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Limit cases in the strong approximation of orthogonal series 
L. LEINDLER*) 

In ltonour of Professor K. Tandori on his 60 th birthday 

Introduction 

Let {<jfn(x)} be an orthonormal system on the finite interval (a, b). We consider 
the orthogonal series 

(1) 2 Cn<pjx) with ¿ c „ 2 < ~ . 
it—O n = o 

By the Riesz—Fischer theorem series (1) converges in the metric L2 to a square-
integrable function f(x). Denote s„(x) the «-th partial sum of (1). 

In [1] we proved that if 0 < y < l and 

(2) ¿ c ' n ' ^ o o , 
n—1 

then 

R 4 " R ¿ & 0 ) - / ( * ) ) = O , ( / . - ' ) B t l k = 0 

almost everywhere in (a, b). 
G. SUNOUCHI [6] generalized our theorem to strong approximation in the follow-

ing way: If 0 < y < 1 and (2) holds, then 

(3) ¿ ^ = J K . ( J C ) - / ( X ) | " } 1 / P = O X ( « - > ) 

also holds almost everywhere for any a > 0 and 0</?<y~ ] , where = 

We generalized this result in [2] in the following ways: 

*) The preparation of this paper was assisted by a grant from the National Sciences and 
Engineering Research Council of Canada while the author was visiting the University of Alberta. 
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First we showed that the assumptions of Sunouchi's theorem imply, for any increas-
ing sequence {vfe} of the natural numbers, that 

( 1 " l 1 / p 

(4) CM P, {»»}; x):= — 2" ̂ i K ( * ) - / ( * ) | p = ox(n~*) 

also holds almost everywhere in (a, b). In the other words we proved that the conditions 
of Sunouchi's theorem imply the very strong approximation with the skme order. 
Since we speak on strong, very strong and extra strong (or mixed) approximation 
according as in the investigated means the following partial sums sk(x), sVk(x) 
K < v „ + 1 ) or s^Jx) (where {¡uk} is a permutation of a subsequence of the natural 
numbers, or briefly a mixed sequence) appear, respectively. 

Secondly we replaced the partial sums in (3) by (C, <5)-means, where <5 would 
also take negative values. 

Very recently in a joint paper with H. SCHWINN [5] we have attained to the fol-
lowing four theorems: 

T h e o r e m A. If 0 </>y< /? then for any increasing {vs} of the natural numbers 
condition (2) implies that 

r n y/p 
(5) hM P, p, K } ; *):= (» + 1)-* Z(fc + l ) " - 1 k ( * ) - / ( * ) l p = ox(n->) 

l k—0 > 

holds almost everywhere in (a, b). 

T h e o r e m B. If a and y are positive numbers, 0</>y < 1, and {vk} is an increas-
ing sequence, then condition (2) implies (4) almost everywhere in (a, b). 

The novelty of these theorems is that the restriction y < l , which appeared in 
the previous theorems, is omitted. The following theorems, holding this advantage, 
extend these results to the case of extra strong approximation under a slight restric-
tion of other type. 

T h e o r e m C. Let {nk} be a fixed permutation of a subsequence of the natural 
numbers, moreover let y > 0 and 0</>y<min (/?, 1). Then condition (2) implies that 

(6) hM, P, P, W: x) = ox(n~*) 

holds almost everywhere in (a, b). 

T h e o r e m D. Let {/4} be a fixed permutation of some subsequence of the natu-
ral numbers, let y > 0 and 0 < p y < m i n (a, 1). Then (2) yields that 

(7) C „ ( / , a , p , {nk}; x) = ox(n"0 

holds almost everywhere in (a, b). 
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In a recent paper [4] we started to investigate the order of approximation of the 
means h„ defined in (5) under the assumption P=py\ i.e. we investigated the limit 
case of the restrictions of the parameters. We obtained, among others, that in the 
special case p=2, condition (2) with y=P/2 implies only 

h(f,P, 2 , {vJ ; x) = Ox{n->y, 
and in the case p ^ 2, condition (2) does not ensure even this order of approximation. 
In order to obtain the order Ox(n~y), new conditions were required instead of (2). 

