Local upper estimates for the eigenfunctions of a linear differential operator

V. KOMORNIK
Dedicated to Professor Károly Tandori on his 60th birthday

Let $G \subset \mathbf{R}$ be an arbitrary open interval, $n \in \mathbf{N}, q_{1}, \ldots, q_{\mathrm{n}} \in L_{\text {loc }}^{1}(G)$. arbitrary complex functions, and consider the differential operator

$$
L u=u^{(n)}+q_{1} u^{(n-1)}+\ldots+q_{n} u .
$$

We recall the definition of the eigenfunctions of higher order:
Given a complex number λ, the function $u: G \rightarrow \mathbf{C}, u \equiv 0$ is called an eigenfunction of order -1 of the operator L with the eigenvalue λ. A function $u: G \rightarrow \mathbf{C}$, $u \neq 0$ is called an eigenfunction of order $m(m=0,1, \ldots)$ of the operator L with the eigenvalue λ if the following two conditions are satisfied:
$-u$, together with its first $n-1$ derivatives is absolute continuous on every compact subinterval of G;

- there exists an eigenfunction u^{*} of order $m-1$ of the operator L with the eigenvalue λ such that for almost all $x \in G$

$$
\begin{equation*}
(L u)(x)=\lambda u(x)+u^{*}(x) . \tag{1}
\end{equation*}
$$

Let u be an eigenfunction of order m ($m=0,1, \ldots$) of the operator L with some eigenvalue λ. Let us index the n-th roots of λ such that

$$
\begin{equation*}
\operatorname{Re} \mu_{1} \geqq \ldots \geqq \operatorname{Re} \mu_{n} . \tag{2}
\end{equation*}
$$

It is known (see the references below) that to any compact subinterval K of G there exists a constant $G=G_{m}$ such that

$$
\begin{equation*}
\|u\|_{L^{\infty}(K)} \leqq C\left(1+\max _{1 \leqq p \leqq n}\left|\operatorname{Re} \mu_{p}\right|\right)\|u\|_{L^{\prime}(K)} \tag{3}
\end{equation*}
$$

and for $|\lambda|$ sufficiently large

$$
\begin{equation*}
\left\|u^{(i)}\right\|_{L^{\infty}(K)} \leqq C\left(1+\max _{1 \leqq p \leqq n}\left|\operatorname{Re} \mu_{p}\right|\right)\left\|u^{(i)}\right\|_{L^{1}(K)} \quad(i=1, \ldots, n-1) . \tag{4}
\end{equation*}
$$

Received August 22, 1983.

Furthermore, if $q_{1} ; \ldots, q_{n} \in L_{\text {loc }}^{p}(G)$ for some $p \in[1, \infty]$ then

$$
\begin{equation*}
\left\|u^{*}\right\|_{L^{P^{\prime}(K)}} \leqq C\left(1+\left|\mu_{1}\right|\right)^{n-1}\left(1+\max _{1 \leqq p \leqq n}\left|\operatorname{Re} \mu_{p}\right|\right)\|u\|_{L^{p^{\prime}(K)}} \tag{5}
\end{equation*}
$$

The constant C does not depend on the choice of u.
Remarks. (i) If $n \geqq 3$ then the quantity $\max _{1 \equiv p \leqq n}\left|\operatorname{Re} \mu_{p}\right|$ may be replaced by $\left|\mu_{1}\right|=|\lambda|^{1 / n}$: they are equivalent. One can see easily by counterexamples that the above estimates are the best possible.
(ii) The estimates (3), (4), (5) were proved in [3] for the case $n=2$ and $q_{1} \equiv 0$ (see also [2]), in [5] for the case $n \geqq 3$ and $q_{1} \equiv 0$; in the general case $q_{1} \neq 0$, using the results of the paper [5], they were proved in [6] for the case $n \geqq 3$ and in [7] for the case $n \leqq 2$.

The aim of this paper is to show that if we replace the compact interval K on the right side of the estimates (3), (4), (5) by another compact interval, strictly containing K, then the terms $\left(1+\max _{1 \leqq p \leqq n}\left|\operatorname{Re} \mu_{p}\right|\right)$ can be omitted. This phenomenon plays an important role in the local investigation of spectral expansions.

Remarks. (i) The first results of this type were proved by V. A. ll'in [1] and were used to prove a general local basis theorem. For the proof he used the following condition: putting

$$
\mu=\left\{\begin{array}{cl}
{\left[(-1)^{n / 2} \lambda\right]^{1 / 2}} & \text { if } n \text { is even, } \tag{6}\\
{[i \lambda]^{1 / n}} & \text { if } n \text { is odd and } \operatorname{Im} \lambda \leqq 0, \\
{[-i \lambda]^{1 / n}} & \text { if } n \text { odd and } \operatorname{Im} \lambda>0
\end{array}\right.
$$

where

$$
\left[r e^{i \varphi}\right]^{1 / n}=r^{1 / n} e^{i \varphi / n}, \quad-\frac{\pi}{2}<\varphi \leqq \frac{3 \pi}{2},
$$

the existence of a constant C was proved for any fixed band

$$
\begin{equation*}
|\operatorname{Im} \mu| \leqq C_{1} \quad\left(C_{1} \text { is constant }\right) . \tag{7}
\end{equation*}
$$

Also, the coefficients of the differential operator were assumed to be sufficiently smooth. As we shall see, the above conditions can be omitted.
(ii) In the proof of Theorem 2 of this paper we shall use a formula obtained in [5] for the coefficients of which very simple explicit formulas were found by by Joó [4]. This will play an important role in the proof.

In the sequel we shall use the following notations:

$$
\begin{equation*}
n^{\prime}=\left[\frac{n+1}{2}\right], N^{\prime}=n^{\prime}(m+1), N=n(m+1), \mu=\mu_{n}, \varrho=|\operatorname{Re} \mu| . \tag{8}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
\varrho=\min \left\{\left|\operatorname{Re} \mu_{p}\right|: p=1, \ldots, n\right\} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\varrho=\operatorname{Re} \mu \quad \text { if } n \text { is even. } \tag{10}
\end{equation*}
$$

Remark. Suppose n is odd and consider the operator

$$
\tilde{L} u=u^{(n)}+\tilde{q}_{1} u^{(n-1)}+\ldots+\tilde{q}_{n} u
$$

on the interval $\tilde{G}:=-G$ where $\tilde{q}_{s}(y):=(-1)^{s} q_{s}(-y)$. Then, for any eigenfunction u of order m of the operator L with some eigenvalue λ, the function $\tilde{u}(y):=u(-y)$ is an eigenfunction of order m of the operator \tilde{L} with the eigenvalue $-\lambda$. This correspondence makes us possible to consider always the case $\operatorname{Re} \mu \geqq 0$ i.e. $\varrho=\operatorname{Re} \mu$.

