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Local upper estimates for the eigenfunctions of a lmear
differential operator

V. KOMORNIK

Dedicated to Professor Kdroly Tandori on his 60th birthday

Let GCR be an arbitrary open interval, n€N, ¢, ..., ¢,€L; (G). arbitrary
complex functions, and consider the differential operator

Lu=u"4qu"" V4. +q.u.

We recall the definition of the eigenfunctions of higher order:

Given a complex number 4, the function u: G—~C, u=0 is called an eigen-
function of order —1 of the operator L with the eigenvalue 1. A function u: G—~C,
u#0 is called an eigenfunction of order m (m=0,1,...) of the operator L with
the eigenvalue A if the following two conditions are satisfied:

— u, together with its first n—1 derivatives-is absolute continuous on every
compact subinterval of G,

— there exists an eigenfunction u* of order m—1 of the operator L with the
eigenvalue 2 such that for almost all x€G

(1) (Lu)(x) = Au(x) +u* (3).

Let u be an eigenfunction of order m (m =O, 1, ...) of the operator L with some
eigenvalue 2. Let us index the n-th roots of A such that

2) Repy =...= Re y,.

It is known (see the references below) that to any compact submterval K of G there
exists a constant G=G,, such that
3 Jul =0 = C(1 +1111a;< [Re p, )|l 2wy

and for [A| sufficiently large
4 ) =gy = C(1 +1I§g" |Re I‘pl)“ WWlpg (G=1,...,n—1).
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Furthermore, if ¢;3 ..., ¢,€LL (G) for some p€[l, =] then
® [ lera = CA+ )" (14 max |Re p )| rao-

The constant C does not depend on the choice of u.

Remarks. (i) If n=3 then the quantity max. [Re pu,| may be replaced by
lm]=|A|M": they are equivalent. One can see eagiI; by counterexamples that the
above estimates are the best possible.

(i) The estimates (3), (4), (5) were proved in [3] for the case n=2 and ¢,=0
(see also [2]), in [5] for the case n=3 and ¢,=0; in the general case ¢, %0, using
the results of the paper [5], they were proved in [6] for the case n=3 and in [7] for
the case n=2.

The aim of this paper is to show that if we replace the compact interval K on
the right side of the estimates (3), (4), (5) by another compact interval, strictly con-
taining K, then the terms (1 +1133i‘,. |[Re u,) can be omitted. This phenomenon

plays an important role in the local investigation of spectral expansions.

Remarks. (i) The first results of this type were proved by V. A. IL’ N [1]
and were used to prove a general local basis theorem. For the proof he used the
following condition: putting

[(—D"2212 if n is even,
©) p= [iA]/» if nis odd and Im A =0,
[—iAl¥" if nodd and Imi =0
where
3n
—2',

A

[rel'q:]l/n = rl/nei(p/n’ _% <@

the existence of a constant C was proved for any fixed band
@) [Im x| = C; (C, is constant).

Also, the coefficients of the differential operator were assumed to be sufficiently
smooth. As we shall see, the above conditions can be omitted.

(ii) In the proof of Theorem 2 of this paper we shall use a formula obtained in
[5] for the coefficients of which very simple explicit formulas were found by by Jo6
[4]. This will play an important role in the proof.

In the sequel we shall use the following notations:

1
® n = [2;—-], N =n'(m+1), N=n(m+1), p=y,, 0 = |[Reyl.
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Obviously

Q) o=min {|Repy,|: p=1,...,n}
and

(10) e=Rep if n is even.

Remark. Suppose n is odd and consider the operator
Lu=u"™ +§u" V4. +§,u

on the interval G:= —G where §,(¥):=(—1)° ¢(—). Then, for any eigenfunction
u of order m of the operator L with some eigenvalue A, the function #(y):=u(—y)
is an eigenfunction of order m of the operator L with the eigenvalue —J. This corre-
spondence makes us possible to consider always the case Re u=0 i.e. g=Re u.

