ||T'*M||2-|-||Dr*M||2 = ||7,:t:M||2-(-||r*£>r*«||2 + ||Dy,H||2, it 
follows that ll/H2 = || m|| 2 -1| 2 -1| DTr*W | |2 ^ || M||2 - 2|| T+«|| 

The injectivity of T implies -that (ran T*)~ Taking into account that T* is 
not invertible we infer that T* is not bounded from below. Therefore for an arbitrary 
0 < j j < 1 there exists a unit vector u0d& such that \\T*uQ\\<t]. 

Since T is injective, non-invertible, the closed graph theorem implies that 
ran T I t follows that § \ r a n T is dense in Hence for any 1 > ¿ > 0 there 
exists a vector t<6§\ran T such that \\u—(1 — <5)w0||<<5. Then | |w| |s l , so with 
f=Dj*u the operator (/ , T) will be an injective contraction. On the other hand 
ll/ll2=IMI2—2||T*u\\2^\\u\\2—2{\\T*u0\\ +||w—w0ll)2; and since \\u\\^\-28,\\T*u0\\^ 
and ||w—w0||<2<5, it follows that 

||/|2 > (i-25)2-2(t]+28)2
 & 1 — 1 6 5 — 2 F / 2 . 

We infer that | | / | |>1—e if 0 and <5>0 are chosen to be small enough, and the 
proof is complete. 

To any operator let us correspond the number 

v( r ) := inf {max {||r*||, | |r**||}: M = l } . 

P r o p o s i t i o n 4. Let T d b e a non-invertible quasiaffine contraction with 
v ( r ) < 1/2. Then for any £>0 there exist vectors f,gd$> such that ||/||, | |g | |> 
>1 —2v(T)—e, | | / - g | | < 2 v ( r ) + £ and ( f , T ) , (g,T*)dSC(C©§) are injective 
contractions. 
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P r o o f . Let v(T)<>/< 1 be arbitrary. By the assumption there exists a unit 
vector u0d§> such that || 7M0|| and \\T*ua\\ The proof of Lemma 3 shows that for 
any 1 > ¿ > 0 we can find vectors i / £ § \ r a n T and t>£§\ ran T* such that 
||H—(1 —¿)M0||<<5 and ||t>—(1 — <5)M„||<<5. Then, considering the vectors f—D^u 
and g=D2

Tv, the operators ( / , T) and (g, T*) will be injective contractions while 
ll/ll2> llgll2Sl —165—2t], Furthermore, we have 

!l/-g|| = Kl-TT*)u-(I-T*T)v\\ | | M - t , | | + | | r * t t | l + 

+ B r ® | S | | H — i ; | | + | | r * H 0 | | + [ | M — M 0 | | + l l ^ , w o l l + i l t ' — w o l l — 6S+2t). 

Consequently, we conclude that | | / | | , ||g|| > 1 -2v(T)-e and | | / - g | | - = 2 v ( r ) + e 
if t] is close enough to v(T) and <5 is small enough. 

R e m a r k 5. Note that if v(T)=0, that is if 0 is an "approximate reducing 
eigenvalue" of T, then / and g can be chosen to be arbitrarily close to each other, 
with norms arbitrarily close to 1. 

6. ^-contractions with approximate reducing eigenvalue 0 

In this section we shall show that there is an abundance of C1-contractions T 
with v (T )=0 . In proving our results we need the following lemma which will be 
used in the next section too. 

L e m m a 6. Let a. be a Borel set on T such that w(a )>0 . Then there exists a 
sequence {P„}"=1 of closed arcs of T such that ¡}nf)fi n+1 consists of exactly one point 

oo 

and m(a„)>0, where «„=/?„ f la , for all n, and | J /Jn = T. 
n=i 

P r o o f . Since m(a)>0, it follows that a contains a point C of density 1. More-
over, there exists a sequence {C„}"=1 of different density points of a converging to C. 
For every n, let y„ be one of the two closed arcs of T determined by C„ and C. With 
an appropriate choice of these arcs and passing on to a subsequence, if it is necessary, 
we can achieve that be a decreasing sequence of sets. For every n, let Bn be 
an arbitrary point of the set V„\(? n + iU {C„}). Now we define P„ to be the closed 
arc with endpoints JB„_1; Bn and containing C„, if 2; while fix is the arc with 
endpoints Bx, C and containing Cx. 