More precisely, we proved (Proposition 2 of [4]) 

T h e o r e m E. Let {vt} be an arbitrary sequence. Then for any positive P the fol-
lowing pairs of condition 

(8) 0 < P S 2 and ¿n*-1! 2 4}"/2<oo 
n—1 k=n+1 

or 

(9) p^2 and ¿„Wp)tf-«+ic2<„ 
n=i 

imply 
(10) h„(f, p, p, {v*}; x) = O^n-V") (y = Pip) 

almost everywhere in (a, b). 

The aim of the present paper is to study whether Theorems B, C and D have 
extensions for the limit cases of the restrictions of the parameters similar to Theorem 
E. For Theorem E can be interpreted as an extension of Theorem A to the case 
py=p. 

We shall also investigate what happens if we retain condition (2) but the para-
meter y takes the limit value of those in the previous theorems. In these cases, as 
expected, the order of strong approximation will increase by a factor (log n)1/p. 

Now we formulate our theorems: 

T h e o r e m 1. For any positive a and for any increasing sequences {vfc} of the 
natural numbers the following pairs of conditions 

(11) and 2{ 2 cB"/2<co 
n=l k=n+1 

or 

(12) P = 2 and ¿ c 2 n < ° ° 
n=X 

imply 

(13) C n ( / , a , p ; K } ; x) = Ox(n~^) 

almost everywhere in (a, b). 
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T h e o r e m 2. If /?>0, /5 = min (/?, 1) and {/¿J is an arbitrary permutation of 
some subsequence of the natural numbers, then each of the conditions (8) and (9) with 
fi instead of /? implies that 

(14) hn(f p, p,{pk}-, x) = Ox(n-*">) 

holds almost everywhere in (a, b). 

T h e o r e m 3. If a > 0 , a = min(a, 1) and {pk} is an arbitrary permutation oj 
some subsequence of the natural numbers, then each of the conditions (11) and (12) 
implies that 

(15) Cn(f,*,p,{nk}ix)=-Ox{n-v>) 

holds almost everywhere in (a, b). 

In the following theorems the conditions on the coefficients will be of the same 
forms as condition (2). The results to be presented can be considered as extensions of 
Theorems A—D. 

T h e o r e m 4. If p and ft are positive numbers then for any increasing sequence 
K) condition 

(16) (y = p / p ) 
n=l 

implies that 
(17) hn(f, P, P, k } ; X) = o^n-V (log n)1'") 

holds almost everywhere in (a, b). 

T h e o r e m 5. If a and p are positive numbers then for any increasing sequence 
{ v j condition 

(18) ¿ c n V / ' < - (y = 1/p) 
n=l 

implies that 
(19) C n ( f , «, P, K ) ; x) = ox(n-y (log ny") 

holds almost everywhere in (a, b). 

T h e o r e m 6. If p and P are positive numbers, and j5=min (P, 1), then for any 
permutation {pk} of some subsequence of the natural numbers condition 

(20) (y = P/p) 
n=l 

implies that 

(21) K{f p, p, K } ; x) = ox(n-fl" (log n)1/p) 

holds almost everywhere in (a, b). 
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T h e o r e m 7. If a and p are positive numbers, and a = min (a, 1), then for any 
sequence {//t} given in Theorem 6 condition 

(22) (y = a/p) 
n = l 

implies that 

(23) C n ( f , a, P, K } ; *) - (log n)1/?) 

/jo/ifc almost everywhere in (a, b). 