In the sequel $u=u_{m}$ will denote an arbitrary eigenfunction of order m of the operator L with some eigenvalue λ. Let us introduce recursively the continuous functions

$$
u_{j}: G \rightarrow \mathbf{C}, \quad u_{j}=L u_{j+1}-\lambda u_{j+1} \quad \text { a.e. on } G
$$

for $0 \leqq j \leqq m-1$. Then u_{j} is an eigenfunction of order j of the operator L with the eigenvalue λ and $u_{m-1}=u^{*}$.

1. Local "anti a priori" estimates. In this section we shall prove the following result:

Theorem 1. Assume $q_{1} \equiv 0$ and $q_{2}, \ldots, q_{n} \in L_{\mathrm{loc}}^{p}(G)$ for some $p \in[1, \infty]$. Then to any $m \in\{0,1, \ldots\}$ and to arbitrary compact intervals $K_{1}, K_{2} \subset G, K_{1} \subset$ int K_{2}, there exists a constant C such that for any eigenfunction u of order m of the operator L with some eigenvalue $\lambda=\mu^{n}$,

$$
\begin{equation*}
\left\|u^{*}\right\|_{L^{p^{\prime}\left(K_{1}\right)}} \leqq C(1+|\mu|)^{n-1}\|u\|_{L^{p^{\prime}}\left(K_{2}\right)} . \tag{11}
\end{equation*}
$$

The proof will be based on the following assertion:
Proposition 1. Given $0 \neq \mu \in \mathbf{C}$ and $t \in \mathbf{R}$ arbitrarily, there exist numbers $d(\mu, t), d_{k}(\mu, t)$ and continuous functions $D_{r}(\mu, t, \cdot)$ such that for any eigenfunctions u of order m of the operator L with the eigenvalue $\lambda=\mu^{n}$,

$$
\begin{equation*}
=\sum_{k=N^{\prime}-N+1}^{N^{\prime}} d_{k}(\mu, t) u_{m}(x+k t)+\sum_{r=0}^{m} \sum_{s=1}^{n} \int_{x+\left(N^{\prime}-N+1\right) t}^{x+N^{\prime t}} D_{r}(\mu, t, x-\tau) q_{s}(\tau) u_{m-r}^{(n-s)}(\tau) d \tau \tag{12}
\end{equation*}
$$

whenever $x+\left(N^{\prime}-N+1\right) t \in G$ and $x+N^{\prime} t \in G$. Furthermore, introducing the no-

tation

$$
\begin{equation*}
P(\mu, t)=(\mu t)^{n(1+\cdots+m)} \exp \left(\sum_{i=n^{\prime}=n+1}^{n^{\prime}}(i(m+1)+\ldots+((i-1)(m+1)+1)) \mu_{n^{\prime}+1-i} t\right), \tag{13}
\end{equation*}
$$

there exist positive constants C_{1}, C_{2} and to any fixed positive number A a positive constant C such that

$$
\begin{align*}
& \left|d_{k}(\mu, t)\right| \leqq C|\mu|^{n-1}|P(\mu, t)| e^{-|k| e^{t} \quad \text { for all } k} \text {, } \tag{14}\\
& \left|D_{r}(\mu, t, x-\tau)\right| \leqq C\left|\mu^{r(1-n)}\right| P(\mu, t) \mid e^{-e|x-\tau|} \tag{15}
\end{align*}
$$

for all $x+\left(N^{\prime}-N+1\right) t \leqq \tau \leqq x+N^{\prime} t$,

$$
\begin{equation*}
\sup _{t / \leq \leq t_{0} \leq t}\left|d\left(\mu, t_{0}\right)\right|>C_{1}\left|P\left(\mu, t_{0}\right)\right| \tag{16}
\end{equation*}
$$

whenever

$$
\begin{equation*}
\operatorname{Re} \mu \cong 0, \quad 0 \leqq t \leqq A \quad \text { and } \quad|\mu t| \geqq C_{2} . \tag{17}
\end{equation*}
$$

First we deduce Theorem 1 from Proposition 1. For $m=0$ the theorem is obvious because $u^{*} \equiv 0$. Assume $m \geqq 1$ and that the theorem is true for $m-1$. Let us fix a compact interval $K \subset G$ such that
and put

$$
\begin{gathered}
K_{1} \subset \text { int } K \quad \text { and } \quad K \subset \text { int } K_{2} \\
\varepsilon=\left(N^{\prime}\right)^{-1} \text { dist }\left(K_{1}, \partial K\right)
\end{gathered}
$$

It suffices to consider the case $\operatorname{Re} \mu \geqq 0$ in view of (10) and the Remark after (10). For $|\mu|$ sufficiently large we can fix a number $t \in[\varepsilon / 2, \varepsilon]$ by Proposition 1 such that

$$
\left|d_{k}(\mu, t)\right| \leqq C|\mu|^{n-1}|d(\mu, t)|, \quad\left|D_{r}(\mu, t, x-\tau)\right| \leqq C|\mu|^{(1-n)}|d(\mu, t)| .
$$

Fixing t by this manner, we have by (12) for any $x \in K_{1}$

$$
\left|u_{m-1}(x)\right| \leqq C|\mu|^{n-1} \sum_{k=N^{N}-N+1}^{N^{N}}\left|u_{m}(x+k t)\right|+C \sum_{r=0}^{m} \sum_{s=2}^{n}|\mu|^{r^{(1-n)} \|}\left\|q_{s}\right\|_{L p(K)}\left\|u_{m-r}^{(n-s)}\right\|_{L^{p}(K)}
$$

whence

$$
\begin{equation*}
\left\|u_{m-1}\right\|_{L^{p}\left(\kappa_{1}\right)} \leqq C|\mu|^{n-1}\left\|u_{m}\right\|_{L^{p^{\prime}}(K)}+C \sum_{r=0}^{m} \sum_{s=2}^{n}|\mu|^{r(1-n)}\left\|u_{m-r}^{(n-s)}\right\|_{L^{p}(K)} . \tag{18}
\end{equation*}
$$