Since each contains in its interior a density point of a, it follows that m(an) > 0 
for every n. It is easy to see that the sequence {/?„}~=1 possesses the other properties 
of the statement also. 

T h e o r e m 7. For every Borel set a c T with positive Lebesgue measure there 
exists a Ci-contraction T such that T is quasisimilar to Mx and v(T)=0. 
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P r o o f . We first show that for every e > 0 there is a Q-contraction T such 
that T~MX and v (T)<e . 

By Lemma 6 there exist closed arcs P', P" of T such that p'{jp"=T, p'Op" 
has two points and m(a ' )>0 , m(a" )>0 , where a'=P'C\a and a"=P"Ha. On 
account of [4, Proposition 3.1] we can find non-invertible Ci-contractions T'££?(§>') 
and T"££?(§>"), T being quasisimilar to Ma, and T" being quasisimilar to Ma„. 
Then Lemma 3 ensures us vectors / € § ' and such that ( f T'*)£&(C®9>) 
and (g, r " ) € ^ ( C © § " ) are injective contractions. The matrices of these operators 
are 

rO 0 1 rO O-i 
(f,T'*)=[f T>i\ and ( g , n = [ g T „ \ , 

where / denotes also the operator of rank 1: / : C — / : h—-kf\ its adjoint is 
/*: S'-C, /*: h~{h,f). 

Let us consider the Hilbert space S = £> ' f f iCff iC©Cffi§" and define the oper-
ator by the matrix 

7" 0 0 0 0 
/* 0 0 0 0 

0 
1 

~2 £ 0 0 0 

0 0 
1 

T £ 0 0 

0 0 0 g 
rp// 

It is easy to see that T is a Cu-contraction. Since | | r ( 0 © 0 © 1 ©0ffi0)|| = 
= || jr*(0©0ffi 1 ©0©0)| | = (l/2)e, it follows that v(T)<e. Moreover, by [4, Theorem 
1.7] the residual part RT of T (that is the residual part of its unitary dilation) is uni-
tarily equivalent to RT.®Rr.: RT^RT,@Rr,. This implies that 
s M „ and so T is quasisimilar to Mx (cf. [4, Proposition 1.3]). 

Let us now prove the existence of a Cx -contraction T with and v (T)=0 . 
Let {a„}~=1 be a sequence of Borel sets corresponding to a by Lemma 6. Then, on 
account of the first part of this proof, for every n there exists an operator 

such that Tn~Mx and v(T„)<l/«. It follows that the direct sum T= © T„ 
" n = 1 

of these operators is quasisimilar to Mx and v (T)=0 . The proof is finished. 
Now we prove that it can be achieved that the spectrum of the contraction T 

in the previous theorem be rather thin. We shall need the following: 

L e m m a 8. Let B£J?(§>") be invertible operators. Then the operator 

T acting on -§>=© §>" and defined by the matrix T = | ^ is also invertible, and 

HT-1!! S m a x {||J4-1||, ||B~1||} + ||^4_1||||B~1|| if | | C | | S l . 
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P r o o f . It is easy to verify that the inverse of 7" is T * = 

Moreover, for the norm of T~1 we have 

»-Htr :-M. 0 0 

- B ^ C A - 1 0 
J = max{M"i , l l f i - D + H B ^ C / t - l 

s max IM-Mi, II.B-^liJ + i l^-^M- 1 ! ! . 

Furthermore we shall use the following notation. If a c T is a Borel set, m (a) >0 , 
then a = stands for the support of the measure y^dm and, for any Ç£a=, D(a, £):= 
: = a = U K : O S r S l } . 