In the sequel u=wu, will denote an arbitrary eigenfunction of order m of the
operator L with some eigenvalue 1. Let us introduce recursively the continuous func-
tions

u;: G -C, u;= Luj'ﬂ—/luj+1 a.c.on G

for 0=j=m~1. Then u; is an eigenfunction of order j of the opé¢rator L with the
cigenvalue 4 and u,_,=u".

1. Local “anti a priori’’ estimates. In this section we shall prove the following
result:

Theorem 1. Assume ¢ =0 and gqs,...,q,€LL (G) for some p€[l, ).
Then to any me{0, 1, ...} and to arbitrary compact intervals K,, K,c G, K,Cint K,,
there exists a constant C such that for any eigenfunction u of order m of the operator

L with some eigenvalue A=",

(11 [t ey = CA+ )" |l ey -
The proof will be based on the following assertion

Proposition 1. Given 0#ucC and t€R arbitrarily, there exist numbers
d(u, t), d,(u, t) and continuous functions D, (u,t, -} such that for any eigenfunctions
u of order m of the operator L with the eigenvalue A=p",

(12) t"d(ﬂ9 t) um—l(x) =
’ m n x+ Nt
= Z A dux+kn+ > > [ Dt x—1) g,@ui) @) d
. k=N'—N+1 P=Q s=1 x+(N' =N+t

whenever x+(N'—N+1)t€G and x+N’tcG. Furthermore, introducing the no-



246 V. Komornik

tation

(13)
Pp, ) = (u)"t*- +""eXlD( 2' (fm+ D+ + (=D m+1)+1) 41 - .)

=n"—n+1

there exist positive constants C,, C; and to any fixed positive number A a positive
constant C such that

(14 |de (i, D1 = Clul"= 1P, Dle~ e for all k,
s D, (u, 1, x—D)} = Clul @7 |P(u, 1)|e=el*~
Jor all x4+(N'—N+Dt=1=x+N"1,

(16) x/zsguzopgz |d (pe, f0)| > Cy|P(u, t)
whenever : : .
(17 Reu=0, 0=t=4 and |u|=C,.

First we deduce Theorem 1 from Proposition 1. For m=0 the theorem is ob-
vious because #*=0. Assume m=1 and that the theorem is true for m—1. Let us
fix a compact interval KcG such that

K,cint K and KcCint K,
and put
e = (N)1 dist (K;, 0K).

It suffices to consider the case Re u=0 in view of (10) and the Remark after (10).
For Ju| sufficiently large we can fix a number t€[e/2, €] by Proposition 1 such that

e, D = Clal =1, Dl 1D, (1, £, x—)| = CIUFO=" ld (g, ).

Fixing 7 by this manner, we have by (12) for any x€K,

’

-1 ()| = Cluf" vg’;v |um(x+kt)|+C_2 Zlul’“ Nl oo |52 Lo

k=1

whence

(18) lttm-slLry = Clul" | oy + C ;(; 22 A= =2 oo -

{Here and in the sequel C denotes diverse constants which do not depend on the choice
of u.) Being |u| large, by Theorem 2 of [5] we have

um=2leew = Clul™ - oo = Cll* "ty | Loy
On the other hand, using the inductive hypothesis, for r=2

= Loy = Cl] =01, | LP/(Ky) -
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Finally, using again Theorem 2 of [5] we obtain

lttm-alerexy = Clul |t Lok, -

Therefore we obtain from (18) the estimate ‘

ltm-allrk,y = Clpl™=* | Umll Lok,

1.e. (11) is proved for |u| sufficiently large. But for |u] bounded (11) follows. immedi-
ately from (5) and the theorem is proved.

