Local upper estimates for the eigenfunctions of a linear differential operator

V. KOMORNIK

Dedicated to Professor Károly Tandori on his 60th birthday

Let $G \subset \mathbb{R}$ be an arbitrary open interval, $n \in \mathbb{N}$, $q_1, \ldots, q_n \in L^1_{loc}(G)$ arbitrary complex functions, and consider the differential operator

$$Lu = u^{(n)} + q_1 u^{(n-1)} + \dots + q_n u.$$

We recall the definition of the eigenfunctions of higher order:

Given a complex number λ , the function $u: G \rightarrow \mathbb{C}$, $u \equiv 0$ is called an eigenfunction of order -1 of the operator L with the eigenvalue λ . A function $u: G \rightarrow \mathbb{C}$, $u \neq 0$ is called an eigenfunction of order m (m=0, 1, ...) of the operator L with the eigenvalue λ if the following two conditions are satisfied:

-u, together with its first n-1 derivatives is absolute continuous on every compact subinterval of G;

- there exists an eigenfunction u^* of order m-1 of the operator L with the eigenvalue λ such that for almost all $x \in G$

(1)
$$(Lu)(x) = \lambda u(x) + u^*(x).$$

Let u be an eigenfunction of order m (m=0, 1, ...) of the operator L with some eigenvalue λ . Let us index the n-th roots of λ such that

(2)
$$\operatorname{Re} \mu_1 \geq \ldots \geq \operatorname{Re} \mu_n$$

It is known (see the references below) that to any compact subinterval K of G there exists a constant $G=G_m$ such that

(3)
$$\|u\|_{L^{\infty}(K)} \leq C(1 + \max_{1 \leq n \leq n} |\operatorname{Re} \mu_p|) \|u\|_{L^{1}(K)}$$

and for $|\lambda|$ sufficiently large

(4)
$$\|u^{(i)}\|_{L^{\infty}(K)} \leq C \left(1 + \max_{1 \leq p \leq n} |\operatorname{Re} \mu_p|\right) \|u^{(i)}\|_{L^1(K)} \quad (i = 1, ..., n-1).$$

Received August 22, 1983.

16*

V. Komornik

Furthermore, if $q_1; ..., q_n \in L^p_{loc}(G)$ for some $p \in [1, \infty]$ then

(5)
$$||u^*||_{L^{p'}(K)} \leq C(1+|\mu_1|)^{n-1} (1+\max_{1\leq p\leq n} |\operatorname{Re} \mu_p|) ||u||_{L^{p'}(K)}.$$

The constant C does not depend on the choice of u.

Remarks. (i) If $n \ge 3$ then the quantity $\max_{1 \le p \le n} |\operatorname{Re} \mu_p|$ may be replaced by $|\mu_1| = |\lambda|^{1/n}$: they are equivalent. One can see easily by counterexamples that the above estimates are the best possible.

(ii) The estimates (3), (4), (5) were proved in [3] for the case n=2 and $q_1\equiv 0$ (see also [2]), in [5] for the case $n \ge 3$ and $q_1 \equiv 0$; in the general case $q_1 \ne 0$, using the results of the paper [5], they were proved in [6] for the case $n \ge 3$ and in [7] for the case $n \le 2$.

The aim of this paper is to show that if we replace the compact interval K on the right side of the estimates (3), (4), (5) by another compact interval, strictly containing K, then the terms $(1 + \max_{1 \le p \le n} |\operatorname{Re} \mu_p|)$ can be omitted. This phenomenon plays an important role in the local investigation of spectral expansions.

Remarks. (i) The first results of this type were proved by V. A. IL'IN [1] and were used to prove a general local basis theorem. For the proof he used the following condition: putting

(6)
$$\mu = \begin{cases} [(-1)^{n/2} \lambda]^{1/2} & \text{if } n \text{ is even,} \\ [i\lambda]^{1/n} & \text{if } n \text{ is odd and } \operatorname{Im} \lambda \leq 0, \\ [-i\lambda]^{1/n} & \text{if } n \text{ odd and } \operatorname{Im} \lambda > 0 \end{cases}$$

where

$$[re^{i\varphi}]^{1/n} = r^{1/n}e^{i\varphi/n}, \quad -\frac{\pi}{2} < \varphi \leq \frac{3\pi}{2},$$

the existence of a constant C was proved for any fixed band

(7) $|\operatorname{Im} \mu| \leq C_1$ (C_1 is constant).

Also, the coefficients of the differential operator were assumed to be sufficiently smooth. As we shall see, the above conditions can be omitted.

(ii) In the proof of Theorem 2 of this paper we shall use a formula obtained in[5] for the coefficients of which very simple explicit formulas were found by by Joó[4]. This will play an important role in the proof.

