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A Bohr type inequality on abstract normed linear spaces and its 
applications for special spaces 

NGUYEN XUAN KY 

Dedicated to Professor Károly Tandori on his 60th birthday 

1. Introduction. BOHR [1] proved (in another form) that if a 27t-periodic in-
tegrable function g is orthogonal to every trigonometric polynomial of order at 
most n then the following inequality is true 

(1) | / G ( ' H ^ l g ( * ) l CO, „ = 1 , 2 , . . . ) 

where cx (and later ck, k=2, 3, ...) denotes an absolute constant. Later an inequality 
of type (1) was discussed by many authors (see e.g. [2], [3], [4], [6], [9]). 

Let L\ n (1 be the Banach space of all 2^-periodic functions with the 
usual norm 

2n 1/p 

ll/[|p = { / l / W I p d x } (1 S p < » ) , 
o 

II/IU = ess sup | /(x) | . 
-oo-^x-coo 

We denote by T„ the set of all trigonometric polynomials of order at most n 
( « = 0 , 1 , ...). For / € Z & let 

(2) E>(J)= inf | | / - i j p („ = 0 , 1 , 2 , ...). 

Let DfB be the set of all 23t-periodic functions / which are absolutely continuous on 
( —oo, oo) and for which It is veil known that 

(3) E ¡ { f ) á | ! / ' | | p ( l s p s - , f£Df„ „ = 1, 2 , . . . ) . 

Using the inequality (3) (case p— 1) we can prove the inequality (1) and conversely. 
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In this paper we prove this statement in abstract normed linear spaces and we give 
applications for special spaces. 

2. A Bohr type inequality in abstract spaces. Let X be an arbitrary normed linear 
space. The norm in X is denoted by || • ||. Let furthermore X* be the dual space of X 
(the space of all continuous linear functional defined on X). The norm in X* is 
denoted by || • || *. Let I , be a subspace of X and 

L L = £ J - ( * ) : = g(*) = 0 V?<EL}. 

We can prove that LL is a subspace of X*. We define the best approximation of an 
element x£X by elements of L. 

EL(x)=mx-yl 
Let T be the following operator: 

(4) T: D(T) — X linear and T(D) = X 

where D=D(T)(QX) denotes the domain of T. 

Suppose that there exists an operator / which has domain D(I)QX*, 

(5) / : D(1)^X* is linear, 

/ and T satisfy the following relation 

(6) . g(x) = Ig(Tx) (\/x£D(T), Vg€0( / ) ) . 

Then the following statement is true: 

T h e o r e m 1. LetTandlbe two operators satisfying (4), (5), (6). a) IfD(l)=LL 

then the following statements are equivalent for A=»0: 

(7) EL{x)*k\Tx\ (VxeD(T)), 

(8) | |Jg| |*sA||g| |* (Vg€D(/)). 

b) In the case D(I)dLL the inequality (7) implies (8). 

P r o o f , a) (7)—(8): We have by the duality principle of Nikolskii (see e.g. 
SINGER [8 , p . 2 2 ] ) : 

sup | / g ( J * ) | = sup |g(x)| = £ t ( x ) 3^17*1. : . 
9€L-L giL1-
llsll*sl Il9ll*sl 

So for any fixed g € D ( / ) g L x ( | | g | | * = i l ) we have 

\Ig(Tx)\ ^ 4Tx\\ ( V X € Z ) ( R ) ) . 
Hence by (4) we obtain 

\ig(y)\*4y[ (\fyex) ' 

therefore we get (8) from the definition of norm in X*. 
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b) (8)—(7): We have by duality principle and by (8) 

El(x)= sup \g(x)\ = sup \Jg(Tx)\ =s sup ||/g[|*||7x[| ^A\\Tx\\. 
g(.L± gtL1- giL1-
II»II*S1 II9*IIS1 llsrll*=Sl 