§ 1. Lemmas 

To prove the theorems we require the following lemmas: 

L e m m a 1 ([2, Lemma 5]). Let {A„} be a monotone sequence of positive numbers 
such that 

m 
2 A|n = 

n = l 

If 
ZclXl^o, 

1 1 = 1 

then we have 
s2„(x)-f(x) = ox(A7.) 

almost everywhere in (a, b) 

L e m m a 2 ([5, Lemma 4]). Denote 

c0<Pa(x) if n = 0, 

= 
. 2_(sk(x)-sim(x)) if 2 < 2m + 1; m = 0, 1, . . . . 
ft=2m 

T/iew for any positive p and m^l 
+ 1 — 1 2m + 1 

J 2 \sk{x)-s2m(x)-ol(x)\>yi>dx^K(p) 2 cl 
a k=2m n=2m-H 

L e m m a 3 ([5, Lemma 5]). Let y > 0 and p s 2 . Then condition (2) implies that 

oo 2m+1 —1 
2 2 k ' y - ^ M - s M - o t W m=0 Jk=2m 

/5 finite almost everywhere in (a, b). 

*) K,Ki, K2, ... will denote positive constants not necessarily the same at each occurrence. 
Similarly K(a), K^a),... denote constants depending on the parameter a. 

18 
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L e m m a 4 ([5, Lemma 6]). Under the assumptions of Lemma 3 we have 

*=1 
almost everywhere in (a, b). 

L e m m a 5 ([5, Lemma 7])- Condition (2) with any positive y implies 

<(x) = ox(n~i) 
almost everywhere in (a, b). 

L e m m a 6 ([4, Lemma 3]). Let z > 0 and {A„} be an arbitrary sequence of posi-
tive numbers. Assuming that condition 

(1.1) 
n -1 k=n 

implies a "certain property T= ((s„(x)})" of the partial sums sn(x) of (1) for any 
orthonormal system, then (1.1) implies that the partial sums smJ,x) of (1) also have the 
same property T for any increasing sequence {mk}, i.e. if 

(1.1) ^ T t M * ) } ) then (1.1) => r({smk(x)}) 

for any increasing sequence {mk}. 

L e m m a 7. Let y >0 , p^2 and py = \. For a given sequence {fik} of distinct 
positive integers we define another sequence {mt} as follows: mk=2m if 2m^/it<2m+1. 
Then (2) implies that the sum 

*=i 

is finite almost everywhere in (a, b). 

P r o o f . The case />y<l has been proved in [5] (see Lemma 8). If py — \ then 

oo 2m + 1—1 
MI(*)=2 2 k-M-VnW-drwi", 

m=0 i=2m 

whence, by Lemma 2 and p=2, we obtain that 

b oo 2m +1 

/ {to ( x ) f d x ^K 2 22m/p 2 
* m = 0 n = S - + l 

which prove our lemma with y = l¡p. 
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L e m m a 8. Let y » 0 , p=2 and py = \. Then for any sequence {pk} of distinct 
positive integers the sum 

k= 1 

is finite almost everywhere in (a, b) if (2) holds. 

P r o o f . If py< 1 then our lemma is proved in [5, Lemma 9]. The case py = 1 
follows from Lemma 4 with y = l/p, and so the proof is complete. 

L e m m a 9 ([3, Lemma 2]). Suppose that y is a real number and that (2) holds. 
Then for any sequence of distinct positive integers we have the inequality 

f { 1 n t ' - ' K M - ^ i x W } d x S K 2 Cn"2', 

; k=o „=x 

where mk=2m if 2mSpk<2m+1. 
L e m m a 10. Suppose that y >0 , 0< />=2 and P=py, and that (2) holds. Using 

the notations of Lemma 9 we have that 

holds if /? = 1; if 0>1 then we only have 

P r o o f . First we prove (1.3). If p=2 then a simple integration gives (1.3). If 
p-<2 we use the following form of Holder's inequality 

(1.4) 2 k ^ M - s ^ i x ) = = { 2 fc2(w-1M*)-Smt(*)l2}p/aX 

2 k(1~2Wp))p/(2_p)+2('i_1)/(2_p)}(2~p)</2. 
k=1 

The sum in the second factor does not exceed Alog n, and so by (1.4) 

i k'-11sk(x) smk(*)|p K, (log ny-"*{ 2 kW>-l\sk(x)-smk(x)\y2, 
k=1 k=1 

whence by Lemma 9 with nk=k and y=P/p we obtain (1.3). 

