A Bohr type inequality on abstract normed linear spaces and its applications for special spaces

NGUYEN XUAN KY

Dedicated to Professor Károly Tandori on his 60th birthday

1. Introduction. BoHR [1] proved (in another form) that if a 2π-periodic integrable function g is orthogonal to every trigonometric polynomial of order at most n then the following inequality is true

$$
\begin{equation*}
\left|\int_{0}^{x} g(t) d t\right| \leqq \frac{c_{1}}{n}|g(x)| \quad(-\infty<x<\infty, n=1,2, \ldots) \tag{1}
\end{equation*}
$$

where c_{1} (and later $c_{k}, k=2 ; 3, \ldots$) denotes an absolute constant. Later an inequality of type (1) was discussed by many authors (see e.g. [2], [3], [4], [6], [9]).

Let $L_{2 \pi}^{p}(1 \leqq p \leqq \infty)$ be the Banach space of all 2π-periodic functions with the usual norm

$$
\begin{gathered}
\|f\|_{p}=\left\{\int_{0}^{2 \pi}|f(x)|^{p} d x\right\}^{1 / p} \quad(1 \leqq p<\infty), \\
\|f\|_{\infty}=\underset{-\infty<x<\infty}{\operatorname{ess} \sup }|f(x)| .
\end{gathered}
$$

We denote by T_{n} the set of all trigonometric polynomials of order at most n ($n=0,1, \ldots$). For $f \in L_{2 \pi}^{p}$ let

$$
\begin{equation*}
E_{n}^{p}(f)=\inf _{t_{n} \in T_{n}}\left\|f-t_{n}\right\|_{p} \quad(n=0,1,2, \ldots) \tag{2}
\end{equation*}
$$

Let $D_{2 \pi}^{p}$ be the set of all 2π-periodic functions f which are absolutely continuous on $(-\infty, \infty)$ and for which $f^{\prime} \in L_{2 \pi}^{p}$. It is vell known that

$$
\begin{equation*}
E_{n}^{p}(f) \leqq \frac{c_{2}}{n}\left\|f^{\prime}\right\|_{p} \quad\left(1 \leqq p \leqq \infty, f \in D_{2 \pi}^{p}, n=1,2, \ldots\right) . \tag{3}
\end{equation*}
$$

Using the inequality (3) (case $p=1$) we can prove the inequality (1) and conversely.

[^0]In this paper we prove this statement in abstract normed linear spaces and we give applications for special spaces.
2. A Bohr type inequality in abstract spaces. Let X be an arbitrary normed linear space. The norm in X is denoted by $\|\cdot\|$. Let furthermore X^{*} be the dual space of X (the space of all continuous linear functionals defined on X). The norm in X^{*} is denoted by $\|\cdot\|^{*}$. Let L be a subspace of X and

$$
L^{\perp}=L^{\perp}(X):=\left\{g \in X^{*}: g(x)=0 \quad \forall x \in L\right\}
$$

We can prove that L^{\perp} is a subspace of X^{*}. We define the best approximation of an element $x \in X$ by elements of L :

$$
E_{L}(x)=\inf _{y \in L}\|x-y\| .
$$

Let T be the following operator:

$$
\begin{equation*}
T: D(T) \rightarrow X \quad \text { linear and } \quad T(D)=X \tag{4}
\end{equation*}
$$

where $D=D(T)(\subseteq X)$ denotes the domain of T.
Suppose that there exists an operator I which has domain $D(I) \subseteq X^{*}$,

$$
\begin{equation*}
I: D(I) \rightarrow X^{*} \text { is linear, } \tag{5}
\end{equation*}
$$

I and T satisfy the following relation

$$
\begin{equation*}
g(x)=I_{g}(T x) \quad(\forall x \in D(T), \forall g \in D(I)) . \tag{6}
\end{equation*}
$$

Then the following statement is true:
Theorem 1. Let Tand I be two operators satisfying (4), (5), (6). a) If $D(I)=L^{\perp}$ then the following statements are equivalent for $\lambda>0$:

$$
\begin{align*}
& E_{L}(x) \leqq \lambda\|T x\| \quad(\forall x \in D(T)), \tag{7}\\
& \|I g\|^{*} \leqq \lambda\|g\|^{*} \quad(\forall g \in D(I)) . \tag{8}
\end{align*}
$$

b) In the case $D(I) \subset \dot{L}^{\perp}$ the inequality (7) implies (8).