3. Applications, a) Let X = L a n d let L=Tn («=1 ,2 , ...). 
Then we:have " X*=L\K (l/p + l/q=l, and ( I p ^ L ^ . Let 

271 
T,UL?J = {ziLln- f gtndx = 0,ytn€Tn} co). 

a 

n(L£) z> / gtndx = 0, Vi„ern}:= Q{L\n). 
o 

Let Tf:=f (f£D(T):=D%K) and 

A 0 ^ < P " ) J ' 
It is easy to see that T a n d / satisfy the conditions (4), (5), (6) (with D(T)=LL in 
the case D(T)<^L~ in the case p=a=). So by Theorem 1 we have 

T h e o r e m 2. Let « = 1 , 2 , . . . . For every g£Dg „(I) we have 

¡ / « ( O r f f c ^ l g ] ^ . 
o n 

b) Let X=Lp(w) l s ^ s o o be the Banach space of all measurable functions 
defined on [ — 1,1] with norm 

. I I / I U = { { \ f \ ^ d x f 
- l 

- I l / lkw = 11/11- = ess sup | /(x)| 
a t € [ - 1 , I] 

where 
w(jc) = (1-*)*(1+Jty (a, p > - 1, * € [ - l , i]). 

We have X*^[Lp(w)T=Lq(w) ( lsi / ;<o°, l//7 + l / ? = l ) and [L"(w)Y^D(w). 
Let Jl„ be the set of all algebraic polynomials of degree at most n («=0, 1, 2, ...) 

and let L=TI„. Then we have 
i 

L x = n, i(Lp(w)) = {g£L«(w): f SPnWdx = 0, 

(9) ( l S i < - , ilp + i/q = i), 
l 

7 7 ^ ( w ) ] ^ {g€Z.1 (vv): f gpnwdx = 0, Vpn€i7„}:= i2„(w). 
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For any / € / / ( « ' ) (1 ̂ s » ) we define 

E ! ( w , f ) = inf \\f-pn\\P,w (n = 0, 1, 2, ...)• 

The following class of functions was defined in [7]: 

Mp(w):= {/<EL"(w): / is absolutely continuous in ( - 1 , 1 ) , tfl-x* f'(x)eL" 

In [7] we proved that 

(10) E ( W , f ) ^ ^ \ \ f T ^ f ' ( x ) \ \ t t V ( U p ^ . / G M » , n = 1 , 2 , . . . ) . 

Now, let us define the operators T and I as follows: 

T/(x) = Tpf(x):= y'l - x 2 f'{x) ( /€ / ) (r p ) := M,(w)), 

Ig(x) = lq,ng(x):= / w(t)g(t)dt (geD(fqJ) 
y 1 — X" w(x) _ 1 

where !>(/,,„) denotes the domain of / = / , , which is defined by 

(11) />( / , .„):= ^ [ ¿ " ( w ) ] (2 1 / p + l / i = 1), 

(12) ? s a t i s f i e s c o n d i t i o n (13)} (1 < 9 — 2) 

D(I q ,n ) '= {g€i2„(vv): g satisfies condition (13)} (9 = 1), 
where 

(13) / w ( / ) g ( 0 <// = 0 [ » V 1 - 1 / " ^ ) (|JC| - 1). 

—1 

We prove that the operators T and I satisfy the conditions in Theorem 1. 

Let f£D(Tp), g€D (/,,„) and let G(x)= f w{t)g(t)dt. - 1 
In the case ( l ^ / > < 2 , so we have for — l < x < 0 

|C(x)| = I / w(t)g(t) dt\ tà ( / |g(/)|"vv(0 dt)l,q( f w{t)dty ^ 
- 1 - 1 - 1 

= (x +1)1/"-1'"«?[V2(x)/l-x2] = o [V/POO/l-x2] (x —I). 

For 0 < x < l , using the relation 

<?(*) = / w(t)g(t)dt = - f w(t)g(t)dt 
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(which follows from the fact that J wgdt=0 since g€D(/, ,„)). By a similar me-

thod we obtain 
G(x) = o|V/f (X) J/1-*2 ] (x - 1). 