18; 
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The proof of (1.2) for p=2 is also obtained by integration, but here we require 
that 1. Namely, 

i, m 

Z k ' - 1 / |SlJk(x)-smii(x)\*dx^K Z Z k f - ^ S 

El„-2m^ = Z £,|m2m2" S K2 
m=0 m=0 n=X 

In the case ^ < 2 we distinguish two cases according as y S l / 2 or 0 < y < 1/2. If 
y S l / 2 then we use the Holder's inequality in the following form: 

2 fc^M*)-^*)!" = i ^ 
t= i *=i 

(1.5) 

i = l k=l 

Next we estimate the sum appearing in the first factor: 

2 i = 2 k2^~1 ) l i 2~p'> 

fc=1 

If y = l /2 then P=p/2, and so Z i = K l o S n- I f V5*1/2 then 2 ( 0 - l ) / ( 2 - p ) = — 1 , 
and therefore with 2 , - 1 <77S2 ' 

(1.6) 2 x ^ 1 2 = Z + Z = Z*+Z3; 
m = 0 2mSpfc-=2m+' m = 0 m=/+l 

tgo 
furthermore 

I 2m 

g 2 2»P(l-2y)/(i-P) £2(0-l)/(2-p) ^ 
m=0 A. = 2 

(1.7) 

7s Kx Z 2mp(1-2-l)i(i-p'>2»(i+W-W-rtig^ 2" 1 = A"2log n 
m±±0 m=0 

and 
(1.8) 

111 = 1+1 i = l 

The estimates (1.5)—(1.8) and Lemma 9 give (1.2) for r ^ l / 2 . 
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Finally we prove (1.2) for 0 < y < 1/2 and p < 2 . As in (1.5) we use again Hol-
der's inequality with k instead of pk. We obtain that 

k = 1 

(1.9) ^ { 2 2 k-'-1 |s№(*)-sm f t(*)!2}^ 
*=1 

n 
^ K(log n)1-"'2 { 2 fc2'"1 I v W - v W l2}p/2-

<¡=1 
If we can show that 

(i 10) / { J k»-1 | s „ t ( x ) - s m , » | > } d x - * Jc%n 2 y ; 

then (1.9) and (1.10) will yield (1.2) with 0 < y < l / 2 , too. 
Now we verify (1.10) as follows: 

2 fe2"-1 / M*)-*»„(*) I2 dx= 2 /c2'-1 1 <5 

oo 2m +1
 oo 2'"+1 2'" oo 2m +1 

== Z 2 fc8""1 2 cl^ 2 2 cl 2k2y~1 = K 2 2 m=0 2",Sfl(t«=2'" + 1 n = 2m+l m=0n = 2m+l Jc=l m=0n=2m+l 

Herewith we completed the proof. 

§ 2. Proof of the theorems 

P r o o f of T h e o r e m 1. If a = l then (13) follows from Theorem E with / ?=! , 
since hn(f, ],p, {v j ; x)=Cn{f, hp, K ) ; A). On the other hand, in respect to the 
following elementary fact: 

(2.1) = V f o r a n y « = 
n " 

we have for a > l that 

(2.2) Cm(f, a, p, K ) ; x) s *C„(/; 1, p, {vj; x), 

so (13) is proved for any a s l . 
Now let 0 < a < l . We put Cn(x):=CJf, a,p, {A:}; x) and 2 m =s / j<2 m + 1 

( w s 2 ) . Then 
(( 1 2'"-> i1/? 