Proof. a) (7) $\rightarrow(8)$: We have by the duality principle of Nikolskii (see e.g: Singer [8, p. 22])

$$
\sup _{\substack{g \in L^{\perp} \\\|g\|^{*} \leqq 1}}|I g(T x)|=\sup _{\substack{g \in L^{\perp} \\\|g\|^{*} \leqq 1}}|g(x)|=E_{L}(x) \leqq \lambda\|T x\| .
$$

So for any fixed $g \in D(I) \subseteq L^{\perp}\left(\|g\|^{*} \leqq 1\right)$ we have

$$
|I g(T x)| \leqq \lambda\|T x\| \quad(\forall x \in D(T))
$$

Hence by (4) we obtain.

$$
|\operatorname{Ig}(y)| \leqq \lambda\|y\| \quad(\forall y \in X)
$$

therefore we get (8) from the definition of norm in X^{*}.
b) $(8) \rightarrow(7)$: We have by duality principle and by (8)

$$
E_{L}(x)=\sup _{\substack{g \in L^{\perp} \\\|g\|^{*} \leqq 1}}|g(x)|=\sup _{\substack{g \in L^{\perp} \\\left\|g^{*}\right\| \leqq 1}}\left|I_{g}(T x)\right| \leqq \sup _{\substack{g \in L^{\perp} \\\|g\|^{*} \leqq 1}}\|I g\|^{*}\|T x\| \leqq \lambda\|T x\| .
$$

3. Applications. a) Let $X=L_{2 \pi}^{p} \quad(1 \leqq p<\infty)$ and let $L=T_{n} \quad(n=1,2, \ldots)$. Then we have $X^{*}=L_{2 \pi}^{q .}(1 / p+1 / q=1, \quad 1 \leqq p<\infty)$ and $\left(L_{2 \pi}^{\infty}\right)^{*} \supset L_{2 \pi}^{1}$. Let

$$
\begin{gathered}
T_{n}^{\perp}\left(L_{2 \pi}^{\infty}\right)=\left\{g \in L_{2 \pi}^{q}: \int_{0}^{2 \pi} g t_{n} d x=0, \forall t_{n} \in T_{n}\right\} \quad(1 \leqq p<\infty) . \\
T_{n}^{\perp}\left(L_{2 \pi}^{\infty}\right) \supset\left\{g \in L_{2 \pi}^{1} ; \int_{0}^{2 \pi} g t_{n} d x=0, \forall t_{n} \in T_{n}\right\}:=\Omega\left(L_{2 \pi}^{1}\right) .
\end{gathered}
$$

Let $T f:=f^{\prime}\left(f \in D(T):=D_{2 \pi}^{p}\right)$ and

$$
\operatorname{Ig}(x):=\int_{0}^{x} g(t) d t \quad\left[g \in D_{q, n}(I):=\left\{\begin{array}{ll}
T_{n}^{1}\left(L_{2 \pi}^{p}\right) & (1 \leqq p<\infty) \\
\Omega\left(L_{2 \pi}^{1}\right) & (p=\infty)
\end{array}\right]\right.
$$

It is easy to see that T and I satisfy the conditions (4), (5), (6) (with $D(T)=L^{\perp}$ in the case $1 \leqq p<\infty, D(T) \subset L^{\perp}$ in the case $p=\infty$). So by Theorem 1 we have

Theorem 2: Let $1 \leqq q \leqq \infty, n=1,2, \ldots$. For every $g \in D_{q, n}(I)$ we have

$$
\left\|\int_{0}^{x} g(t) d t\right\|_{L_{2 \pi}^{q}} \leqq \frac{c_{3}}{n}\|g\|_{L_{2 n^{\prime}} \cdot}
$$

b) Let $X=L^{p}(w) \quad 1 \leqq p \leqq \infty$ be the Banach space of all measurable functions defined on $[-1,1]$ with norm

$$
\begin{gathered}
\|f\|_{p, w}=\left\{\int_{-1}^{1}|f|^{p} w d x\right\}^{1 / p} \quad(1 \leqq p<\infty) \\
\|f\|_{\infty, w}=\|f\|_{\infty}=\underset{x \in[-1,1]}{\operatorname{ess} \sup }|f(x)|
\end{gathered}
$$

where

$$
w(x)=(1-x)^{\alpha}(1+x)^{\beta} \quad(\alpha, \beta>-1, x \in[-1,1]) .
$$

We have $\quad X^{*}=\left[L^{p}(w)\right]^{*}=L^{q}(w) \quad(1 \leqq p<\infty, 1 / p+1 / q=1)$ and $\left[L^{\infty}(w)\right]^{*} \supset L^{1}(w)$.
Let Π_{n} be the set of all algebraic polynomials of degree at most $n(n=0,1,2, \ldots)$ and let $L=\Pi_{n}$. Then we have