In the sequel we shall use the following notations:

(8)
$$n' = \left[\frac{n+1}{2}\right], N' = n'(m+1), N = n(m+1), \mu = \mu_n, \varrho = |\operatorname{Re} \mu|.$$

244

Obviously

(9) $\rho = \min \{ |\operatorname{Re} \mu_p| : p = 1, ..., n \}$ and (10) $\rho = \operatorname{Re} \mu \text{ if } n \text{ is even.}$

Remark. Suppose n is odd and consider the operator

$$\tilde{L}u = u^{(n)} + \tilde{q}_1 u^{(n-1)} + \ldots + \tilde{q}_n u$$

on the interval $\tilde{G}:=-G$ where $\tilde{q}_s(y):=(-1)^s q_s(-y)$. Then, for any eigenfunction u of order m of the operator L with some eigenvalue λ , the function $\tilde{u}(y):=u(-y)$ is an eigenfunction of order m of the operator \tilde{L} with the eigenvalue $-\lambda$. This correspondence makes us possible to consider always the case Re $\mu \ge 0$ i.e. $\varrho = \text{Re } \mu$.

In the sequel $u=u_m$ will denote an arbitrary eigenfunction of order *m* of the operator *L* with some eigenvalue λ . Let us introduce recursively the continuous functions

$$u_i: G \to \mathbf{C}, \quad u_j = Lu_{j+1} - \lambda u_{j+1}$$
 a.e. on G

for $0 \le j \le m-1$. Then u_j is an eigenfunction of order j of the operator L with the eigenvalue λ and $u_{m-1} = u^*$.

1. Local "anti a priori" estimates. In this section we shall prove the following result:

Theorem 1. Assume $q_1 \equiv 0$ and $q_2, ..., q_n \in L^p_{loc}(G)$ for some $p \in [1, \infty]$. Then to any $m \in \{0, 1, ...\}$ and to arbitrary compact intervals $K_1, K_2 \subset G, K_1 \subset int K_2$, there exists a constant C such that for any eigenfunction u of order m of the operator L with some eigenvalue $\lambda = \mu^n$,

(11)
$$\|u^*\|_{L^{p'}(K_1)} \leq C(1+|\mu|)^{n-1} \|u\|_{L^{p'}(K_2)}.$$

The proof will be based on the following assertion:

Proposition 1. Given $0 \neq \mu \in \mathbb{C}$ and $t \in \mathbb{R}$ arbitrarily, there exist numbers $d(\mu, t), d_k(\mu, t)$ and continuous functions $D_r(\mu, t, \cdot)$ such that for any eigenfunctions u of order m of the operator L with the eigenvalue $\lambda = \mu^n$,

(12)
$$t^n d(\mu, t) u_{m-1}(x) =$$

$$=\sum_{k=N'-N+1}^{N'} d_k(\mu, t) u_m(x+kt) + \sum_{r=0}^m \sum_{s=1}^n \int_{x+(N'-N+1)t}^{x+N't} D_r(\mu, t, x-\tau) q_s(\tau) u_{m-r}^{(n-s)}(\tau) d\tau$$

whenever $x + (N' - N + 1)t \in G$ and $x + N't \in G$. Furthermore, introducing the no-

tation

(13)

$$P(\mu, t) = (\mu t)^{n(1+\dots+m)} \exp\left(\sum_{i=n'-n+1}^{n'} (i(m+1)+\dots+((i-1)(m+1)+1))\mu_{n'+1-i}t\right),$$

there exist positive constants C_1, C_2 and to any fixed positive number A a positive constant C such that

(14)
$$|d_k(\mu, t)| \leq C|\mu|^{n-1}|P(\mu, t)|e^{-|k|\varrho t} \text{ for all } k,$$

(15)
$$|D_r(\mu, t, x-\tau)| \leq C |\mu|^{r(1-n)} |P(\mu, t)| e^{-\varrho |x-\tau|}$$

for all $x+(N'-N+1)t \leq \tau \leq x+N't$,

(16)
$$\sup_{t/2 \le t_0 \le t} |d(\mu, t_0)| > C_1 |P(\mu, t_0)|$$

whenever

(17)
$$\operatorname{Re} \mu \geq 0, \quad 0 \leq t \leq A \quad and \quad |\mu t| \geq C_2$$

First we deduce Theorem 1 from Proposition 1. For m=0 the theorem is obvious because $u^* \equiv 0$. Assume $m \geq 1$ and that the theorem is true for m-1. Let us fix a compact interval $K \subset G$ such that

and put

 $K_1 \subset \operatorname{int} K$ and $K \subset \operatorname{int} K_2$ $\varepsilon = (N')^{-1}$ dist $(K_1, \partial K)$.

It suffices to consider the case Re $\mu \ge 0$ in view of (10) and the Remark after (10). For $|\mu|$ sufficiently large we can fix a number $t \in [\varepsilon/2, \varepsilon]$ by Proposition 1 such that

$$|d_k(\mu, t)| \leq C|\mu|^{n-1}|d(\mu, t)|, \quad |D_r(\mu, t, x-\tau)| \leq C|\mu|^{r(1-n)}|d(\mu, t)|.$$

Fixing t by this manner, we have by (12) for any $x \in K_1$

$$|u_{m-1}(x)| \leq C|\mu|^{n-1} \sum_{k=N'-N+1}^{N'} |u_m(x+kt)| + C \sum_{r=0}^m \sum_{s=2}^n |\mu|^{r(1-n)} ||q_s||_{L^p(K)} ||u_{m-r}^{(n-s)}||_{L^{p'}(K)}$$

whence

when

(18)
$$\|u_{m-1}\|_{L^{p'}(K_1)} \leq C |\mu|^{n-1} \|u_m\|_{L^{p'}(K)} + C \sum_{r=0}^m \sum_{s=2}^n |\mu|^{r(1-n)} \|u_{m-r}^{(n-s)}\|_{L^{p'}(K)}.$$