(2.3) c„(x) s k ({— 2o + 

* = 2»'-» + l i J 
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Here the first term C<l)(x) is of the order Ox(n~1/p), for after simplification it 
becomes a part of the mean C„(/, 1 ,p , {A:}; x). 

Now we estimate C*2)(x) as follows: 

(2.4) C®(JC) S 2"'£ A'Kz\ \sk(x) - S 2 M - • ( x ) - a * k ( x ) | 4 + 

{1 2™-l I1/? f 1 n lVP 

-77 2 Aiz\\s,m-^x)-f{x)Y\ + — 2 + A„ /t = 2 m - ' + l ' lAn k = 2"> ' 
f 1 » l 1 / p f 1 » l 1 / p ï 5 

k~2m ' "--̂ n fcsam-i+l > ' i=l 

By Lemmas 1 and 5 we have 

(2.5) Z><2> (*)+£<*> (*)+/)< 5>(x) = ^ ( n - 1 / p ) , 

since it is almost trivial that conditions (11) and (12), separately, imply 

(2.6) ¿ c > 2 / ' < o o . 
n=l 

The implication (11)=>(2.6) can be proved as follows: By />/2^1 we have 

2 cWp ^ Hp) 2 m ^ - 1 2 c„2 ^ K,(p) 2 2m2/p Z c2 S n=l m=l n = m m=1 n=2m+l 

^K2(p)(2 2m{ i c 2 } * / 2 ) 2 / > ^ 3 ( p ) ( i { i c|}"/2)2/". 
m=l n = 2 m+l u = l <t=n+l 

In order to estimate D ^ \ x ) and D®(x) we use the Holder inequality with q 
being chosen such that q> 1 and (a — l ) ç > —1. Then 

1 2m —1 2m—1 

in) , r zt = 2'"-l + l k = 2™"1 + 1 
(2.7) 

1 ?"'-l 
2 \sk(x)-s2m-> (x)-at(x)ry/<"<' = :D*(x). 

k = 2m ~1 

Furthermore, by Lemma 2 and (2.6), we obtain that 

<x>  b CO 2m 

2 f {2m"'DUx)fdx^K1 2 22m/p 2 
m=1 * m = l n=S m" 1+l 
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which by (2.7) implies 

D^ix) == £>*m(x) = ox(2~m,p) = ox(n~V>). 

D^3)(JC) can be estimated similarly by D*+1(x), and so Z>i3)(;c) = ox(n~1/p) 

also holds almost everywhere in (a, b). 
Collecting the given estimates we obtain the following result 

Cn(f, P, {k}l x) = Ox(n-yp) 

almost everywhere in (a, b). 
Hence, using Lemma 6 with x=p/2, A„=l for 0</>=2; and with x=l, 

1„ = 1 for p=2; furthermore with the property T given by 

r(K(*)}) := cn(f,«, p, {ky, x) = Ox(n-up), 

we obtain the statement of Theorem 1 immediately. The proof is complete. 

P r o o f of T h e o r e m 2. First we prove the case P = l , then /?=/?, and so 
(14) means that 

(2.8) I f c ' - ' M * ) - / ^ ) lP 

k = l 

converges almost everywhere in (a, b). 
To verify (2.8) we first consider the case 0</><2. Then, using the notation 

E2- 2 cl> w e h a v e 
k=n +1 

/ ( 2 0 dx = 2 2 fe"-1 / M * ) - / ( * ) l p dx ^ 

^K 2 2 k ^ i f \s„k(x)-f(x)\*dxy12 S 
m—O 2m /̂ik-c2m + 1 a 

^ Ai 2 2ml>E& 2 < oo, 
m=0 n=l 

whence, by the Beppo Levi theorem, the convergence of series (2.8) follows almost 
everywhere in (a, b). 