$$
L^{\perp}=\Pi_{n}^{\perp}\left(L^{p}(w)\right)=\left\{g \in L^{q}(w): \int_{-1}^{1} g p_{n} w d x=0, \quad \forall p_{n} \in \Pi_{n}\right\}
$$

$$
\begin{equation*}
(1 \leqq p<\infty, \quad 1 / p+1 / q=1) \tag{9}
\end{equation*}
$$

$$
\Pi_{n}^{\perp}\left[L^{\infty}(w)\right] \supset\left\{g \in L^{1}(w): \int_{-1}^{1} g p_{n} w d x=0, \quad \forall p_{n} \in \Pi_{n}\right\}:=\Omega_{n}(w)
$$

For any $f \in L^{p}(w) \quad(1 \leqq p \leqq \infty)$ we define

$$
E_{n}^{p}(w, f)=\inf _{p_{n} \in I_{n}}\left\|f-p_{n}\right\|_{p, w} \quad(n=0,1,2, \ldots)
$$

The following class of functions was defined in [7]:
$M_{p}(w):=\left\{f \in L^{p}(w): f\right.$ is absolutely continuous in $\left.(-1,1), \sqrt{1-x^{2}} f^{\prime}(x) \in L^{p}(w)\right\}$.
In [7] we proved that
(10) $\quad E(w, f) \leqq \frac{c_{i}}{n}\left\|\sqrt{1-x^{2}} f^{\prime}(x)\right\|_{p, w} \quad\left(1 \leqq p \leqq \infty, f \in M_{p}(w), \quad n=1,2, \ldots\right)$.

Now, let us define the operators T and I as follows:

$$
\begin{gathered}
T f(x)=T_{p} f(x):=\sqrt{1-x^{2}} f^{\prime}(x) \quad\left(f \in D\left(T_{p}\right):=M_{p}(w)\right), \\
I g(x)=I_{q, n} g(x):=\frac{1}{\sqrt{1-x^{2}} w(x)} \int_{-1}^{x} w(t) g(t) d t \quad\left(g \in D\left(I_{q, a}\right)\right)
\end{gathered}
$$

where $D\left(I_{q, n}\right)$ denotes the domain of $I=I_{q, n}$ which is defined by

$$
\begin{equation*}
D\left(I_{q, n}\right):=\Pi_{n}^{\perp}\left[L^{p}(w)\right] \quad(2<q \leqq \infty, 1 / p+1 / q=1) \tag{11}
\end{equation*}
$$

$$
D\left(I_{q, n}\right):=\left\{g \in \Pi_{n}^{\perp}\left[L^{p}(w)\right]: g \text { satisfies condition }(13)\right\} \quad(1<q \leqq 2)
$$

$$
D\left(I_{q, n}\right):=\left\{g \in \Omega_{n}(w): g \text { satisfies condition (13) }\right\} \quad(q=1)
$$

where

$$
\begin{equation*}
\int_{-1}^{x} w(t) g(t) d t=o\left[w^{1-1 / q}(x) \sqrt{1-x^{2}}\right] \quad(|x| \rightarrow 1) \tag{13}
\end{equation*}
$$

We prove that the operators T and I satisfy the conditions in Theorem 1.
Let $f \in D\left(T_{p}\right), g \in D\left(I_{q, n}\right)$ and let $G(x)=\int_{-1}^{x} w(t) g(t) d t$.
In the case $(1 \leqq p<2$, so $2<q \leqq \infty)$ we have for $-1<x<0$

$$
\begin{aligned}
& |G(x)|=\left|\int_{-1}^{x} w(t) g(t) d t\right| \leqq\left(\int_{-1}^{x}|g(t)|^{q} w(t) d t\right)^{1 / q}\left(\int_{-1}^{x} w(t) d t\right)^{1 / p} \leqq \\
& \leqq\|g\|_{q, w} O\left[(x+1)^{1 / p} w^{1 / p}(x)\right]= \\
& =(x+1)^{1 / p-1 / p} O\left[w^{1 / 2}(x) \sqrt{1-x^{2}}\right]=o\left[w^{1 / p}(x) \sqrt{1-x^{2}}\right] \quad(x \rightarrow-1)
\end{aligned}
$$