(Here and in the sequel C denotes diverse constants which do not depend on the choice of u.) Being $|\mu|$ large, by Theorem 2 of [5] we have

$$\|u_{m-r}^{(n-s)}\|_{L^{p'}(K)} \leq C |\mu|^{n-s} \|u_{m-r}\|_{L^{p'}(K)} \leq C |\mu|^{n-2} \|u_{m-r}\|_{L^{p'}(K)}.$$

On the other hand, using the inductive hypothesis, for $r \ge 2$

$$\|u_{m-r}\|_{L^{p'}(K)} \leq C |\mu|^{(r-1)(n-1)} \|u_{m-1}\|_{L^{p'}(K_2)}.$$

Finally, using again Theorem 2 of [5] we obtain

$$\|u_{m-1}\|_{L^{p'}(K_2)} \leq C |\mu|^n \|u_m\|_{L^{p'}(K_2)}.$$

ι.

Therefore we obtain from (18) the estimate

$$\|u_{m-1}\|_{L^{p'}(K_1)} \leq C \|\mu\|^{n-1} \|u_m\|_{L^{p'}(K_2)}$$

i.e. (11) is proved for $|\mu|$ sufficiently large. But for $|\mu|$ bounded (11) follows immediately from (5) and the theorem is proved.

Let us now turn to the proof of Proposition 1. Putting

$$K_0(\mu, y) = \sum_{p=1}^n \frac{\mu_p}{n\lambda} e^{\mu_p y}, \quad K_r(\mu, y) = \int_0^y K_0(\mu, \xi) K_{r-1}(\mu, y-\xi) d\xi \quad (r = 1, 2, ...)$$

and for any fixed $x \in G$

(19)

$$v_m(y) = u_m(y) + \sum_{r=0}^m \int_x^y K_r(\mu, y-\tau) \sum_{s=0}^n q_s(\tau) u_{m-r}^{(n-s)}(\tau) d\tau, \quad v_{m-1}(y) = v_m^{(n)}(y) - \lambda v_m(y),$$

it follows from the results of the paper [5] that v_m is an eigenfunction of order *m* of the operator $L_0v=v^{(n)}$ (defined on G) with the eigenvalue λ , and $v_{m-1}(x)=u_{m-1}(x)$.

Consequently the function $v_m(y)$ is a linear combination of the functions

$$y \mapsto (r!)^{-1} (\mu_p(y-x))^r e^{\mu_p(y-x)} \quad (r = 0, ..., m, p = 1, ..., n);$$

therefore the determinant

$$\begin{pmatrix} \dots & v_m(x+kt) & \dots & t^n u_{m-1}(x) \\ \vdots & & \vdots \\ \dots & \frac{(k\mu_p t)^r}{r!} e^{k\mu_p t} & \dots & C_r(\mu_p t)^n \\ \vdots & & \vdots \\ (r = 0, \dots, m, \quad p = 1, \dots, n, \quad k = N' - N + 1, \dots, N', \quad C_r = (1 - \delta_{r0}) \binom{n}{r} \end{pmatrix}$$

vanishes whenever $x+(N'-N+1)t\in G$ and $x+N't\in G$. Developing the determinant according to its first row, in view of (19) we obtain (with obvious notations) the formula (12).

Let us set for brevity

(21)
$$z_{1}^{*} = \sum_{i=1}^{n'} (i(m+1) + \dots + ((i-1)(m+1)+1)) \mu_{n'+1-i}t,$$
$$z_{2}^{*} = \sum_{i=n'-n+1}^{0} (i(m+1) + \dots + ((i-1)(m+1)+1)) \mu_{n'+1-i}t,$$
$$z^{*} = z_{1}^{*} + z_{2}^{*}.$$

We shall also use the notation

$$w_1 \stackrel{\flat}{\leq} w_2 \Leftrightarrow \operatorname{Re} w_1 \leq \operatorname{Re} w_2.$$

First we prove (14). One can see easily that each term of the development of the minor defining $d_k(\mu, t)$ can be estimated by an expression of type

$$C|\mu|^{n-1+n(1+...+m)}|e^{z}|.$$

In view of (13) and (21) it suffices to show that we can always choose z such that

(22)
$$\operatorname{Re}(z-z^*) \leq -|k|\varrho t.$$

Introducing the notation $k = (m+1)l_1 - l_2$, $l_1 \in \{n'-n+1, ..., n'\}$, $l_2 \in \{0, ..., m\}$, we can choose

$$z = z_{2}^{*} + \sum_{i=l_{1}+1}^{n'} \left(i(m+1) + \dots + ((i-1)(m+1)+1) \right) \mu_{n'+1-i}t + \left(l_{1}(m+1) + \dots + (k+1) + (k-1) + \dots + (l_{1}-1)(m+1) \right) \mu_{n'+1-i}t + \sum_{i=1}^{l_{1}-1} \left((i(m+1)-1) + \dots + (i-1)(m+1) \right) \mu_{n'+1-i}t$$