(Here and in the sequel C denotes diverse constants which do not depend on the choice of u.) Being $|\mu|$ large, by Theorem 2 of [5] we have

$$
\left\|u_{m-r}^{(n-s)}\right\|_{L^{p}(K)} \leqq C|\mu|^{\mid n-s}\left\|u_{m-r}\right\|_{L^{p}(K)} \leqq C|\mu|^{n-2}\left\|u_{m-r}\right\| \|_{p^{p}(K)}
$$

On the other hand, using the inductive hypothesis, for $r \geqq 2$

$$
\left\|u_{m-r}\right\|_{L^{p^{\prime}}(\kappa)} \leqq C|\mu|^{(r-1)(n-1}\left\|u_{m-1}\right\|_{L^{p}\left(K_{2}\right)} .
$$

Finally, using again Theorem 2 of [5] we obtain

$$
\left\|u_{m-1}\right\|_{L^{P^{\prime}\left(K_{2}\right)}} \leqq C|\mu|^{n}\left\|u_{m}\right\|_{L^{P^{\prime}}\left(K_{2}\right)}
$$

Therefore we obtain from (18) the estimate

$$
\left\|u_{m-1}\right\|_{L^{p^{\prime}}\left(K_{1}\right)} \leqq C|\mu|^{n-1}\left\|u_{m}\right\|_{L^{p^{\prime}}\left(K_{2}\right)}
$$

i.e. (11) is proved for $|\mu|$ sufficiently large. But for $|\mu|$ bounded (11) follows immediately from (5) and the theorem is proved.

Let us now turn to the proof of Proposition 1. Putting

$$
K_{0}(\mu, y)=\sum_{p=1}^{n} \frac{\mu_{p}}{n \lambda} e^{\mu_{p} y}, \quad K_{r}(\mu, y)=\int_{0}^{y} K_{0}(\mu, \xi) K_{r-1}(\mu, y-\xi) d \xi \quad(r=1,2, \ldots)
$$

and for any fixed $x \in G$
$v_{m}(y)=u_{m}(y)+\sum_{r=0}^{m} \int_{x}^{y} K_{r}(\mu, y-\tau) \sum_{s=0}^{n} q_{s}(\tau) u_{m-r}^{(n-s)}(\tau) d \tau, \quad v_{m-1}(y)=v_{m}^{(n)}(y)-\lambda v_{m}(y)$,
it follows from the results of the paper [5] that v_{m} is an eigenfunction of order m of the operator $L_{0} v=v^{(n)}$ (defined on G) with the eigenvalue λ, and $v_{m-1}(x)=u_{m-1}(x)$.

Consequently the function $v_{m}(y)$ is a linear combination of the functions

$$
y \mapsto(r!)^{-1}\left(\mu_{p}(y-x)\right)^{r} e^{\mu_{p}(y-x)} \quad(r=0, \ldots, m, p=1, \ldots, n)
$$

therefore the determinant

$$
\begin{aligned}
& \ddots \quad\left|\begin{array}{cccc}
\ldots & v_{m}(x+k t) & \ldots & t^{n} u_{m-1}(x) \\
\vdots & & \vdots \\
\because & \frac{\left(k \mu_{p} t\right)^{r}}{r!} e^{k \mu_{\rho} t} & \ldots & C_{r}\left(\mu_{p} t\right)^{n} \\
\vdots & \vdots
\end{array}\right| \\
& \left(r=0, \ldots, m, \quad p=1, \ldots, n, \quad k=N^{\prime}-N+1, \ldots, N^{\prime}, \quad C_{r}=\left(1-\delta_{r 0}\right)\binom{n}{r}\right)
\end{aligned}
$$

vanishes whenever $x+\left(N^{\prime}-N+1\right) t \in G$ and $x+N^{\prime} t \in G$. Developing the determinant according to its first row, in view of (19) we obtain (with obvious notations) the formula (12).

Let us set for brevity

$$
\begin{align*}
& z_{1}^{*}=\sum_{i=1}^{n}(i(m+1)+\ldots+((i-1)(m+1)+1)) \mu_{n^{\prime}+1-i} t \\
& z_{2}^{*}=\sum_{i=n^{\prime}-n+1}^{0}(i(m+1)+\ldots+((i-1)(m+1)+1)) \mu_{n^{\prime}+1-i} t \tag{21}\\
& z^{*}=z_{1}^{*}+z_{2}^{*}
\end{align*}
$$

We shall also use the notation

$$
w_{1} \stackrel{r}{\leqq} w_{2} \Leftrightarrow \operatorname{Re} w_{1} \leqq \operatorname{Re} w_{2} .
$$

First we prove (14). One can see easily that each term of the development of the minor defining $d_{k}(\mu, t)$ can be estimated by an expression of type

$$
C|\mu|^{n-1+n(1+\ldots+m)}\left|e^{z}\right|
$$

In view of (13) and (21) it suffices to show that we can always choose z such that

$$
\begin{equation*}
\operatorname{Re}\left(z-z^{*}\right) \leqq-|k| \varrho t . \tag{22}
\end{equation*}
$$

Introducing the notation $k=(m+1) l_{1}-l_{2}, \quad l_{1} \in\left\{n^{\prime}-n+1, \ldots, n^{\prime}\right\}, \quad l_{2} \in\{0, \ldots, m\}$, we can choose

$$
\begin{gathered}
z=z_{2}^{*}+\sum_{i=l_{1}+1}^{n^{\prime}}(i(m+1)+\ldots+((i-1)(m+1)+1)) \mu_{n^{\prime}+1-i} t+ \\
+\left(l_{1}(m+1)+\ldots+(k+1)+(k-1)+\ldots+\left(l_{1}-1\right)(m+1)\right) \mu_{n^{\prime}+1-l_{1} t}+ \\
+\sum_{=1}^{t_{1}-1}((i(m+1)-1)+\ldots+(i-1)(m+1)) \mu_{n^{\prime}+1-i} t
\end{gathered}
$$

is $k \geqq 1$, and

$$
\begin{gathered}
z=z_{1}^{*}+\sum_{i=n^{\prime}-n+1}^{l_{1}-1}(i(m+1)+\ldots+((i-1)(m+1)+1)) \mu_{n^{\prime}+1-l_{1}} t+ \\
+\left(\left(l_{1}(m+1)+1\right)+\ldots+(k+1)+(k-1)+\ldots+\left(\left(l_{1}-1\right)(m+1)+1\right)\right) \mu_{n^{\prime}+1-l_{1}} t+ \\
\quad+\sum_{i=l_{1}+1}^{0}((i(m+1)+1)+\ldots+((i-1)(m+1)+2)) \mu_{n^{\prime}+1-i} t-\mu_{n^{\prime}+1} t
\end{gathered}
$$