If 2, then the following obvious estimate 

(2.9) 2 i ^ { 2 kW-»">\sllk(x)-f(x)\*}<»*:= (Z*)"'2 

k=l 
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shows that it is enough to prove that condition (9) with fi implies the finiteness of 2 t 
almost everywhere. But, by —1<2//>(/?—1)<=0, 

f (Z2) dx = 2 2 fc2(p-1)/p/ M*) -/(*)I2 dx s 

S K 2 E - ^ + w - D / r t ^ g ^ ¿ c a n i + 2 ( / ) - i ) / P < O O J 
m = 0 n = l 

so the series (2.9) converges, which completes the proof for / ?S l . 
Since 

(2.10) hn(f, P, P, K ) ; x) =S /5, p, K ) ; X) 

always holds, thus the proof of Theorem 2 is complete. 

P r o o f f o T h e o r e m 3. On account of the following inequality 

C„if, a, p, {//J; x) =2 C(/ , a, p, {pk}; x) 

we may assume that a S l , then a = a . Furthermore the case a—I is the same as the 
case P = l of Theorem 2, so we may assume that 0 < a < l . In this case we can choose 
anumber such that (a — l )q<— 1; and if we now use the Holder's inequality 
with this q and q'=ql(q — 1) then 

f 1 • l1/p* " 
C n ( f , a, p, K); x) s \ j j - q 2 { 2 K ( x ) - f ( x ) \ " ^ H^n" k—0 > k=0 

^Kn-°>>{2Kk(x)-f(x)\pq'Y'p* k=0 
holds. This will prove our theorem if we can show that 

(2.11) ¿ K ( * ) - / ( * ) r k=0 
converges almost everywhere in (a, b). But, by the special case fi = l of Theorem 2, 
our assumptions (11) and (12) imply the convergence of the series 

2 M*)-/(*)lp 

*=0 
almost everywhere, and so on account of 1 the series (2.11) converges almost 
everywhere, too. This has completed the proof. 

P r o o f of T h e o r e m 4. If p=2 then Theorem E yields a sharper estimate 
than (17). Thus we have to prove our theorem only for p ^ 2 . First we prove (17) 
for 0 < p < 2 . By Lemma 6 it is also clear that it will be enough to prove (17) in the 
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speical case vk=k. Then' 

(2.12) hp(f, ft p, {k}; x) == K{^jyT J ( k + iy-'K(x)-smk(*)!* + 

+ ^ y i + D " - 1 ! ^ ( * ) • ~ / ( * ) l p } . 

Here the second sum, by Lemma 1, does not exceed ox(n~e log n). 
In the estimation of the first sum we can use the statement (1.3) of Lemma 10. 

So we obtain that this sum has the order Ox{n~p(log w)1_p/2) which is even better 
than the required ox(n~e log ri). 

These estimations and (2.12) obviously imply (17) for 0 < p < 2 and vk=k. 
If p > 2 then we use the following estimation with the assumption 2m^n<2m+1: 

m 2» + 1 - l 

K ( f , P, p, {k}; x) K{n-o 2 2 fc"-1kM-/(*)ip}1/p S 
v = 0 V = 2 v 

^ 2 1 k^\sk(x)~sAx)-^(x)\"Y/" + 
v = 0 k = 2" 

m 2V + I - 1 2 m + 1 3 : 

+{"-" 2 2 ^ - 1 M * ) - / 0 c ) l p } 1 / p + { « - ' i 2" kp-1\fft(x)\p}1"' = k, 2 ^Hx). v = 0 k = 2V k=1 i = l 

Using Lemma 3 and 4 with y=P\p we obtain that 

D^(x) = Ox(n~P/p) and D^(x) = Ox(n~^p), 

furthermore by Lemma 1 

D™(x) = ox(n~p'p (log n)1'"). 