is $k \ge 1$, and

+
$$((l_1(m+1)+1)+...+(k+1)+(k-1)+...+((l_1-1)(m+1)+1))\mu_{n'+1-l_1}t +$$

+ $\sum_{i=l_1+1}^{0} ((i(m+1)+1)+...+((i-1)(m+1)+2))\mu_{n'+1-i}t - \mu_{n'+1}t$

if $k \leq 0$. Using (2) hence we obtain

$$z - z^* = ((l_1 - 1)(m + 1) - k) \mu_{n'+1-l_1} - (m + 1) \sum_{i=1}^{l_1 - 1} \mu_{n'-1-i} t \leq$$

$$\stackrel{r}{\leq} ((l_1 - 1)(m + 1) - k) (\mu_{n'+1-l_1} - \mu_{n'}) t - k\mu_{n'} t \leq -k\mu_{n'} t = -|k| \mu_{n'} t$$

if $k \ge 1$, and

$$z - z^* = \left(l_1(m+1) + 1 - k\right)\mu_{n'+1-l_1}t + (m+1)\left(\sum_{i=l_1-1}^0 \mu_{n'+1-i}t\right) - \mu_{n'+1}t \le \frac{1}{2}$$

$$\stackrel{r}{\leq} \left(l_1(m+1) + 1 - k\right)(\mu_{n'+1-l_1} - \mu_{n'+1})t - k\mu_{n'+1}t \le -k\mu_{n'+1}t = |k|\mu_{n'+1}t$$

if $k \leq 0$. In view of (9) hence (22) follows in both cases and (14) is proved.

Now we prove (15). Let us fix $r \in \{0, ..., m\}$ arbitrarily and let $l \in \{N' - N + 2, ..., N'\}$ be such that

(23)
$$x+(l-1)t \leq \tau \leq x+lt.$$

Then $D_r(\mu, t, x-\tau)$ is defined by the determinant which differs from the determinant (20) in the first row:

in case $\tau \ge x$ the element $v_m(x+kt)$ is replaced by $K_r(\mu, x-\tau+kt)$ if $l \le k \le N'$, all the other elements are replaced by 0;

in case $\tau \leq x$ the element $v_m(x+kt)$ is replaced by, $-K_r(\mu, x-\tau+kt)$ if $N'-N+1 \leq k \leq l-1$, all the other elements are replaced by 0.

One can see easily by induction on r that with some constants c_{rpa}

$$K_{r}(\mu, x-\tau+kt) = \sum_{p=1}^{n} \mu_{p}^{1-rn-n} \sum_{\alpha=0}^{r} c_{rp\alpha} (\mu_{p}(x-\tau+kt))^{\alpha} e^{\mu_{p}(x-\tau+kt)}.$$

In view of (17) it suffices to show that for any fixed $q \in \{1, ..., n\}$ and $\beta \in \{0, ..., r\}$, if we replace in the first row of the determinant (20)

in case $\tau \ge x$ the element $v_m(x+kt)$ by $k^{\beta}e^{\mu_q(x-\tau+kt)}$ if $l \le k \le N'$, all the other element by 0;

in case $\tau \leq x$ the element $v_m(x+kt)$ by $-k^{\beta}e^{\mu_q(x-\tau+kt)}$ if $N'-N+1 \leq k \leq l-1$, all the other elements by 0,

then this new determinant can be estimated by

$$C|\mu|^{n-1}|P(\mu,t)|e^{-\varrho|x-\tau|}.$$

One can see esaily that those terms of this determinant the factors of which choosen from the first row and from the row corresponding to p=q and $r=\beta$ are in case $\tau \ge x$ in one of the *l*-th, ..., N'-th columns, in case $\tau \le x$ in one of the (N'-N+1)-th, ..., (l-1)-th columns, pairwise eliminate each other. All the other terms can be estimated by

$$C|\mu|^{n-1+n(1+...+m)}|e^{z}|;$$

it suffices to show that here one can always choose z such that

(24)
$$\operatorname{Re}(z-z^*) \leq -\varrho |x-\tau|.$$

Let us consider first the case $\tau \ge x$. Putting

 $l = (m+1)l_1 - l_2, \ l_1 \in \{1, ..., n'\}, \ l_2 \in \{0, ..., m\},$

.

we can take

$$z = z_2^* + \sum_{i=l_1+1}^{n'} \left(i(m+1) + \dots + ((i-1)(m+1)+1) \right) \mu_{n'+1-i} t + \mu_q(x-\tau) + (l-1)\mu_q t + \left(l_1(m+1) + \dots + l + (l-2) + \dots + (l_1-1)(m+1) \right) \mu_{n'+1-i} t + \sum_{i=1}^{l_1-1} \left((i(m+1)-1) + \dots + (i-1)(m+1) \right) \mu_{n'+1-i} t$$

if $q \leq n'+1-l_1$, and

$$z = z_2^* + \sum_{i=l_1+1}^{n'} \left(i(m+1) + \dots + ((i-1)(m+1)+1) \right) \mu_{n'+1-i} t + \mu_q (x-\tau+lt) + \left(l_1(m+1) + \dots + (l+1) + (l-1) + \dots + (l_1-1)(m+1) \right) \mu_{n'+1-l_1} t + \sum_{i=1}^{l_1-1} \left((i(m+1)-1) + \dots + (i-1)(m+1) \right) \mu_{n'+1-i} t$$

if $q > n'+1-l_1$. Now using (2) and (23), in both cases

$$z - z^* \stackrel{\prime}{\leq} \mu_{n'+1-l_1} (x - \tau + (l_1 - 1)(m+1)t) - (m+1) \sum_{i=1}^{l_1 - 1} \mu_{n'+1-it} \stackrel{\prime}{\leq} (\mu_{n'+1-l_1} - \mu_{n'}) (x - \tau + (l_1 - 1)(m+1)t) + \mu_{n'}(x - \tau) \stackrel{\prime}{\leq} \mu_{n'}(x - \tau) = -\mu_{n'} |x - \tau|$$

whence (24) follows.