if $k \leqq 0$. Using (2) hence we obtain

$$
\begin{gathered}
z-z^{*}=\left(\left(l_{1}-1\right)(m+1)-k\right) \mu_{n^{\prime}+1-l_{1}}-(m+1) \sum_{i=1}^{l_{1}-1} \mu_{n^{\prime}-1-i} t \stackrel{r}{\leqq} \\
\leqq\left(\left(l_{1}-1\right)(m+1)-k\right)\left(\mu_{n^{\prime}+1-l_{1}}-\mu_{n^{\prime}}\right) t-k \mu_{n^{\prime}} t \stackrel{r}{\leqq}-k \mu_{n^{\prime}} t=-|k| \mu_{n^{\prime}} t
\end{gathered}
$$

if $k \geqq 1$, and

$$
\begin{aligned}
& z-z^{*}=\left(l_{1}(m+1)+1-k\right) \mu_{n^{\prime}+1-l_{1}} t+(m+1)\left(\sum_{i=l_{1}-1}^{0} \mu_{n^{\prime}+1-i} t\right)-\mu_{n^{\prime}+1} t \stackrel{r}{\leqq} \\
& \stackrel{r}{\leqq}\left(l_{1}(m+1)+1-k\right)\left(\mu_{n^{\prime}+1-l_{1}}-\mu_{n^{\prime}+1}\right) t-k \mu_{n^{\prime}+1} t \stackrel{r}{\leqq}-k \mu_{n^{\prime}+1} t=|k| \mu_{n^{\prime}+1} t
\end{aligned}
$$

if $k \leqq 0$. In view of (9) hence (22) follows in both cases and (14) is proved.
Now we prove (15). Let us fix $r \in\{0, \ldots, m\}$ arbitrarily and let $l \in\left\{N^{\prime}-N+2, \ldots\right.$, $\left.\ldots, N^{\prime}\right\}$ be such that

$$
\begin{equation*}
x+(l-1) t \leqq \tau \leqq x+l t \tag{23}
\end{equation*}
$$

Then $D_{r}(\mu, t, x-\tau)$ is defined by the determinant which differs from the determinant (20) in the first row:
in case $\tau \geqq x$ the element $v_{m}(x+k t)$ is replaced by $K_{r}(\mu ; x-\tau+k t)$ if $l \leqq k \leqq N^{\prime}$, all the other elements are replaced by 0 ;
in case $\tau \leqq x$ the element $v_{m}(x+k t)$ is replaced by, $-K_{r}(\mu, x-\tau+k t)$ if $N^{\prime}-N+1 \leqq k \leqq l-1$, all the other elements are replaced by 0 .

One can see easily by induction on r that with some constants $c_{\text {rpa }}$

$$
K_{r}(\mu, x-\tau+k t)=\sum_{p=1}^{n} \mu_{p}^{1-r n-n} \sum_{\alpha=0}^{r} c_{r p x}\left(\mu_{p}(x-\tau+k t)\right)^{\alpha} e^{\mu_{p}(x-\tau+k t)} .
$$

In view of (17) it suffices to show that for any fixed $q \in\{1, \ldots, n\}$ and $\beta \in\{0, \ldots, r\}$, if we replace in the first row of the determinant (20)
in case $\tau \geqq x$ the element $v_{m}(x+k t)$ by $k^{\beta} e^{\mu_{q}(x-\tau+k t)}$ if $l \leqq k \leqq N^{\prime}$, all the other element by 0 ;
in case $\tau \leqq x$ the element $v_{m}(x+k t)$ by $-k^{\beta} e^{\mu_{q}(x-\tau+k t)}$ if $N^{\prime}-N+1 \leqq k \leqq l-1$, all the other elements by 0 , then this new determinant can be estimated by

$$
C|\mu|^{n-1}|P(\mu, t)| e^{-e^{|x-\tau|}}
$$

One can see esaily that those terms of this determinant the factors of which choosen from the first row and from the row corresponding to $p=q$ and $r=\beta$ are in case $\tau \geqq x$ in one of the l-th, \ldots, N^{\prime}-th columns, in case $\tau \leqq x$ in one of the $\left(N^{\prime}-N+1\right)$-th, $\ldots,(l-1)$-th columns, pairwise eliminate each other. All the other terms can be estimated by

$$
C|\mu|^{n-1+n(1+\ldots+m)}\left|e^{z}\right| ;
$$

it suffices to show that here one can always choose z such that

$$
\begin{equation*}
\operatorname{Re}\left(z-z^{*}\right) \leqq-\varrho|x-\tau| . \tag{24}
\end{equation*}
$$

Let us consider first the case $\tau \geqq x$. Putting

$$
l=(m+1) l_{1}-l_{2}, l_{1} \in\left\{1, \ldots, n^{\prime}\right\}, \quad l_{2} \in\{0, \ldots, m\}
$$

we can take

$$
\begin{gathered}
z=z_{2}^{*}+\sum_{i=l_{1}+1}^{n^{\prime}}(i(m+1)+\ldots+((i-1)(m+1)+1)) \mu_{n^{\prime}+1-i} t+\mu_{q}(x-\tau)+(l-1) \mu_{q} t+ \\
+\left(l_{1}(m+1)+\ldots+l+(l-2)+\ldots+\left(l_{1}-1\right)(m+1)\right) \mu_{n^{\prime}+1-l_{1}} t+ \\
+\sum_{i=1}^{l_{1}-1}((i(m+1)-1)+\ldots+(i-1)(m+1)) \mu_{n^{\prime}+1-i} t
\end{gathered}
$$

if $q \leqq n^{\prime}+1-l_{1}$, and

$$
\begin{aligned}
z= & z_{2}^{*}+\sum_{i=l_{1}+1}^{n^{\prime}}(i(m+1)+\ldots+((i-1)(m+1)+1)) \mu_{n^{\prime}+1-i} t+\mu_{q}(x-\tau+l t)+ \\
& +\left(l_{1}(m+1)+\ldots+(l+1)+(l-1)+\ldots+\left(l_{1}-1\right)(m+1)\right) \mu_{n^{\prime}+1-l_{1}} t+ \\
& +\sum_{i=1}^{l_{1}-1}((i(m+1)-1)+\ldots+(i-1)(m+1)) \mu_{n^{\prime}+1-i} t
\end{aligned}
$$