Let us now turn to the proof of Proposition 1. Putting

‘ y
Ko(#:)’) 2 7o K y) = J Kol OK, s, y—8)de (r=1,2,..)
.0 .

and for any fixed x€G
19
m ¥
() = 4,0+ 2 [ Kot y=2) 2 gUG=P @) dt,  vy1(9) = 0P () — s (3),
it follows from the results of the paper [5] that v,, is an eigenfunction of order m of

the operator Lyv=v" (defined on G) with the eigenvalue 4, and v,,_,(x)=u,,_,(x).
Consequently the function v,,(») is a linear combination of the functions

y— ) Hp,(y—x)fer—0 (r=0,...,m, p=1,...,n);

therefore the determinant

vVu(x+kt) ... U, 1 (x)
(kptp Y
rl!’ ekust o Co(upt)"

[r=o,...,m, p=1,..,n k=N'-N+1,..,N’, c,=(1—5,0)[;']]

vanishes whenever x+(N’—=N+1)1€G and x+N’t€G. Developing the determinant
according to its first row, in wew of (19) we obtain (w1th obvious notations) the for-
mula (12).
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Let us set for brevity

2= S0+ G- DE+D+HD 1t

@1) g= 3 (Db b G DD+ D) it

i=n—n+
¥ = z{ +z3.
We shall also use the notation
w,é w, © Rew, = Rew,. .

First we prove (14). One can see easily that each term of the development of the
minor defining d,(u, t) can be estimated by an expression of type

Cluln_1+n(1+.'..+m) le?].
In view of (13) and (21) it suffices to show that we can always choose z such that
(22) Re (z—2z*) =—|k|ot.
Introducing the notation k=(m+D)L—l, Le{n'—n+1, .., 1"}, Le{O,...,m},
we can choose

z=1z;+ 2""1(i(m+1)+...+((i—1)(m+1)+1)),4,,,+1_it+

i=l+

+(hm+D)+.. +E+D+E-D+...+G—DM+1)) py sy g+
-1

+ _21 O+ =D+ ... +E— DM+ D) 4y it

is k=1, and
-1

z=z4+ 3 (im+D)+...+(—Dm+D+1) iyt +

i=n'—n+1

Hhm+D+D+. 4+ D+E—D+ + =D+ D)+ 1)) -t +

4 3 (D) (= DO+ D+D) it

if k=0. Using (2) hence we obtain
-1

z=2" = (L= D+ D=F) 1oy =M +1) 3 poyoyt

’é ((ll_1)(m+1)_k)(ﬂn’+l—11_”n')t'—kﬂn't é—kﬂn’t =—lk|ﬂn’t
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if k=1, and °

0 r
z—z%* = (ll(m+])+1—k)ﬂn'+1—11t+(m+1)(. lzvlﬂn'+1—it)_#n'+1t =
. =t~ .

= (hn+D)+1 =)y 13-ty — Mo s D) =Kl 41 1 =Kty 4y = k|t 412
if k=0. In view of (9) hence (22) follows in both cases and (14) is proved.
Now we prove (15). Let us fix r€{0, ..., m} arbitrarily and let I¢ {N'—N+2, ...,
..., N’} be such that
(23) x+(l-It=1=x+11

Then D,(p, i, x—1) is defined by the determinant which differs from the determinant
(20) in the first row:

in case 1=x the element v, (x+kt)isreplaced by K,(u; x—1+kt)if Isk=N’,
all the other elements are replaced by 0;

in case t=x the element v,(x+kt) is replaced by, —K,(u,x—1t+kt) if
N'—N+1=k=]-1, all the other elements are replaced by 0.

One can see easily by induction on r that with some constants c,,,

K., x—t4+kf) = Z 5" 3 cppa(pp(x— 1+ ko) ens—ctid
p=1 aml

In view of (17) it suffices to show that for any fixed g€ {1, ...,n} and B€{0, ..., r},
if we replace in the first row of the determinant (20)

in case 7=x the element v, (x+kt) by kPes*—* %) if [<k=N’, all the other
element by 0; :

in case 1=x the element v, (x+kt) by —kPera™—*+¥ jf N’ _N+1=k=]—1,
all the other elements by O, g
then this new determinant can be estimated by