Let us now consider the case $\tau \le x$. Putting $l-1 = (m+1)l_1 - l_2$, $l_1 \in \{n'-n+1, ..., 0\}$, $l_2 \in \{0, ..., m\}$, we can take

$$z = z_1^* + \sum_{i=n'-n+1}^{l_1-1} (i(m+1) + \dots + ((i-1)(m+1)+1))_{n'+1-1}t + \mu_q(x-\tau) + l\mu_q t + ((l_1(m+1)+1)+\dots + (l+1)+(l-1)+\dots + ((l_1-1)(m+1)+1))\mu_{n'+1-l_1}t + \sum_{i=l_1+1}^{0} ((i(m+1)+1)+\dots + ((i-1)(m+1)+2))\mu_{n'+1-i}t - \mu_{n'+1}t$$

if
$$q \ge n'+1-l_1$$
, and

$$z = z_1^* + \sum_{i=n'-n+1}^{l_1-1} (i(m+1) + \dots + ((i-1)(m+1)+1))\mu_{i+1-i}t + \mu_q(x-\tau + (l-1)t) + ((l_1(m+1)+1) + \dots + l + (l-2) + \dots + ((l_1-1)(m+1)+1))\mu_{n'+1-i}t + \sum_{i=l_1+1}^{0} ((i(m+1)+1) + \dots + ((i-1)(m+1)+2))\mu_{n'+1-i}t - \mu_{n'+1}t$$

if $q < n'+1-l_1$. Using again (2) and (23), in both cases

$$z - z^* \stackrel{\prime}{\leq} \mu_{n'+1-l_1}(x - \tau + (l_1(m+1)+1)t) - (m+1)\left(\sum_{i=l_1+1}^0 \mu_{n'+1-i}t\right) - \mu_{n'+1}t \stackrel{\prime}{\leq}$$

 $\leq (\mu_{n'+1-l_1} - \mu_{n'+1}) (x - \tau + (l_1(m+1) + 1)t) + \mu(x - \tau) \leq \mu_{n'+1}(x - \tau) = \mu_{n'+1}|x - \tau|$

whence (24) follows and (15) is proved.

Finally we prove (16). One can see by induction on m that

$$|d(\mu, t)| = |\mu t|^{m(m+1)/2} |e^{\mu t}|^{(m+1)(m+2)/2}$$

if n=1, and

140

$$|d(\mu, t)| = |\mu t|^{m(m+1)n/2} \prod_{1 \le p < q \le n} |e^{\mu_p t} - e^{\mu_q t}|^{(m+1)^2}$$

if $n \ge 2$. In case n=1 (16) hence follows at once because $|d(\mu, t)| = |P(\mu, t)|$. In case $n \ge 2$, taking into account that $e^{(\mu_1 + \dots + \mu_n)t} = 1$, we obtain

$$|d(\mu, t)| = |P(\mu, t)| \prod_{1 \le p < q \le n} |1 - e^{(\mu_q - \mu_p)t}|^{(m+1)^2}.$$

Taking into account that

$$\operatorname{Re} z \leq -1/2 \Rightarrow |1 - e^z| \geq 1 - e^{-1/2},$$

we have for any $t_0 \in [t/2, t]$

$$|d(\mu, t_0)| \ge |P(\mu, t_0)|(1 - e^{-1/2})^{n(n-1)/2} \prod_{\substack{1 \le p < q \le n \\ \operatorname{Re}(\mu_q - \mu_p)! > -1}} |1 - e^{(\mu_q - \mu_p)t_0}|^{(m+1)^2}.$$

If we choose C_2 sufficiently large, the condition (17) implies for all the pairs (p, q) in this product

$$|\mathrm{Im}\,(\mu_q - \mu_p)\,t| > 2\pi$$

and then, in view of the inequality

$$\operatorname{Re} z > -1 \Rightarrow |1 - e^{z}| \ge e^{-1} |\sin (\operatorname{Im} z)|$$

(16) reduces to the following lemma:

Lemma. Given $a_1, ..., a_{k_0} \in \mathbb{R}$, $k_0 \in \mathbb{N}$ such that $|a_k| > 2\pi$ for all $k = 1, ..., k_0$, we have

$$\sup_{1/2 \le b \le 1} \min_{k=1}^{k_0} |\sin(ba_k)| \ge \sin(\pi/(12k_0)).$$

Indeed, for any $k \in \{1, ..., k_0\}$ the measure of the set

$$\{b \in [1/2, 1]: |\sin(ba_k)| < \sin(\pi/(12 k_0))\}$$

is less than or equal to $(3k_0)^{-1}$ whence the lemma follows.