T h e o r e m 9. Let a be a Borel subset of T such that m(a)>0 and let ( be any 
point of a =. Then there exists a contraction T such that T~'Ma, v(T) = 0 and 

We remark that if v(7')=0, then 0£a(T), and that for every C±-contraction 
7"each closed and open part of o(T) intersects T, and that T~MX implies <j(T)zicc= 

(cf. [5]). In the light of these facts the spectrum of T in the previous theorem can not 
be thinner. 

P roo f . Let {P„}™=1 and {a„}"=1 be sequences corresponding to a by Lemma 6 
such that the cluster point of the endpoints of the arcs /?„ is the given C 

For every n£N, the set of natural numbers, let Qn denote the domain 
£2„={rX: ), belongs to the interior of /?„ and 1/(« + l)-</-< 1}, and let /<„€Qn be a 
point such that |//„|<1/«. By[5] we can find for every n a Cu-contraction Sn£3f(St„) 
such that S„ is quasisimilar to M ^ , o(S„)=a=, | | (5 B -A/) _ 1 | | ^d is t (A, i2~)_ 1 for 
all A£C\i2~, and | | ( 5 B —p„/ )x j< l /n for a suitable unit vector .rn€S\n. 

Let us decompose N into the union of pairwise disjoint sets 

each ofwhich contains infinitely many points. For every i£ N, letusdefine 
and by T;= © SB and T"= 0 S„, respectively. 

Since inf | | ( S n - ^ / ) * n | | = inf || ( S „ — / ) x j = 0, it follows that T[ and T" 
n £ jVj n 6 N" 

are not invertible. So we infer by Lemma 3 that there exist vectors and g f€§i ' 
such that ( f , T.*) and (giy T") are injective contractions. Now we define the opera-

o(T)=D(a,0-

N = ( U . ^ , ' ) U ( U W ) , 
>E N I€N 

niNt 
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tor Ti acting on the Hilbert space § , - = § j ' © C © C © C © S " by the matrix 

Ti 0 0 0 0 

f t 0 0 0 0 
0 ( i + l ) - 1 0 0 0 
0 0 (i + l ) - 1 0 0 
0 0 0 g i T{' 

Finally, our operator J5?(§) is defined as the orthogonal sum of these operators: 
T= © T^ 

i€N 
It is immediate that Tis a contraction. We can show as in the proof of Theorem 

7 that for every i 

T, ~ T{©T" ~ © © MXn, 

and so 

'6N ngiV/uN/' «€N 

i.e. r i s quasisimilar to Ma. It follows that T belongs to the class Cx. 
Since v(Ti)~zl/i for every i, we infer that v(7")=0. 
Let us assume now that X£C\D(a, Q. Then, for every the operator 

S„—).I is invertible. Moreover, for all but at most two n, I belongs to C\Q~. For 
these indeces || (-S1,,—A/)-1|| ̂ d i s t (2, i2~)~\ and the sequence on the right side is 
bounded. Hence we conclude that {|| (S1;—A/)_1||}ieN is bounded, and so applying 
Lemma 8 we obtain that {|| (7";—A/)-1||};eN is bounded too. Therefore, we infer that 
T—Xl is invertible, i.e. X^a(T). 

On the other hand v (T)=0 implies that 0£a(T), moreover on account of [5] 
we know that a =<zo(T) and that every closed and open subset of a(T) intersects the 
unit circle. Consequently, we obtain that o{T)=D(x, Q. . 

We remark that with the additional assumption that the defect number of T is 
1 the statement of Theorem 7 becomes false. Namely, the following holds: 

P r o p o s i t i o n 10. The number v1=inf {v(7"): T£CX with defect index 1} is 
strictly positive. 

P r o o f . It is evident that we can restrict our attention to c.n.u. Q-contractions 
with defect index 1. We shall consider the functional models of these contractions 
(cf. [17, chapter VI]). 