Clul™ |P(u, ee*~l,

One can see esaily that those terms of this determinant the factors of which choosen
from the first row and from the row corresponding to p=q and r=f are in case
7=x in one of the /th,...,,N-th columns, in case t=x in one of the
(N’—=N+1)-th, ..., (I—1)-th columns, pairwise eliminate each other. All the other

terms can be estimated by
Clulr—1+nl+ .. +m) gz,

it suffices to show that here one can always choose z such that
24) Re (z—z*) = —g|x—1l.
Let us consider first the case z=x. Putting

I= (m+l)ll—l2’ lle{la cees n’}a 126{09 LR m}’
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we can take

2=zt 3 (it D+ A =D+ D+ D) aroit +ay (=D + A= Dy +

i=l

§|-(ll(m+1)+...+l+(l—2§+... +(Lh =DM +D) 411, +

+,_l_j: (Gm+D)—1)+...+( =DM+ D)) 41—t

if g=n"+1-1;, and
w : .
i+ 2 ({m+D+. + (=D + D+ D)) sy i+, (x— 1+ +
i=l+1

'+(11(m+1)+...+(1+1)+(1—1)+.‘. A= 1)+ 1)) g+

1,-1

+ gl' (GMm+D)—D+...+E—DMm+1)) py -t

if g=n"+1—/,. Now using (2) and (23), in both cases

-1
r

2=2" 5 sy (=B D D)~ +1) 3 s .;<

S (I‘ln 11 #n)(x_r+(ll_1)(m+1)t)+”n (x T) = Uy (x T) =—Hy |x TI

whence (24) follows. .
Letusnow consider the case t=x. Putting /| — 1 =(m+1), —L,, L€ {n' —n+1, ...,0},
5,e{0, ..., m}, we can take o
-1

z=z{+ 2 (l(m+1)+ +((‘_])(m+1)+1))n+1 1t+ﬂq(x T)+1,uqt+

i=n'—n+1

+((ll(m‘+1)+1)+...+(l+1)+(l—1)+...+((ll—1)(m+1)+_1)),u,,,+1_,1t+

o )
+ ,21((i(m+1)+1)+-..+((i—1)(m+1)+2))u"f+1-,-t—unf+1t
. L= 1+ .
lf an +1—11, and
l—l
z=1 +i 2 (im+1)+.. +((l_1)(m+1)+1))l‘ ‘+1- ;1+#q(x T+(l—1)t)+
=n—-n+1 .

H(m+D)+ D)+ +1H0=D)+ . H =DM+ D)+ D) gy 2 +

+ Hzoﬂ (Gm+ D+ +... +G=1)(m +1)+2))y,!r+1_i,_,,;,;1,
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if g<=n’+1—1,. Using again (2) and (23), in both cases

h . r 0 r
222" = -, (3= THGMAD D)=+ D (D pesr-il)— P aat =

i=l+1

= (ﬂn’+1—ll_#n'+1)(x—7:+'(ll(m+1)+1) t)+,u(x—t) = U +1(X—T) = Y 44— 1]
whence (24) follows and (15) is proved.
Fmally we prove (16) One can see by induction on m that

|d(u, t)l = |I‘flm(m+1)/2 Ieur|(m+1)(m+2)/2

if n=1, and
Id(y, t)l = I#tlm(m+1)n/2 H le”l"—e“qtl("'*'l)z

1=p<g=n

if n=2. In case n=1 (16) hence follows at once because |d(yu,7)|=|P(y, t)].
In case n=2, taking into account that e%:*+#)=1 we obtain

|d(u, )] = |P(u, 1)] J] |1—eWa—npk|m+DE
Taking into account that rEpmaE
' Rez=—12= [l—¢| = 1—e-1R2,
we have for any 1,€[1/2, 1] |
1d (1) = 1P (u, 1|1 — e~y ) T |1 —elba=ppo|tmty,
' sp<q=n

Re(u,—p)>-1

If we choose C, sufficiently large, the condition (17) implies for all the pairs (p, q9)
in this product

[t (u,—p, )| = 21
and then, in view of the inequality
Rez = —1= |l —¢°| = e~ sin (Im 2)|
(16). reduces_to the following lemma:

Lemma. Given ay, ..., a, €R, k€N such that |a|=>2n for all k=1, ..., k,,
we have

sup mm Isin (ba,)| = sin (n/(12k,)).
1e=b=1 k
Indeed, for any k€{l;..., ko} the meésure of the set
{bel1/2,11: Isin (bay)| < sin (7/(12 ky))}

is less than or equal to (3kg)~! whence the lemma follows.
The proof of Proposition 1 (and also .of Theorem 1) is finished.
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Remark. In case n=2 Theorem 1 remains valid under the weaker condition
q:1€Lf, (G), too. Indeed, we proved in [7] that in case n=2 there exists a positive
constant R such that for all the eingenfunctions u of order m of the operator L with
some eigenvalue A,

(25 luf =y = CeRIRemlu pmi, -

Using (3), (5) and (25),

le*eoy = CQA+|uh)" (1 +[Re pDlull iy = C(L+ )" L+ Re ] ] L=z =
= C(L+[u))" ' +|Re py)e~RIReml [y =gy =
= C(L+[u)" (1 +(Re py)2e=RReml | uf g,y =
= C(L+[pu)"Hullwwy = CA+{u)"Hull Lok, -

Conjecture. The condition g, =0 in Theorem 1 can be replaced by the weaker
condition ¢, €L} (G) in case n=3, too.

2. Local uniform estimates. We shall prove the following result:

Theorem 2. Assume q,=0. Then to any m€{0,1, ...} and to any compact
intervals K, K,CG, K ,cCint K,, there exists a constant C such that for any eigen-
Jfunction u of order m of the operator L with some eigenvalue 1,

(26) , Il L=y = C el gz -
For |A| sufficiently large we have also
(27) " u(i)"L"’(Kl) = C” u(")llu(xz) (l = 1, veey Il—'l).

We need the following assertion:

Proposition 2. There exist continuous functions f,, F, such that for any eigen-
Junction u,, of order m of the operator L with some eigenvalue A=py",

, % filu, DU (x+kt) =
(28) k=N'—N

x+N't n
DiF,(u, t, x~1) 5 q,(D)uls=P()de (i=0,...,n—1)
s=1

r

M=

0 x4+ (N —N)t

whenever x+(N'—N)t€G and x+N’tcG. Furthermore, introducing the notation

29) Q) =exp((m+DGut-.. +u)t),
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to any fixed positive number A there exists a constant C such that

(0) fols —Q (s DI = CIQ (s, )] eReGw'+1=1),
B fwer(p, N—em D tQ (g, B)] = Clem D 1Q (p, )Rl =t - 1)
©2) Vi D] = CIO G, Hle~Wle,

(33) IDLF, (1, 1, x—1)| = Cluf+¢+D0=7 0 (y, f)|e—el*—
whenever

G4 . Reu=0, 0=t=A and |u=1.

First we deduce Theorem 2 from Proposition 2. As in Theorem 1, it suffices to
consider the case Re u=0. Let us fix a compact interval KCG such that

K,cint K and KcintK,
and put
= (m+1+ N1 dist (K5, 0K)

Let us fix B;>0 such that
(35) Rep =B, and 1 = R/2= |fo(u, | = 271Q(u, )|
and then B,, B,>0 such that

(36) lul = By = [l L=y = Bolpl' 4| g,
and
(7 =By Reu=B, and 1= R2= |foeal )] = 27 e @ DmriQy, ).

This is possible by (30), (31) and by Theorems 3, 4 in [6] (if we are interested only in
the estimate (26), it suffices to use Theorem 2 in [5] instead of the results of the paper
[6]). Now we distinguish three cases.

If |u|=B, then (26) follows from (3).