The proof of Proposition 1 (and also of Theorem 1) is finished.

Remark. In case $n \le 2$ Theorem 1 remains valid under the weaker condition $q_1 \in L^p_{loc}(G)$, too. Indeed, we proved in [7] that in case $n \le 2$ there exists a positive constant R such that for all the eingenfunctions u of order m of the operator L with some eigenvalue λ ,

(25)
$$\|u\|_{L^{\infty}(K_1)} \leq C e^{-R|\operatorname{Re} \mu_1|} \|u\|_{L^{\infty}(K_2)}.$$

Using (3), (5) and (25),

$$\|u^*\|_{L^{p'}(K_1)} \leq C(1+|\mu|)^{n-1}(1+|\operatorname{Re}\mu_1|)\|u\|_{L^{p'}(K_1)} \leq C(1+|\mu|)^{n-1}(1+|\operatorname{Re}\mu_1|)\|u\|_{L^{\infty}(K_1)} \leq \leq C(1+|\mu|)^{n-1}(1+|\operatorname{Re}\mu_1|)e^{-R|\operatorname{Re}\mu_1|}\|u\|_{L^{\infty}(K_2)} \leq \leq C(1+|\mu|)^{n-1}(1+|\operatorname{Re}\mu_1|)^2e^{-R|\operatorname{Re}\mu_1|}\|u\|_{L_1(K_2)} \leq \leq C(1+|\mu|)^{n-1}\|u\|_{L^{1}(K_2)} \leq C(1+|\mu|)^{n-1}\|u\|_{L^{p'}(K_2)}.$$

Conjecture. The condition $q_1 \equiv 0$ in Theorem 1 can be replaced by the weaker condition $q_1 \in L^p_{loc}(G)$ in case $n \geq 3$, too.

2. Local uniform estimates. We shall prove the following result:

Theorem 2. Assume $q_1 \equiv 0$. Then to any $m \in \{0, 1, ...\}$ and to any compact intervals $K_1, K_2 \subset G, K_1 \subset int K_2$, there exists a constant C such that for any eigenfunction u of order m of the operator L with some eigenvalue λ ,

(26)
$$\|u\|_{L^{\infty}(K_{1})} \leq C \|u\|_{L^{1}(K_{2})}.$$

For $|\lambda|$ sufficiently large we have also

(27)
$$\|u^{(i)}\|_{L^{\infty}(K_{1})} \leq C \|u^{(i)}\|_{L^{1}(K_{2})} \quad (i = 1, ..., n-1).$$

We need the following assertion:

Proposition 2. There exist continuous functions f_k , F_r such that for any eigenfunction u_m of order m of the operator L with some eigenvalue $\lambda = \mu^n$,

(28)
$$\sum_{k=N'-N}^{N'} f_k(\mu, t) u_m^{(i)}(x+kt) =$$

$$=\sum_{r=0}^{m}\int_{x+(N'-N)t}^{x+N't}D_{3}^{i}F_{r}(\mu, t, x-\tau)\sum_{s=1}^{n}q_{s}(\tau)u_{m-r}^{(n-s)}(\tau)\,d\tau\quad(i=0,\ldots,n-1)$$

whenever $x+(N'-N)t\in G$ and $x+N't\in G$. Furthermore, introducing the notation

(29)
$$Q(\mu, t) = \exp((m+1)(\mu_1 + ... + \mu_{n'})t),$$

to any fixed positive number A there exists a constant C such that

(30)
$$|f_0(\mu, t) - Q(\mu, t)| \leq C |Q(\mu, t)| e^{\operatorname{Re}(\mu_{n'+1} - \mu_{n'})t},$$

(31)
$$|f_{m+1}(\mu, t) - e^{-(m+1)\mu_{n'}t}Q(\mu, t)| \leq C|e^{-(m+1)\mu_{n'}t}Q(\mu, t)|e^{\operatorname{Re}(\mu_{n'}-\mu_{n'-1})t}$$

(32)
$$|f_k(\mu, t)| \leq C |Q(\mu, t)| e^{-|k|\varrho t},$$

(33)
$$|D_3^i F_r(\mu, t, x-\tau)| \leq C |\mu|^{i+(r+1)(1-n)} |Q(\mu, t)| e^{-\varrho |x-\tau|}$$

whenever

(34) Re
$$\mu \ge 0$$
, $0 \le t \le A$ and $|\mu| \ge 1$.

First we deduce Theorem 2 from Proposition 2. As in Theorem 1, it suffices to consider the case Re $\mu \ge 0$. Let us fix a compact interval $K \subset G$ such that

 $K_1 \subset \operatorname{int} K$ and $K \subset \operatorname{int} K_2$

and put

$$R = (m+1+N')^{-1} \text{ dist } (K_1, \partial K)$$

Let us fix $B_1 > 0$ such that

(35) Re
$$\mu \ge B_1$$
 and $t \ge R/2 \Rightarrow |f_0(\mu, t)| \ge 2^{-1}|Q(\mu, t)|$

and then $B_2, B_3 > 0$ such that

(36)
$$|\mu| \ge B_2 \Rightarrow \|u\|_{L^{\infty}(K_*)} \le B_3 |\mu|^{1-i} \|u^{(i)}\|_{L^1(K_*)}$$

(37) $|\mu| \ge B_2$, Re $\mu \le B_1$ and $t \ge R/2 \Rightarrow |f_{m+1}(\mu, t)| \ge 2^{-1} |e^{-(m+1)\mu_n t}Q(\mu, t)|$.