So let H" denote the set of outer functions 9 in the (scalar) Hardy space H°° 
such that a.e. and 9 is not a constant of absolute value 1. To any 9£H™ 
there corresponds a Hilbert space 

§ ( 9 ) = [H2®(ALi)-]Q{9w@Aw: tv€#2}, 
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where A(e'0 = ( l - |9(e i0| 2 ) 1 / 2 , and an operator 5 (9 )6 i f (§ (9 ) ) defined by S(9) = 
=PS ( 3 )C/|§(9), where U denotes the operator of multiplication by e" on H2®LZ 

and P g ( s ) is the orthogonal projection in H2@L2 onto the subspace §(9) . The 
operator S(9) is a C± -contraction of defect index 1 and being quasisimilar to Mx for 
oc={e"€T: |3(e ' ' ) |<l} (cf. [17, Proposition VI. 3.5] and[11, Corollary 1]). Moreover, 
in this way we obtain all c.n.u. ^-contractions of defect index 1 up to unitary equiv-
alence. 

So we have to prove that the infimum 

v, = inf{v(S(9)): H H ? ) 
is not equal to zero. 

Let be an arbitrary function. The Hilbert space §(9) can be decomposed 
into the orthogonal sums 

§(9) = 25 s w ©£s ( 9 ) = XW©35«®)*» 

where 3>S(9)=(ker I>s(9))x and £>s(3)* = (ker £>S(3)*) 1 are 1-dimensional subspaces, 
the so-called defect subspaces of S(9). Since 5(9)1 Ds ( s ): 35s(9)->-®s(9)* is an iso-
metric surjection with inverse S(9)*|2)s(s)*: and for appropriate 
unit vectors g0€®S(S) a n d ho€®S(9>* w e h a v e S(9)go=9(0)ho and S(9)*h0= 
= 9(0)g0 (cf. [17, Sec. VI. 4]), it follows that v ^ O if and only if for a sequence 
{9„}~i in 9„(0) and the distance of the subspaces £>s(3 } and ®S(sj* tend simul-
taneously to zero. Under the latter distance we mean the distance of the unit spheres 
of these subspaces, i.e. 

dist(DS(9n), Ss(9n)*) = inf { | |x-y | | : xdT>s(6n), ||*|| = 1, \\y\\ = 1}. 

An easy computation shows that for any M©I;€§(9) (9£H~) 

(l-S(9)S(9)*)(u(Bv) = M(0)i> s w( l©0), 

and again a usual computation yields that 

^ W 1 © 0 ) = (1 -9 (0 )9 )©-9 (0 ) , d =:h. 
The norm of h is ||/i|| = (l —19(0)[2)1/2^0 and {h0=h/\\h\\} forms an orthonormal 
basis in £>S(3)*- Then 

g = S(9)*h = e~"J(0)(9(0)-9)®-e-i'9(0)A 

belongs to T>S(9), ||g|| = |9(0)| ||/i|| and {g0=.?/llsll} is a basis in £ S ( 3 ) . 
The distance of the subspaces T)S(3) and X)S(9)* is by our definition 

d(9):= d is t (D s f f ) , ® s w . ) = inf {||a/i0-g0 | | : a<EC, |a| = 1}. 

Since l l a / . o - g o l l 2 = 2 i l - R e ( g < / ' ' g > ) ) , it follows that d(9) = il f l y №1111*11 ) I PllkllJ 
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A direct computation shows that (h, g)= — 3(0)3'(0), and so we obtain that 

Being an outer function 9 has the form 

9(2) = x exp [ f log 19(e")\ dm (*)] (A€Z)), 

where x € T is a constant of absolute value 1, and D denotes the open unit disc in C. 
We infer that 

19 (0) (=exp [ J log 19 (eu) | dm ( /)] and ¡9 ' (0 ) |=2 |9 (0) | \fe~u log j9(e i ' ) l<M0l • 
T T 

Let us assume now that 9„(0) tends to 0 for a sequence {9„}^11 in H " . Then 
y„= — f log \9n(e")\dm(t) tends to infinity and so in virtue of [9^(0)|^2 exp ( —yn)y„ 

T 
it follows that 9'(0) converges to 0. We conclude that lim 9„(0)=0 implies lim tl-*-oo n-̂ oo 
d(9n) = / 2 . Therefore, the number vx is not 0. 