If |u]>B, and Re u=B, then we apply the formula (28) with any x€K; and
‘R[2=t=R; in view of (22), (33) and (35) we obtain

m n
MEI=C 3 D Gk S 0 g a0 e,
k=0 o

Using Theorem' 2 in [5], Theorem 1 from the preceeding section and (36),
i+ O+ 0= ey = Clul* =t Loy = ClulP [P 1xy = CluPxy;

therefore
pel=C % | (e + kD[ +C ] 1rixy-
k=0 :
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R
Applying the transformation f dt we obtain
RY2

lug ()] = Cllud |y
whence
Nl =y = CluP sy
and (26), (27) are proved.
If |u|>B, and Repu<B,, then we apply the formula (28) with any x€K,
and R/2=1=R (we put x in place of x+(m+1)t); using (32), (33) and (37) we
obtain

wei=c = D G+ k) +
N —-N-m—-1=k=N—-m—1
k#0
m n .
$C 2 3O g g g2 o
r=0s=

hence we can conclude (26), (27) similarly as in the preceeding case. The theorem is
proved.

Now we prove Proposition 2. Let us denote by S, (u, ?) the elementary symmetric
polynomial of order k of e, ..., e"»* with the main coefficient (—1)"* if
k€ {0, ..., n}; otherwise we put Si(u, t)=0. Define

fl‘c+N'—N(1ua t) = Sn—k(ﬂ’ t)
if m=0, and

fiz+N’—N(ﬂ: t) = %'Z %'ZSn—rl(iu’ t) Sn—rm(/-l: I)Sn—k+r1+...rm(ﬂa ’)

if mzl It was shown by JoO [4] that for any eigenfunction v,, of order m of the
operator Lyw=v" with some eigenvalue A=y",

N
2 Julu, Don(x+ki) = 0;
k=N"-N
hence for ic€{0,...,n—1}

(3%) - k=N2h:,'—Nf;‘(”’ HoW (x+ ki) = 0.

Using the notations of the preceeding section, let us define v,, by the formula (19).
Then we have (see also [5])

@ WO =0+ 3 [ Dk - 3 et @

(38) and (39) imply (28) (with obvious notations).
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The estimates (30), (31), (32) follow easily from the explicit expressions of the
functions f; . To prove (33) we note that the formula (38) can be obtained if we develop
the determinant

U (x+kt)

ekupt

40) (ki tY
L

(r=0,...,m, p=1,...,n, k=N—-N,...,N)

according to the first row and then we simplify the obtained formula by a suitable
expression R(u, t). Repeating the proof of the estimate (15) in Proposition 1, we
obtain (33) under the condition R(yu, t)70. But this condition can be omitted be-
cause for any fixed u=0, both sides of (33) are continuous in ¢ and the set

{teR: R(yu, H) = 0}
is discrete.
The proposition (and also the theorem) is proved.

Remark. In case n=2 the condition ql_O in Theorem 2 can be omitted.
Indeed, using (25) and (3),
fulimy = CemRIReml ]y, = Ce=RIReml(1+|Re wy ) |4l Lrxy = ClullLixy-

Conjecture. The condition q,=0 in Theorem 2 can be omitted in case n=3,
too,

Finally we note another version of Theorem 2 which is a little weaker than the
above conjecture:

Theorem 3. Assume gq, ..., q,€ L, (G) for some p€[l, =]. Then to any
compact intervals K,, K,CG, K ,Cint K,, there exists a constant C such that for any
eigenfunction u of order O of the operator L with some eigenvalue 2,

@1 Nl L=eey = Clulzray -
For [A| sufficiently large we have also
“2) |49 ey = Clu®ray (=1, ooy n—1).

Proof. We repeat the proof of Theorem 2 with the following changes:
In case |u|=B, and Re pu=B, we have now

Pl =C 2 |u?(x+k)+C _21 =" gl oao g™ Loy -

o —n=kz=n
k=0
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Using Theorem 2 in [5] and (36),

|l =" g Loy = Cluf = ol Loy = Clutl o] iy = Clug? oy

therefore
WP =C Z  |ufP (x+k)|+Clluf’) ey,
w—nsk=n
k#0
|uf? ()| = Clud|| Ly + Clluf | Loy »
and

lusPli=y = Clul| Loy = Cllud| Lo,y -

The case |u|>B, and Re p<B, is similar.
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