This is possible by (30), (31) and by Theorems 3, 4 in [6] (if we are interested only in the estimate (26), it suffices to use Theorem 2 in [5] instead of the results of the paper [6]). Now we distinguish three cases.

If $|\mu| \leq B_2$ then (26) follows from (3).

If $|\mu| > B_2$ and Re $\mu \ge B_1$ then we apply the formula (28) with any $x \in K_1$ and $R/2 \le t \le R$; in view of (22), (33) and (35) we obtain

$$|u_m^{(i)}(x)| \leq C \sum_{\substack{N'-N \leq k \leq N' \\ k \neq 0}} |u_m^{(i)}(x+kt)| + C \sum_{r=0}^m \sum_{s=2}^n |\mu|^{i+(r+1)(1-n)} \|q_s\|_{L^1(K)} \|u_{m-r}^{(n-s)}\|_{L^\infty(K)}.$$

Using Theorem 2 in [5], Theorem 1 from the preceeding section and (36),

$$\|\mu\|^{i+(r+1)(1-n)} \|u_{m-r}^{(n-s)}\|_{L^{\infty}(K)} \leq C \|\mu\|^{i+1-s} \|u_{m}\|_{L^{\infty}(K_{2})} \leq C \|\mu\|^{2-s} \|u_{m}^{(i)}\|_{L^{1}(K_{2})} \leq C \|u_{m}^{(i)}\|_{L^{1}(K_{2})};$$

therefore

$$|u_m^{(i)}(x)| \leq C \sum_{\substack{N'-N \leq k \leq N' \\ k \neq 0}} |u_m^{(i)}(x+kt)| + C ||u_m^{(i)}||_{L^1(K_2)}.$$

Applying the transformation $\int_{R/2}^{R} dt$ we obtain

 $|u_m^{(i)}(x)| \leq C \|u_m^{(i)}\|_{L^1(K_2)}$

whence

$$\|u_m^{(i)}\|_{L^{\infty}(K_1)} \leq C \|u_m^{(i)}\|_{L^1(K_2)}$$

and (26), (27) are proved.

If $|\mu| > B_2$ and $\operatorname{Re} \mu < B_1$, then we apply the formula (28) with any $x \in K_1$ and $R/2 \leq t \leq R$ (we put x in place of x + (m+1)t); using (32), (33) and (37) we obtain

$$\begin{aligned} |u_m^{(i)}(x)| &\leq C \sum_{\substack{N'-N-m-1 \leq k \leq N'-m-1\\k \neq 0}} |u_m^{(i)}(x+kt)| + \\ &+ C \sum_{r=0}^m \sum_{s=2}^n |\mu|^{i+(r+1)(1-n)} \|q_s\|_{L^1(K)} \|u_{m-r}^{(n-s)}\|_{L_{\infty}(K)}; \end{aligned}$$

hence we can conclude (26), (27) similarly as in the preceeding case. The theorem is proved.

Now we prove Proposition 2. Let us denote by $S_k(\mu, t)$ the elementary symmetric polynomial of order k of $e^{\mu_1 t}, \ldots, e^{\mu_n t}$ with the main coefficient $(-1)^{n-k}$ if $k \in \{0, \ldots, n\}$; otherwise we put $S_k(\mu, t) = 0$. Define

$$f_{k+N'-N}(\mu, t) = S_{n-k}(\mu, t)$$

if m=0, and

$$f_{k+N'-N}(\mu, t) = \sum_{r_1 \in \mathbb{Z}} \dots \sum_{r_m \in \mathbb{Z}} S_{n-r_1}(\mu, t) \dots S_{n-r_m}(\mu, t) S_{n-k+r_1+\dots+r_m}(\mu, t)$$

if $m \ge 1$. It was shown by Joó [4] that for any eigenfunction v_m of order *m* of the operator $L_0 v = v^{(n)}$ with some eigenvalue $\lambda = \mu^n$,

$$\sum_{k=N'-N}^{N'} f_k(\mu, t) v_m(x+kt) \equiv 0;$$

hence for $i \in \{0, ..., n-1\}$

(38)
$$\sum_{k=N'-N}^{N'} f_k(\mu, t) v_m^{(i)}(x+kt) \equiv 0.$$

Using the notations of the preceeding section, let us define v_m by the formula (19). Then we have (see also [5])

(39)
$$v_m^{(i)}(y) = u_m^{(i)}(y) + \sum_{r=0}^m \int_x^y D_2^i K_r(\mu, y-\tau) \sum_{s=1}^n q_s(\tau) u_{m-r}^{(n-s)}(\tau) d\tau.$$

(38) and (39) imply (28) (with obvious notations).