if $q>n^{\prime}+1-l_{1}$. Now using (2) and (23), in both cases

$$
\begin{gathered}
z-z^{*} \stackrel{r}{\leqq} \mu_{n^{\prime}+1-l_{1}}\left(x-\tau+\left(l_{1}-1\right)(m+1) t\right)-(m+1) \sum_{i=1}^{l_{1}-1} \mu_{n^{\prime}+1-i t} \stackrel{r}{\leqq} \\
\stackrel{r}{\leqq}\left(\mu_{n^{\prime}+1-l_{1}}-\mu_{n^{\prime}}\right)\left(x-\tau+\left(l_{1}-1\right)(m+1) t\right)+\mu_{n^{\prime}}(x-\tau) \leqq \mu_{n^{\prime}}(x-\tau)=-\mu_{n^{\prime}}|x-\tau|
\end{gathered}
$$

whence (24) follows.
Let us now consider the case $\tau \leqq x$. Putting $l-1=(m+1) l_{1}-l_{2}, l_{1} \in\left\{n^{\prime}-n+1, \ldots, 0\right\}$, $l_{2} \in\{0, \ldots, m\}$, we can take

$$
\begin{aligned}
z & \left.=z_{1}^{*}+\sum_{i=n^{\prime}-n+1}^{l_{1}-1}(i(m+1)+\ldots+((i-1)(m+1)+1))\right)_{n^{\prime}+1-1} t+\mu_{q}(x-\tau)+l \mu_{q} t+ \\
+ & \left(\left(l_{1}(m+1)+1\right)+\ldots+(l+1)+(l-1)+\ldots+\left(\left(l_{1}-1\right)(m+1)+1\right)\right) \mu_{n^{\prime}+1-l_{1}} t+ \\
& \quad+\sum_{i=i_{1}+1}^{0}((i(m+1)+1)+\ldots+((i-1)(m+1)+2)) \mu_{n^{\prime}+1-i} t-\mu_{n^{\prime}+1} t
\end{aligned}
$$

if $q \geqq n^{\prime}+1-l_{1}$, and

$$
\begin{aligned}
z=z_{1}^{*} & +\sum_{i=n^{\prime}-n+1}^{l_{1}-1}(i(m+1)+\ldots+((i-1)(m+1)+1)) \mu_{+1-i} t+\mu_{q}(x-\tau+(l-1) t)+ \\
+ & \left(\left(l_{1}(m+1)+1\right)+\ldots+l+(l-2)+\ldots+\left(\left(l_{1}-1\right)(m+1)+1\right)\right) \mu_{n^{\prime}+1-l_{1}} t+ \\
& +\sum_{i=l_{1}+1}^{0}((i(m+1)+1)+\ldots+((i-1)(m+1)+2)) \mu_{n^{\prime}+1-i} t-\mu_{n^{\prime}+1} t
\end{aligned}
$$

if $q<n^{\prime}+1-l_{1}$. Using again (2) and (23), in both cases

$$
\begin{aligned}
& z-z^{*} \stackrel{r}{\leqq} \mu_{n^{\prime}+1-l_{1}}\left(x-\tau+\left(l_{1}(m+1)+1\right) t\right)-(m+1)\left(\sum_{i=l_{1}+1}^{0} \mu_{n^{\prime}+1-i} t\right)-\mu_{n^{\prime}+1} t \leqq \\
& \leqq\left(\mu_{n^{\prime}+1-l_{1}}-\mu_{n^{\prime}+1}\right)\left(x-\tau+\left(l_{1}(m+1)+1\right) t\right)+\mu(x-\tau) \stackrel{r}{\leqq} \mu_{n^{\prime}+1}(x-\tau)=\mu_{n^{\prime}+1}|x-\tau|
\end{aligned}
$$

whence (24) follows and (15) is proved.
Finally we prove (16). One can see by induction on m that
if $n=1$, and

$$
|d(\mu, t)|=|\mu t|^{m(m+1) / 2}\left|e^{\mu t}\right|^{(m+1)(m+2) / 2}
$$

$$
|d(\mu, t)|=|\mu t|^{m(n+1) n / 2} \prod_{1 \leqq p<q \leqq n}\left|e^{\mu_{p} t}-e^{\mu_{q} t}\right|^{(m+1)^{2}}
$$

if $n \geqq 2$. In case $n=1$ (16) hence follows at once because $|d(\mu, t)|=|P(\mu, t)|$. In case $n \geqq 2$, taking into account that $e^{\left(\mu_{1}+\ldots+\mu_{n}\right) t}=1$, we obtain

$$
|d(\mu, t)|=|P(\mu, t)| \prod_{1 \leqq p<q \leqq n} \mid 1-e^{\left(\mu_{q}-\mu_{p}\right) t \mid(m+1)^{2}}
$$

Taking into account that

$$
\operatorname{Re} z \leqq-1 / 2 \Rightarrow\left|1-e^{z}\right| \geqq 1-e^{-1 / 2}
$$

we have for any $t_{0} \in[t / 2, t]$

$$
\left|d\left(\mu, t_{0}\right)\right| \geqq\left|P\left(\mu, t_{0}\right)\right|\left(1-e^{-1 / 2}\right)^{n(n-1) / 2} \prod_{\substack{1 \leq p<q \leq n \\ \operatorname{Re}\left(\mu_{q}-\mu_{p}\right) r>-1}} \mid 1-e^{\left(\mu_{q}-\mu_{p}\right) t_{0} \mid(m+1)^{2}} .
$$

If we choose C_{2} sufficiently large, the condition (17) implies for all the pairs (p, q) in this product

$$
\left|\operatorname{Im}\left(\mu_{q}-\mu_{p}\right) t\right|>2 \pi
$$

and then, in view of the inequality

$$
\operatorname{Re} z>-1 \Rightarrow\left|1-e^{z}\right| \geqq e^{-1}|\sin (\operatorname{Im} z)|
$$

(16) reduces to the following lemma:

Lemma. Given $a_{1}, \ldots, a_{k_{0}} \in \mathbf{R}, k_{0} \in \mathbf{N}$ such that $\left|a_{k}\right|>2 \pi$ for all $k=1, \ldots, k_{0}$; we have

$$
\sup _{1 / 2 \leqq b \leqq 1} \min _{k=1}^{k_{0}}\left|\sin \left(b a_{k}\right)\right| \geqq \sin \left(\pi /\left(12 k_{0}\right)\right) .
$$

Indeed, for any $k \in\left\{1 ; \ldots, k_{0}\right\}$ the measure of the set

$$
\left\{b \in[1 / 2,1]:\left|\sin \left(b a_{k}\right)\right|<\sin \left(\pi /\left(12 k_{0}\right)\right)\right\}
$$

is less than or equal to $\left(3 k_{0}\right)^{-1}$ whence the lemma follows.
The proof of Proposition 1 (and also of Theorem 1) is finished.