7. The construction 

Let a be an arbitrary subset of T such that m(ot) > 0 . Applying Lemma 6 we can 
find a sequence {j8„}^=_co of closed arcs of T such that P„C]Pn+i consists of exactly 
one point, m(a n )>0 , where a„ = J3nf)ot, for every Z (the set of integers), and 

| J fin covers the whole T except one point. 
« = — Oo 

For every Z, Theorem 7 ensures us a Cx -contraction with 

v ( r „ ) = 0 and being quasisimilar to Ma . Then the orthogonal sum T'= © T„£ 
" n — — oo 

© §„) is quasisimilar to © Ma = Mx. 
« = — OO n = — oo " 

Let us given a sequence {£„}7=-~ positive numbers such that 0 < e „ < l 
for every n£ Z and ^ lim e„=0. Such sequences will be called admissible. On account 
of Proposition 4 we can find, for every Z, vectors fn, g„£§>„ such that \\fn\\, 

\\L-gn\\^Zn and (/„, Tn), (g„, C © § „ ) are injective contrac-
tions. Now we define the operator to be the sum T"= J? fn+i®8n> 

fls-w 

where for any n §„+i) denotes the ' operator of rank 1: 
(f„+1®g„)h={h, gn)fn+1 (ha§>„), and the partial sums of the series converge in 
the strong operator topology. 
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D e f i n i t i o n . We call the operator to be a quasibilateral shift, if there 
exists a sequence {2n}"=_„ of pairwise orthogonal subspaces and for every Z 
there exist vectors/,, g„££„ such that {||/„||}r=_~, {llsJ}r=— are bounded sequen-
ces and S= 2 L+x®g„-

n = — oo 

We say that the quasibilateral shift S assymptotically approximates the bilateral 
shift in order s, where s={e„}°is an admissible sequence, if the sequences 
{/„}r=-~> {a,}" — fulfill the following relation: 

m a x { | | ! / „ | | - l | , |I |g„| |-l | , | | / n -g n | ! }<£„ 
for every n£ Z. 

We note that every (simple) bilateral shift is unitarily equivalent to M. 
It is evident that the sum T=T'+T" of the contractions T', T" obtained be-

fore is an injective contraction with dense range. With the notions introduced above 
our result can be formulated as follows: 

T h e o r e m 11. Let a be a subset of T such that m(a)>0 and let 
be an admissible sequence. Then there exist a Cx-contraction which is 
quasisimilar to and a contractive quasibilateral shift T"i:•£?(§) which assympto-
tically approximates the bilateral shift in order e such that their sum 7 = T' + T" 
is a quasiaffine contraction on 

The contraction Tis close, in different senses, both to Ma and to M. Unfortuna-
tely, we are not able to prove yet that T can. be a Cn-contraction. However, by modi-
fying our construction and assuming that some subspaces of § are Cu-semiinvariant 
for T, we can show that T is quasisimilar to Ma. 

Namely, taking into account Theorem 9 we can achieve that the spectrum of 
every contraction T„d &(§>„) considered be D(a„, („), where is an arbitrary fixed 
point of a j . Let /„, g„£§„ be as before, and let us introduce the operators 

_£>(«,), T2'€J2?(Sy, r ^ t t i ) as follows: 

CO CO oo 

T{ = © T2k,Ti= © T2k+1, T" = 2 fm+i)®S2k, 
k = — CO fc= — oo = — CO 

where ^ = © a n < i © §2fc+i- Now we define the quasiaffine con-
k s — oo k= — OO 

traction T£ £?(§>) by 
T=(T{+T")®Ti. 