So relation (13) is true for every g£D(Iqi„) (1 n=1,2, ...)• Therefore by 
integration by part we have 

ff(x)g(x)w(x) dx = / / ' ( * ) = 

= f f r ^ f ( x ) 7 = = t ^ — G ( x ) W ( x ) d x = f Tf(x)fg(x)W(x)dx. 
_l ]/l—X >V(x) _1 

Since this integral exists for every Tf£Lp(w) and T{D(T)]—Lp(w), we have by a 
well known theorem of functional analysis that Ig€L9(w) and the last formula 
proves (6). 

By Theorem 1, using (10) we have 

T h e o r e m 3. Let 1 « = 1 , 2 , . . . . For every g£D(Iq n) we have 

/ w(t)g(t) 
yi-x2 w(x) -i 

c) Let X=Lp=Lp( — °=, ( l s p g o o ) be the Banach space of functions 
defined on ( — » ) . Let 

e(x) = 07,s(x) = (1 + \x\>yi2ve-WI2 (y & 2, 8 §r 0, - ~ < x < =°). 

We consider the following subspace of L": 

L:= Hn:= {Q(.x)pn(Xy. pndlln} (n = 1, 2, ...). 
We have 

L1 = H^(LP) = jgiZ-': fgp„Qdx = 0, Vp„€/7„} 
— oo 

l / p + l / p = l , « = 1 ,2 , . . . ) 
and 

EO 

Hn(Lm) 3 {g^Z1: / gpnQdx = 0 Vpn€nB}:= i2. 
— oo 

For any QfaLp we define 

£„"(0,/) = inf | | e ( / -p B ) | | p (« = 0, 1, 2, ...). 
Pn<"n 
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FREUD [3] proved the following inequality: 

(14) E ' f a f ) s ^ \ e f % (l ^ P ^ co, efzMp(e), » = l, 2 , . . . ) 

where 

(15) Mp(g);—{ef(:Lp: f is absolutely continuous on (-=», q/'ZL"}. 

We define T=TP and /= / , , „ as follows: 

T(ef) := £>/' (ef£Mp(e) := Z)(rp)), 

/g(*).:=-^y J Q{t)o(t)dt (fdD(I)), 

where 

_ i g 6 i 3 ( p = ° ° ) Satisfies condition (16)J]' 
where 

(16) f Q(t)g(t)dt = 0[\x\V>Q(x)] (|*l -»). 

First we prove that T and / satisfy the conditions of Theorem 1. Let f£D(Tp) 
(1 and let g£D(I9J (l/p + l /? = l), 

* 

C(x):= / g«)e(.t)dt. 

Using (16) we obtain 

| / ( * ) G ( * ) | = \G(x)\ \ j f'(t)dt+m\ = o[\x^\q{x)} + o [Ixl^eix)]/\f (01 dt\] = 
o o 

= o(i)+o[\f № e(x)\f'(<)dt\] = o(i)+o{\x\v\f e(t)\f'(t)\dt\] = 
0 0 

= o ( l ) + o [ k M k / ' l l p |( fdt)11''] = 0 ( 1 ) + 0 ( 1 ) = 0 ( 1 ) ( | * | - c o ) . 

0 

So we have by integration by part 

CO CO 

(17) / f(x)Q(x)g(x)dx = / f'(x)G(x)dx = 

- / e(x)f'(x)j^G(x)dx= f T(Qf)lgdx. 
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Since the in tegra l (17) exists f o r every T(gf)eLp a n d T[D(T)]=L" we h a v e fg£Lq 

a n d (17) p roves condi t ion (6). O t h e r proper t ies of T a n d I fo l low f r o m the defini t ion. 
W e h a v e by T h e o r e m 1 a n d (14) 

T h e o r e m 4 . Let 1 S g S » , « = 1 , 2 , . . . . For every g € D ( / î ; „ ) w e have 
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