Remark. In case $n \leqq 2$ Theorem 1 remains valid under the weaker condition $q_{1} \in L_{\mathrm{loc}}^{p}(G)$, too. Indeed, we proved in [7] that in case $n \leqq 2$ there exists a positive constant R such that for all the eingenfunctions u of order m of the operator L with some eigenvalue λ,

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(K_{1}\right)} \leqq C e^{-R\left|\operatorname{Re} \mu_{1}\right|}\|u\|_{L^{\infty}\left(K_{2}\right)} \tag{25}
\end{equation*}
$$

Using (3), (5) and (25),

$$
\begin{aligned}
&\left\|u^{*}\right\|_{L^{p^{\prime}\left(K_{1}\right)}} \leqq C(1+|\mu|)^{n-1}\left(1+\left|\operatorname{Re} \mu_{1}\right|\right)\|u\|_{L^{p^{\prime}}\left(K_{1}\right)} \leqq C(1+|\mu|)^{n-1}\left(1+\left|\operatorname{Re} \mu_{1}\right|\right)\|u\|_{L^{\infty}\left(K_{1}\right)} \leqq \\
& \leqq C(1+|\mu|)^{n-1}\left(1+\left|\operatorname{Re} \mu_{1}\right|\right) e^{-R\left|\operatorname{Re} \mu_{1}\right|}\|u\|_{L^{\infty}\left(K_{2}\right)} \leqq \\
& \leqq C(1+|\mu|)^{n-1}\left(1+\left|\operatorname{Re} \mu_{1}\right|\right)^{2} e^{-R\left|\operatorname{Re} \mu_{1}\right|}\|u\|_{L_{1}\left(K_{2}\right)} \leqq \\
& \leqq C(1+|\mu|)^{n-1}\|u\|_{L^{1}\left(K_{2}\right)} \leqq C(1+|\mu|)^{n-1}\|u\|_{L^{p^{\prime}\left(K_{8}\right)}} .
\end{aligned}
$$

Conjecture. The condition $q_{1} \equiv 0$ in Theorem 1 can be replaced by the weaker condition $q_{1} \in L_{\text {loc }}^{p}(G)$ in case $n \geqq 3$, too.
2. Local uniform estimates. We shall prove the following result:

Theorem 2. Assume $q_{1} \equiv 0$. Then to any $m \in\{0,1, \ldots\}$ and to any compact intervals $K_{1}, K_{2} \subset G, K_{1} \subset i n t K_{2}$, there exists' a constant C such that for any eigenfunction u of order m of the operator L with some eigenvalue λ,

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(K_{1}\right)} \leqq C\|u\|_{L^{1}\left(K_{7}\right)} \tag{26}
\end{equation*}
$$

For $|\lambda|$ sufficiently large we have also

$$
\begin{equation*}
\left\|u^{(i)}\right\|_{L^{\infty}\left(K_{1}\right)} \leqq C\left\|u^{(i)}\right\|_{L^{1}\left(K_{2}\right)} \quad(i=1, \ldots, n-1) \tag{27}
\end{equation*}
$$

We need the following assertion:
Proposition 2. There exist continuous functions f_{k}, F_{r} such that for any eigenfunction u_{m} of order m of the operator L with some eigenvalue $\lambda=\mu^{n}$,

$$
\begin{gather*}
\sum_{k=N^{\prime}-N}^{N^{\prime}} f_{k}(\mu, t) u_{m}^{(i)}(x+k t)= \tag{28}\\
=\sum_{r=0}^{m} \int_{x+\left(N^{\prime}-N\right) t}^{x+N^{\prime} t} D_{3}^{i} F_{r}(\mu, t, x-\tau) \sum_{s=1}^{n} q_{s}(\tau) u_{m-r}^{(n-s)}(\tau) d \tau \quad(i=0, \ldots, n-1)
\end{gather*}
$$

whenever $x+\left(N^{\prime}-N\right) t \in G$ and $x+N^{\prime} t \in G$. Furthermore, introducing the notation

$$
\begin{equation*}
Q(\mu, t)=\exp \left((m+1)\left(\mu_{i}+\ldots+\mu_{n}\right) t\right) \tag{29}
\end{equation*}
$$

to any fixed positive number A there exists a constant C such that

$$
\begin{gather*}
\left|f_{0}(\mu, t)-Q(\mu, t)\right| \leqq C|Q(\mu, t)| e^{\mathrm{Re}\left(\mu_{n^{\prime}+1}-\mu_{n}\right) \mathrm{t}}, \tag{30}\\
\left|f_{m+1}(\mu, t)-e^{-(m+1) \mu_{n^{\prime}} t} Q(\mu, t)\right| \leqq C\left|e^{-(m+1) \mu_{n^{\prime}} t} Q(\mu, t)\right| e^{\operatorname{Re}\left(\mu_{\left.n^{\prime}-\mu_{n^{\prime}-1}\right) t}\right.} \tag{31}\\
\left|f_{k}(\mu, t)\right| \leqq C|Q(\mu, t)| e^{-|k| e t} \tag{32}\\
\left|D_{3}^{i} F_{r}(\mu, t, x-\tau)\right| \leqq C|\mu|^{i+(r+1)(1-n)}|Q(\mu, t)| e^{-e|x-\tau|} \tag{33}
\end{gather*}
$$

whenever

$$
\begin{equation*}
\operatorname{Re} \mu \geqq 0, \quad 0 \leqq t \leqq A \quad \text { and } \quad|\mu| \geqq 1 . \tag{34}
\end{equation*}
$$

First we deduce Theorem 2 from Proposition 2. As in Theorem 1, it suffices to consider the case $\operatorname{Re} \mu \geqq 0$. Let us fix a compact interval $K \subset G$ such that

$$
K_{1} \subset \operatorname{int} K \quad \text { and } \quad K \subset \operatorname{int} K_{2}
$$

and put

$$
R=\left(m+1+N^{\prime}\right)^{-1} \operatorname{dist}\left(K_{1}, \partial K\right)
$$