CO - 1 

Let 501 and 9t denote the subspaces 931= © 91= © §2) [ . It is evident 
k—0 *=-<*> 

that T|S0l€Ci. and Pj , r |9 t£C. j . Moreover, we shall prove: 
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T h e o r e m 12. If r | $ i and PmT ¡91 are Cu-con tract ions, then T is quasisimilar 
to Mx. 

co 

Proo f . We have to show that is quasisimilar to © Ma . 

Cosidering the matrix p * | of in the decomposition 
K1=a)i©9(l the assumption r|9Jt, P M r | 9 l e C u immediately implies that Te C u . 
Therefore, T is quasisimilar to its residual part RT (cf. [4, Proposition 1.3]). On 
account of [4, Theorem 1.7] RT is unitarely equivalent to Rj^ © -R^TI« © RT^2 • 

We shall prove that RT\m = © Ma . Applying [4, Theorem 1.7] several times 
1 k=o 2fc 

we obtain that R T ^ ( ® R T J ® R T ] ~ M ) © ^ 5 ^ for ev-
k = n + 1 k = n + 1 

ery Taking into account the functional model of R T ^ (cf. [6, Theorem X.10]), 

we infer that M' =© Ma can be injected into RTiw: M'-<RTim, that is some 
k = o ' 

injective operator X intertwines these 
operators: XM'—R^^X. 

Next we want to show that r | 9 J l< M'. We are looking for an injection X such 
that X(T\ty\)=M'X. Let us consider the matrix of X with respect to the 
decompositions S5l= © §21 and (£'= © where (£', <&k are the domains of M' 

fc = 0 fc = 0 
and Mk:=M , respectively. The commuting relation above can be expressed by 
the equations (*) MiXiJ-XijT2j = (Xu+1f2a+1))®g2J ( i , j€N) . 

Since T2i is quasisimilar to Mt (it N is arbitrary), we can find an intertwining 
quasiaffinity X^S^i^m, ©,) such that M i Z i = Z i r 2 i . Let us define to be zero if 

and Xu—Xi for every /£N. Then equality ( * ) holds, whenever i= j . 
Let us now assume that 0 S / < / . Since a(Mt)=<x2i, o(T2J)=D(a2j-, C2j) and 

a.2i f]D(jx2J, C2j-)=0, it follows by Rosenblum's theorem (cf. [14, Theorem 3.1]) 
that Xij can be expressed from ( * ) by the integral formula: 

X i J = / / 2 0 + 1 ) ) ® g 2 j ) ( . X - T 2 j y i d A , 
rij 

where r u is a rectifiable Jordan curve surrounding ot2i and containing D(a2 j , (2 j) 
in its exterior. We obtain X^ for ./'< i successively from Xt by this formula. 

It is easy to see that for every there exists a constant Kt such that 
0 0 

2 IIA'ijII '^KiWX^. Since X's can be chosen with arbitrary smallnorms, we can achieve 
J=0 

0 0 

that 2 l l^yll^0 0 hold for the operators defined above. Then the matrix [A'i;]?°J.=0 
i,j = 0 

actually defines an operator (£') (cf. [7, Sec. 36]), which will intertwine 
T|9Jl and M', and is evidently injective. Therefore, J|9Jl can be injected into M'. 

16 
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Being a Cn-con t r ac t íon , r[9JZ is quasis imilar t o i ts res idual p a r t R T ^ , a n d w e 
conc lude by t h e cha in of re la t ions 

-Rriro ~ r p <M' '•< RT 

t h a t iîj-iî,, is uni tar i ly equivalent t o M'. (Cf. [12, L e m m a 6] a n d [17, P r o p o s i t i o n 
II.3.4].) 

A n a n a l o g o u s a r g u m e n t a t i o n yields t h a t R p ^ t [ í i = © M a . C o n s e q u e n t l y 
JFC=—OO I K 

R T ^ R m ® R P 9 t T \ * ( B R m ^ { ® M, ) ® ( © M ) © ( © M © M 
fc = 0 K ~ — o o k——o o n = — o a 

=MX, a n d so T i s quasis imilar t o Ma. T h e p r o o f is finished. 
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