254

The estimates (30), (31), (32) follow easily from the explicit expressions of the functions f_k . To prove (33) we note that the formula (38) can be obtained if we develop the determinant

(40)
$$\begin{pmatrix} \dots & v_m(x+kt) & \dots \\ \vdots \\ \dots & \frac{(k\mu_p t)^r}{r!} e^{k\mu_p t} & \dots \\ \vdots \\ (r=0, \dots, m, p=1, \dots, n, k=N'-N, \dots, N') \end{pmatrix}$$

according to the first row and then we simplify the obtained formula by a suitable expression $R(\mu, t)$. Repeating the proof of the estimate (15) in Proposition 1, we obtain (33) under the condition $R(\mu, t) \neq 0$. But this condition can be omitted because for any fixed $\mu \neq 0$, both sides of (33) are continuous in t and the set

 $\{t \in \mathbf{R}: R(\mu, t) = 0\}$

The proposition (and also the theorem) is proved.

Remark. In case $n \le 2$ the condition $q_1 \ge 0$ in Theorem 2 can be omitted. Indeed, using (25) and (3),

$$\|u\|_{L^{\infty}(K_{1})} \leq Ce^{-R|\operatorname{Re}\mu_{1}|} \|u\|_{L^{\infty}(K_{2})} \leq Ce^{-R|\operatorname{Re}\mu_{1}|} (1+|\operatorname{Re}\mu_{1}|) \|u\|_{L^{1}(K_{2})} \leq C \|u\|_{L^{1}(K_{2})}.$$

Conjecture. The condition $q_1 \equiv 0$ in Theorem 2 can be omitted in case $n \geq 3$, too.

Finally we note another version of Theorem 2 which is a little weaker than the above conjecture:

Theorem 3. Assume $q_1, \ldots, q_n \in L^p_{loc}(G)$ for some $p \in [1, \infty]$. Then to any compact intervals $K_1, K_2 \subset G, K_1 \subset int K_2$, there exists a constant C such that for any eigenfunction u of order 0 of the operator L with some eigenvalue λ ,

(41)
$$||u||_{L^{\infty}(K_1)} \leq C ||u||_{L^{p'}(K_2)}.$$

For $|\lambda|$ sufficiently large we have also

(42)
$$\|u^{(i)}\|_{L^{\infty}(K_1)} \leq C \|u^{(i)}\|_{L^{p'}(K_2)} \quad (i = 1, ..., n-1).$$

Proof. We repeat the proof of Theorem 2 with the following changes: In case $|\mu| > B_2$ and Re $\mu \ge B_1$ we have now

$$|u_0^{(i)}(x)| \leq C \sum_{\substack{n'-n \leq k \leq n' \\ k \neq 0}} |u_0^{(i)}(x+kt)| + C \sum_{s=1}^n |\mu|^{i+1-n} \|q_s\|_{L^p(K)} \|u_0^{(n-s)}\|_{L^{p'}(K)}.$$

Using Theorem 2 in [5] and (36),

$$\|\mu\|^{i+1-n} \|u_0^{(n-s)}\|_{L^{p'}(K)} \leq C \|\mu\|^{i+1-s} \|u_0\|_{L^{p'}(K)} \leq C \|\mu\|^i \|u_0\|_{L^{p'}(K)} \leq C \|u_0^{(i)}\|_{L^{p'}(K)};$$

therefore

$$\begin{aligned} |u_0^{(i)}(x)| &\leq C \sum_{\substack{n'-n \leq k \leq n' \\ k \neq 0}} |u_0^{(i)}(x+kt)| + C ||u_0^{(i)}||_{L^{p'}(K)}, \\ |u_0^{(i)}(x)| &\leq C ||u_0^{(i)}||_{L^{1}(K)} + C ||u_0^{(i)}||_{L^{p'}(K)}, \end{aligned}$$

and

$$||u_0^{(i)}||_{L^{\infty}(K_1)} \leq C ||u_0^{(i)}||_{L^{p'}(K)} \leq C ||u_0^{(i)}||_{L^{p'}(K_2)}.$$

The case $|\mu| > B_2$ and Re $\mu < B_1$ is similar.

References

- [1] В. А. Ильин, Необходимые и достаточные условия базусности и равносходимости с тригонометрическим рядом спектральных разложений 1—2, Дифференциальные уравнения, 16 (1980), 771—794, 980—1009.
- [2] В. А. Ильин и И. Йо, Равномерная оценка собственных функций и оценка свержу числа собственных значений оператора Штурма—Лиувилля с потенциалом из класса L^p, Дифференциальные уровнения, 15 (1979), 1164—1174.
- [3] I. Joó, Upper estimates for the eigenfunctions of the Schrödinger operator. Acta Sci. Math., 44 (1982), 87-93.
- [4] I. Joó, Remarks to a paper of V. Komornik, Acta Sci. Math., 47 (1984), 201-204.
- [5] V. KOMORNIK, Upper estimates for the eigenfunctions of higher order of a linear differential operator, Acta Sci. Math., 45 (1983), 261-271.
- [6] V. KOMORNIK, Some new estimates for the eigenfunctions of higher order of a linear differential operator, *Acta Math. Hungar.*, to appear.
- [7] V. KOMORNIK, On the eigenfunctions of the first- and second-order differential operators, Studia Math. Hungar., to appear.

EÖTVÖS LORÁND UNIVERSITY DEPARTMENT II OF ANALYSIS 1445 BUDAPEST 8, PF. 323, HUNGARY