Let us fix $B_{1}>0$ such that

$$
\begin{equation*}
\operatorname{Re} \mu \geqq B_{1} \text { and } t \geqq R / 2 \Rightarrow\left|f_{0}(\mu, t)\right| \geqq 2^{-1}|Q(\mu, t)| \tag{35}
\end{equation*}
$$

and then $B_{2}, B_{3}>0$ such that

$$
\begin{equation*}
|\mu| \geqq B_{2} \Rightarrow\|u\|_{L^{\infty}\left(K_{2}\right)} \leqq B_{3}|\mu|^{1-i}\left\|u^{(i)}\right\|_{L^{1}\left(K_{z}\right)} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
|\mu| \geqq B_{2}, \operatorname{Re} \mu \leqq B_{1} \quad \text { and } \quad t \geqq R / 2 \Rightarrow\left|f_{m+1}(\mu, t)\right| \geqq 2^{-1}\left|e^{-(m+1) \mu_{n} \cdot t} Q(\mu, t)\right| \tag{37}
\end{equation*}
$$

This is possible by (30), (31) and by Theorems 3, 4 in [6] (if we are interested only in the estimate (26), it suffices to use Theorem 2 in [5] instead of the results of the paper [6]). Now we distinguish three cases.

If $|\mu| \leqq B_{2}$ then (26) follows from (3).
If $|\mu|>B_{2}$ and $\operatorname{Re} \mu \geqq B_{1}$ then we apply the formula (28) with any $x \in K_{1}$ and $R / 2 \leqq t \leqq R$; in view of (22), (33) and (35) we obtain

$$
\left|u_{m}^{(i)}(x)\right| \leqq C \sum_{\substack{N^{\prime}-N \leqq k \leqq N^{\prime} \\ k \neq 0}}\left|u_{m}^{(i)}(x+k t)\right|+C \sum_{r=0}^{m} \sum_{s=2}^{n}|\mu|^{i+(r+1)(1-n)}\left\|q_{s}\right\|_{L^{1}(K)}\left\|u_{m-r}^{(n-s)}\right\|_{L^{\infty}(K)}
$$

Using Theorem 2 in [5], Theorem 1 from the preceeding section and (36),
$|\mu|^{i+(r+1)(1-n)}\left\|u_{m-r}^{(n-s)}\right\|_{L^{\infty}(K)} \leqq C|\mu|^{i+1-s}\left\|u_{m}\right\|_{L^{\infty}\left(K_{z}\right)} \leqq C|\mu|^{2-s}\left\|u_{m}^{(i)}\right\|_{L^{1}\left(K_{2}\right)} \leqq C\left\|u_{m}^{(i)}\right\|_{L^{1}\left(K_{\S}\right)} ;$ therefore

$$
\left|u_{m}^{(i)}(x)\right| \leqq C \sum_{\substack{N^{\prime}-N \leq k \leqq N^{\prime} \\ k \neq 0}}\left|u_{m}^{(i)}(x+k t)\right|+C\left\|u_{m}^{(i)}\right\|_{L^{1}\left(K_{2}\right)} .
$$

Applying the transformation $\int_{R / 2}^{R} d t$ we obtain

$$
\left|u_{m}^{(i)}(x)\right| \leqq C\left\|u_{m}^{(i)}\right\|_{L^{1}\left(K_{z}\right)}
$$

whence

$$
\left\|u_{m}^{(i)}\right\|_{L^{\infty}\left(K_{1}\right)} \leqq C\left\|u_{m}^{(i)}\right\|_{L^{1}\left(K_{2}\right)}
$$

and (26), (27) are proved.
If $|\mu|>B_{2}$ and $\operatorname{Re} \mu<B_{1}$, then we apply the formula (28) with any $x \in K_{1}$ and $R / 2 \leqq t \leqq R$ (we put x in place of $x+(m+1) t$); using (32), (33) and (37) we obtain

$$
\begin{aligned}
& \left|u_{m}^{(i)}(x)\right| \leqq C \sum_{N^{\prime}-N-m-1 \leq k \leqq N^{\prime}-m-1}^{k \neq 0} \mid \\
& +C \sum_{r=0}^{m} \sum_{s=2}^{n}|\mu|^{i+(r+1)(1-n)}\left\|q_{s}\right\|_{L^{1}(K)}\left\|u_{m-r}^{(n-s)}\right\|_{L_{\infty}(K)}
\end{aligned}
$$

hence we can conclude (26), (27) similarly as in the preceeding case. The theorem is proved.

Now we prove Proposition 2. Let us denote by $S_{k}(\mu, t)$ the elementary symmetric polynomial of order k of $e^{\mu_{1} t}, \ldots, e^{\mu_{n} t}$ with the main coefficient $(-1)^{n-k}$ if $k \in\{0, \ldots, n\}$; otherwise we put $S_{k}(\mu, t)=0$. Define
if $m=0$, and

$$
f_{k+N^{\prime}-N}(\mu, t)=\sum_{r_{1} \in \mathbf{Z}} \ldots \sum_{r_{m} \in \mathbb{Z}} S_{n-r_{1}}(\mu, t) \ldots S_{n-r_{m}}(\mu, t) S_{n-k+r_{1}+\ldots r_{m}}(\mu, t)
$$

if $m \geqq 1$. It was shown by JOó [4] that for any eigenfunction v_{m} of order m of the operator $L_{0} v=v^{(n)}$ with some eigenvalue $\lambda=\mu^{n}$,

$$
\sum_{k=N^{\prime}-N}^{N^{\prime}} f_{k}(\mu, t) v_{m}(x+k t) \equiv 0
$$

hence for $i \in\{0, \ldots, n-1\}$

$$
\begin{equation*}
\sum_{k=N^{\prime}-N}^{N^{\prime}} f_{k}(\mu, t) v_{m}^{(i)}(x+k t) \equiv 0 \tag{38}
\end{equation*}
$$

Using the notations of the preceeding section, let us define v_{m} by the formula (19). Then we have (see also [5])

$$
\begin{equation*}
v_{m}^{(i)}(y)=u_{m}^{(i)}(y)+\sum_{r=0}^{m} \int_{x}^{y} D_{2}^{i} K_{r}(\mu, y-\tau) \sum_{s=1}^{n} q_{s}(\tau) u_{m-r}^{(n-s)}(\tau) d \tau \tag{39}
\end{equation*}
$$

(38) and (39) imply (28) (with obvious notations).