Summing up our partial estimations, we get that 

hn(f, P, P> {k}; x) = ox(n~i>>p(log n)1'"), 

and this, by Lemma 6, conveys the assertion of Theorem 4. 
P r o o f o f T h e o r e m 5. On account of Lemma 6 we have to prove (19) only for 

the special case vk=k. In the special case p=2 Theorem 1 gives a better estimate 
than (19) does. Hence it is sufficient to consider the cases p ^ 2 . We can follow the 
line of the proof of Theorem 1. Using the notations introduced there, we have 

(2.13) C„( / , a, p, {k}; x) ^ K(C^(x) + C^(x)), 

where C„(1)(x) has the order ox(n~ 1/p(log n)lfp) since 

C « ( x ) S Kh„(f, 1, p, {k}; x) 

and so Theorem 4 conveys the order of approximation given above. 
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The sum can be estimated exactly the same way as in the proof of Theo-
rem 1, namely the condition (2.6) which was used during the estimation of C<2)(x) 
is the same as (18). So we have C®>(x)=ox(n~Vp). Collecting these estimations, by 
(2.13), we obtain (19) for vk=k; and this was to be proved. 

P r o o f o f T h e o r e m 6. On account of the obvious inequality (2.10) we may 
assume that j S s l and so fi=P- We may also omit the proof of the case p=2, 
for then Theorem 2 gives a sharper estimation than (21) claims. In the subsequent 
steps of the proof we distinguish two cases according to 0 < / ? ^ 2 or 2. 

In the case 0 < p < 2 we start with the following estimation 

K i f , P, P, faj; x) ^ K i (/c + 1 ) " - 1 |s„fc(x) - smk(x) |*+ 

(2.14) 

+ (k + iy^\smk(x)^f(x)\P} + 

Here the first sum, by the statement (1.2) of Lemma 10, has the following order 

(2.15) 2 i = O x { n - ^ \ o g n f ~ ^ ) . 

To estimate 2 i w e assume 2 ' ~ 1 < n < 2 ' . Then, by Lemma 1, we have 

(2.16) 2»= 5( 2 2 + 2 =2*+2*-
ksn 

A simple consideration gives that 

| 2"» 

(2.17) 2 a = 2 (2k»-1)ox(2-'"li) = ox(n~'logn) 
m=0 *=1 

and 

(2.18) 2* = »-' 2 (2ki>-1)ox(2-'»l>) = ox(2->i>) = ox(n-e). 
m=l+l k = l 

Collecting the estimations (2.14)—(2.18) we obtain that 

K ( / , P, p, K } ; x) = ox(n~> log n) 

holds almost everywhere in (a, b), and this proves (21) for p<2. 
If p>-2 then we use the following estimation: 

K (/> ft P, {PkY, x) == Jo (k+iy~1 I ^ W - s m t ( x ) - < ( x ) | " + 

= K(2s+2«+2Z)-
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Above we have verified that 2z=°x(.n~ß log n). 

To estimate 2s w e aPPly Lemma 7, whence 

Z s = OAn-0) 

follows. Similarly Lemma 8 gives that 

Z e - O x (« -" ) . 

Summing up these partial results, we again arrive at (21), and this completes the 
proof. 

P r o o f of T h e o r e m 7. Using the same arguments as we did at the beginning 
of the proof of Theorem 3 we may assume 0«=a<l . Then we can use the Holder 
inequality with 1/a and 1/(1—a) and obtain that 

2 Aizl I S < J * ) - / ( * ) | ' s { i I U * ) - / ( * ) r t { J ( ^ i ^ 1 " * ' } 1 " * -
k=0 k = 0 t=0 

Hence we obtain that 

{1 R B WP 

^ 2 ^ Kn-">{log nyi>-*i>{ 2 • 
An* =0 J k=0 > 

To prove (23) it suffices to verify that 

(2.19) ( l o g « ) - / ' { 2 | s № ( * ) - / ( * ) l p " } " ' = 
fc=0 

holds almost everywhere in (a, b). If we apply Theorem 6 with ß=l and pia (in-
stead of p), then (21) gives that 

{ i M * ) - / ( * ) r } " / p = "*((log n)*">), 
Jt=0 

and so (2.19) is fulfilled, indeed. Theorem 7 is hereby proved. 
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