For $0<x<1$, using the relation

$$
G(x)=\int_{-1}^{x} w(t) g(t) d t=-\int_{x}^{1} w(t) g(t) d t
$$

(which follows from the fact that $\int_{-1}^{1} w g d t=0$ since $g \in D\left(I_{q, n}\right)$). By a similar method we obtain

$$
G(x)=o\left[w^{1 / p}(x) \sqrt{1-x^{2}}\right] \quad(x \rightarrow 1) .
$$

So relation (13) is true for every $g \in D\left(I_{q, n}\right)(1 \leqq q \leqq \infty, n=1,2, \ldots)$. Therefore by integration by part we have

$$
\begin{gathered}
\int_{-1}^{1} f(x) g(x) w(x) d x=\int_{-1}^{1} f^{\prime}(x) G(x) d x= \\
=\int_{-1}^{1} \sqrt{1-x^{2}} f^{\prime}(x) \frac{1}{\sqrt{1-x^{2}} w(x)} G(x) w(x) d x=\int_{-1}^{1} T f(x) \operatorname{Ig}(x) w(x) d x .
\end{gathered}
$$

Since this integral exists for every $T f \in L^{p}(w)$ and $T[D(T)]=L^{p}(w)$, we have by a well known theorem of functional analysis that $\lg \in L^{q}(w)$ and the last formula proves (6).

By Theorem 1, using (10) we have
Theorem 3. Let $1 \leqq q \leqq \infty, n=1,2, \ldots$. For every $g \in D\left(I_{q, n}\right)$ we have

$$
\left\|\frac{1}{\sqrt{1-x^{2} w(x)}} \int_{-1}^{x} w(t) g(t)\right\|_{q, w} \leqq \frac{c_{5}}{n}\|g\|_{q, w} .
$$

c) Let $X=L^{p}=L^{p}(-\infty, \infty)(1 \leqq p \leqq \infty)$ be the Banach space of functions defined on $(-\infty, \infty)$. Let

$$
\varrho(x)=\varrho_{\gamma, \delta}(x)=\left(1+|x|^{2}\right)^{\delta / 2 \gamma} e^{-|x| \gamma / 2} \quad(\gamma \geqq 2, \delta \geqq 0,-\infty<x<\infty) .
$$

We consider the following subspace of L^{p} :

$$
L:=H_{n}:=\left\{\varrho(x) p_{n}(x): p_{n} \in \Pi_{n}\right\} \quad(n=1,2, \ldots) .
$$

We have

$$
\begin{gathered}
L^{\perp}=H_{n}^{\perp}\left(L^{p}\right)=\left\{g \in L^{q}: \int_{-\infty}^{\infty} g p_{n} \varrho d x=0, \quad \forall p_{n} \in \Pi_{n}\right\} \\
(1 \leqq p<\infty, 1 / p+1 / p=1, n=1,2, \ldots)
\end{gathered}
$$

and

$$
H_{n}^{\perp}\left(L^{\infty}\right) \supset\left\{g \in L^{1}: \quad \int_{-\infty}^{\infty} g p_{n} \varrho d x=0 \quad \forall p_{n} \in \Pi_{n}\right\}:=\Omega .
$$

For any $\varrho f \in L^{p}$ we define

$$
E_{n}^{p}(\varrho, f)=\inf _{p_{n} \in \Pi_{n}}\left\|\varrho\left(f-p_{n}\right)\right\|_{p} \quad(n=0,1,2, \ldots) .
$$

Freud [3] proved the following inequality:

$$
\begin{equation*}
E_{n}^{p}(\varrho, f) \leqq \frac{c_{6}}{n^{1-1 / \gamma}}\left\|\varrho f^{\prime}\right\|_{p} \quad\left(1 \leqq p \leqq \infty, \varrho f \in M_{p}(\varrho), \quad n=1,2, \ldots\right) \tag{14}
\end{equation*}
$$

where
(15) $\quad M_{p}(\varrho) ;=\left\{\varrho f \in L^{p}: f\right.$ is absolutely continuous on $\left.(-\infty, \infty), \varrho f^{\prime} \in L^{p}\right\}$.