The estimates (30), (31), (32) follow easily from the explicit expressions of the functions f_{k}. To prove (33) we note that the formula (38) can be obtained if we develop the determinant

$$
\begin{align*}
& \left|\begin{array}{ccc}
\ldots & v_{m}(x+k t) & \ldots \\
\vdots \\
& \frac{\left(k \mu_{p} t\right)^{r}}{r!} e^{k \mu_{p} t} & \ldots \\
\vdots
\end{array}\right| \tag{40}\\
& \left(r=0, \ldots, m, \quad p=1, \ldots, n, \quad k=N^{\prime}-N, \ldots, N^{\prime}\right)
\end{align*}
$$

according to the first row and then we simplify the obtained formula by a suitable expression $R(\mu, t)$. Repeating the proof of the estimate (15) in Proposition 1, we obtain (33) under the condition $R(\mu, t) \neq 0$. But this condition can be omitted because for any fixed $\mu \neq 0$, both sides of (33) are continuous in t and the set

$$
\{t \in \mathbf{R}: R(\mu, t)=0\}
$$

is discrete.
The proposition (and also the theorem) is proved.
Remark. In case $n \leqq 2$ the condition $q_{1} \equiv 0$ in Theorem 2 can be omitted. Indeed, using (25) and (3),

$$
\|u\|_{L^{\infty}\left(K_{1}\right)} \leqq C e^{-R\left|\operatorname{Re} \mu_{1}\right|}\|u\|_{L^{\infty}\left(K_{2}\right)} \leqq C e^{-R\left|\operatorname{Re} \mu_{1}\right|}\left(1+\left|\operatorname{Re} \mu_{1}\right|\right)\|u\|_{L^{1}\left(K_{2}\right)} \leqq C\|u\|_{L^{1}\left(K_{2}\right)}
$$

Conjecture. The condition $q_{1} \equiv 0$ in Theorem 2 can be omitted in case $n \geqq 3$, too.

Finally we note another version of Theorem 2 which is a little weaker than the above conjecture:

Theorem 3. Assume $q_{1}, \ldots, q_{n} \in L_{\text {loc }}^{p}(G)$ for some $p \in[1, \infty]$. Then to any compact intervals $K_{1}, K_{2} \subset G, K_{1} \subset$ int K_{2}, there exists a constant C such that for any eigenfunction u of order 0 of the operator L with some eigenvalue λ,

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(K_{1}\right)} \leqq C\|u\|_{L^{p}\left(K_{\mathbf{2}}\right)} . \tag{41}
\end{equation*}
$$

For $|\lambda|$ sufficiently large we have also

$$
\begin{equation*}
\left\|u^{(i)}\right\|_{L^{\infty}\left(K_{1}\right)} \leqq C\left\|u^{(i)}\right\|_{L^{p^{\prime}}\left(K_{2}\right)} \quad(i=1, \ldots, n-1) \tag{42}
\end{equation*}
$$

Proof. We repeat the proof of Theorem 2 with the following changes:
In case $|\mu|>B_{2}$ and $\operatorname{Re} \mu \geqq B_{1}$ we have now

$$
\left|u_{0}^{(i)}(x)\right| \leqq C \sum_{\substack{n^{\prime}-n \leq k \leq n^{\prime} \\ k \neq 0}}\left|u_{0}^{(i)}(x+k t)\right|+C \sum_{s=1}^{n}|\mu|^{i+1-n}\left\|q_{s}\right\|_{L^{p}(K)}\left\|u_{0}^{(n-s)}\right\|_{L^{P^{\prime}}(K)}
$$

Using Theorem 2 in [5] and (36),

$$
|\mu|^{i+1-n}\left\|u_{0}^{(n-s)}\right\|_{L^{p^{\prime}(K)}} \leqq C|\mu|^{i+1-s}\left\|u_{0}\right\|_{L^{p^{\prime}(K)}} \leqq C|\mu|^{i}\left\|u_{0}\right\|_{L^{p^{\prime}(K)}} \leqq C\left\|u_{0}^{(i)}\right\|_{L^{P^{\prime}(K)}}
$$

therefore

$$
\begin{gathered}
\left|u_{0}^{(i)}(x)\right| \leqq C \sum_{\substack{n^{\prime}-n \equiv \leqslant \leq n^{\prime} \\
k \neq 0}}\left|u_{0}^{(i)}(x+k t)\right|+C\left\|u_{0}^{(i)}\right\|_{L^{p^{\prime}}(K)}, \\
\left|u_{0}^{(i)}(x)\right| \leqq C\left\|u_{0}^{(i)}\right\|_{L^{1}(K)}+C\left\|u_{0}^{(i)}\right\|_{L^{p^{\prime}}(K)},
\end{gathered}
$$

and

$$
\left\|u_{0}^{(i)}\right\|_{L^{\infty}\left(K_{1}\right)} \leqq C\left\|u_{0}^{(i)}\right\|_{L^{p}\left(K^{\prime}\right)} \leqq C\left\|u_{0}^{(i)}\right\|_{L^{p^{\prime}\left(K_{2}\right)}} .
$$

The case $|\mu|>B_{2}$ and $\operatorname{Re} \mu<B_{1}$ is similar.

References

[1] В. А. Ильин, Необходимые и достаточные условия базусности и равносходимости с тригонометрическим рядом спектральных разложений $1-2$, Дифференциальные уравнения, 16 (1980), 771-794, 980-1009.
[2] В. А. Ильин и И. Йо, Равномерная оценка собственных функций и оценка свержу числа собственных значений оператора Штурма—Лиувилля с потенциалом из класса L^{p}, Дифференциальные уровнения, 15 (1979), 1164-1174.
[3] I. Joó, Upper estimates for the eigenfunctions of the Schrödinger operator. Acta Sci. Math., 44 (1982), 87—93.
[4] I. Joó, Remarks to a paper of V. Komornik, Acta Sci. Math., 47 (1984), 201-204.
[5] V. Komornik, Upper estimates for the eigenfunctions of higher order of a linear differential operator, Acta Sci. Math., 45 (1983), 261-271.
[6] V. Komornik, Some new estimates for the eigenfunctions of higher order of a linear differential operator, Acta Math. Hungar., to appear.
[7] V. Komornik, On the eigenfunctions of the first- and second-order differential operators, Studia Math. Hungar., to appear.