We define $T=T_{p}$ and $I=I_{q, n}$ as follows:

$$
\begin{gathered}
T(\varrho f):=\varrho f^{\prime} \quad\left(\varrho f \in M_{p}(\varrho):=D\left(T_{p}\right)\right) \\
\operatorname{Ig}(x):=\frac{1}{\varrho(x)} \int_{-\infty}^{x} \varrho(t) g(t) d t \quad(f \in D(I))
\end{gathered}
$$

where

$$
D\left[I_{q, n}\right):=\left\{\begin{array}{l}
g \in H_{n}^{1}\left(L^{p}\right) \quad(1 \leqq p<\infty) \\
g \in \Omega \quad(p=\infty)
\end{array} \quad\binom{\text { and } \quad g}{\text { satisfies condition (16) })}\right\},
$$

where

$$
\begin{equation*}
\int_{-\infty}^{x} \varrho(t) g(t) d t=O\left[|x|^{1 / q} \varrho(x)\right] \quad(|x| \rightarrow \infty) . \tag{16}
\end{equation*}
$$

First we prove that T and I satisfy the conditions of Theorem 1. Let $f \in D\left(T_{p}\right)$ ($1 \leqq p \leqq \infty$) and let $g \in D\left(I_{q, n}\right)(1 / p+1 / q=1)$,

$$
G(x):=\int_{-\infty}^{x} g(t) \varrho(t) d t .
$$

Using (16) we obtain

$$
\begin{gathered}
|f(x) G(x)|=|G(x)| \int_{0}^{x} f^{\prime}(t) d t+f(0) \mid=o\left[\left|x^{1 / q}\right| \varrho(x)\right]+o\left[|x|^{1 / q} \varrho(x)\left|\int_{0}^{x}\right| f^{\prime}(t)|d t|\right]= \\
=o(1)+o\left[\left.\left|\int_{0}^{x}\right| x\right|^{1 / q} \varrho(x)\left|f^{\prime}(t) d t\right|\right]=o(1)+o\left[|x|^{1 / q}\left|\int_{0}^{x} \varrho(t)\right| f^{\prime}(t)|d t|\right]= \\
=o(1)+o\left[|x|^{1 / q}\left\|\varrho f^{\prime}\right\|_{p} \mid\left(\int_{0}^{x} d t\right)^{1 / q}\right]=o(1)+o(1)=o(1) \quad(|x| \rightarrow \infty) .
\end{gathered}
$$

So we have by integration by part

$$
\begin{align*}
& \int_{-\infty}^{\infty} f(x) \varrho(x) g(x) d x=\int_{-\infty}^{\infty} f^{\prime}(x) G(x) d x= \tag{17}\\
= & \int_{-\infty}^{\infty} \varrho(x) f^{\prime}(x) \frac{1}{\varrho(x)} G(x) d x=\int_{-\infty}^{\infty} T(\varrho f) \lg d x .
\end{align*}
$$

Since the integral (17) exists for every $T(\varrho f) \in L^{p}$ and $T[D(T)]=L^{p}$ we have $I g \in L^{q}$ and (17) proves condition (6). Other properties of T and I follow from the definition.

We have by Theorem 1 and (14)
Theorem 4. Let $1 \leqq q \leqq \infty, n=1,2, \ldots$. For every $g \in D\left(I_{q, n}\right)$ we have

$$
\left\|\frac{1}{\varrho(x)} \int_{-\infty}^{x} \varrho(t) g(t) d t\right\|_{q} \leqq \frac{c_{7}}{n^{1-1 / \gamma}}\|g\|_{q} .
$$

References

[1] H. Bohr, Ein allgemeiner Satz über die Integration eines trigonometrischen Polynoms, Collected Works, Vol. II., Kobenhavn (1952), 273-288.
[2] G. Freud, A contribution to the problem of weighted polynomial approximation, Proceedings of the conference in Oberwolfach, August 14-22, 1971.
[3] G. Freud, Investigations on weighted approximation by polynomials, Studia Sci. Math. Hungar., 8 (1973), 285--305.
[4] G. Freud and J. Szabados, A note on a Bohr type theorem, Mat. Lapok, 21 (1970), 253257. (in Hungarian)
[5] Nguyen Xuan Ky, On weighted polynomial approximation, Ph. D. Thesis (Budapest, 1976) (in Hungarian).
[6] Nguyen Xuan Ky, On a Bohr type inequality, Preprint of Math. Inst., 22 (Budapest, 1984).
[7] Nguyen Xuan Ky, On approximation by algebraic polynomials in weighted spaces, Preprint (Budapest, 1984).
[8] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, SpringerVerlag (New York-Berlin, 1970).
[9] B. Sz.-Nagy and A. Strausz, On a theorem of Bohr, MTA Mat. Tud. Értesitöje, 57 (1938), 121-135. (in Hungarian)
[10] A. Zygmund, Trigonometric series I-II, University Press (Cambridge, 1968).

DEPARTMENT OF MATHEMATICS
LORÁND EÖTVƠS UNIVERSITY
MÚZEUM KRT. 6-8.
1088 BUDAPEST, HUNGARY

[^0]: Received May 21, 1984.

