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The asymptotic distribution of generalized Renyi statistics 

DAVID M. MASON 

In honor of Professor Karoly Tandori on his sixtieth birthday 

1. Introduction and preliminaries 

For each integer 77^1 let Ux, ...,£/„ be independent Uniform (0, 1) random 
variables, £/1 > nS...Sf/„> n be their corresponding order statistics and G„ the right 
continuous empirical distribution function based on these n independent uniform 
(0, 1) random variables. We shall begin by stating some results in the literature that 
motivated our present investigation. 

DANIELS [5] showed that for any — oo<x<°° 

(1) P \ sup = 

where 
V 

for 0 ^ x < 
F(x) = X + L 

0, for x 0. 

Let N(t), denote a right continuous Poisson process with parameter one. 
PYKE [10] proved that for any — 

(2) p\ sup M ^ Î s 4 = / • (*) . 

Combining statements (1) and (2), we have for each « s i 

G„(s)-s e N(i) — t sup — = sup — — — , 
0SSS1 S OSt«« t 

where = denotes equality in distribution. More generally, a slight modification of 
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the techniques of Mason [8] establishes that for each O s v < 1/2, as n — 

v GH(s)-s a N(t) — t 
(3) "v sup — - — v • sup „ . 

0SSS1 A ' 

(The symbol denotes convergence in distribution.) A result closely related to (3) 
proven in MASON [8] is that for any 0 S V < l / 2 , as W — 

where 

sup , 
0 S t < " ' 

N'V=NV, Nv and N'v are independent random variables, and the symbol V denotes 
maximum. 

If a l / 2 ^ v ^ l is chosen, the Poisson limit behavior in (3) and (4) breaks down. 
In particular, when l / 2 < v ^ 1 and nv is replaced by n1/2, the limiting distribution of 
the left side of (4) is the same as that of 

» ^ ( s a - i ) ) 1 - ' 

where B(s), O ^ s ^ l , is a Brownian bridge defined on [0, 1]. When v = l / 2 , with 
additional normalizing constants applied, the limiting distribution of the left side of 
(4) is an extreme value distribution. For details the reader is referred to O'REILLY 

[9], EICKER [6], JAESCHKE [7], the discussion in MASON [8], or to the exhaustive study 
i n M . CSÖRGŐ, S . CSÖRGŐ, HORVÁTH, a n d MASON ( C S — C s — H — M ) [4]. 

When v = 0 , the limiting Poisson behaviour of the left side of (3) can break 
down in another way, if the supremum is not taken over the entire interval [0, 1]. 
RENYI [11] (also see M . CSÖRGŐ [3]) showed that for any fixed 0 < A < l , as N—«=, 

( a V if { G „ ( s ) - s } s (5) I sup /l1'--^—^ — • sup W(t), 
\1—& ) oáss l S 0SÍS1 

and 

(6) U - f sup n V t ^ M z A l L sup r ( 0 | , 

where W(t), O S / á l , denotes a standard Brownian motion defined on [0, 1]. 
CSÁKI [2] demonstrated that (5 ) remains true if a is replaced by any sequence of 
positive constants an such that as n— 

(7) 0 < a„ < 1, a„ — 0, and na„ — 
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This suggests that if the supremum on the left side of (3) is restricted to [a„, 1 ], where 
the sequence a„ satisfies condition (7), when appropriately normalized, its limiting 
distribution should be the same as that of the supremum of a certain Gaussian 
process; and the same should be true if the supremum on the left side of (4) is re-
stricted to an interval of the form [an, 1 —an]. In the next section, we shall show that 
this is indeed the case. Such statistics will be called generalized Renyi statistics. 

The main tool which we shall use to establish our results will be a new Brownian 
bridge approximation to the uniform empirical and quantile processes recently ob-
tained by Cs—Cs—H—M [4]. We shall now describe some of its basic features. 

In Cs—Cs—H—M [4] a probability space (Q, si, P) is constructed carrying a 
sequence Ult U2, •••, of independent Uniform (0, 1) random variables and a sequence 
of Brownian bridges Bn(s), O ^ s ^ l , n=1,2,..., such that for the uniform empirical 
process 

a„(s) = n1 /2{On(s)-s}, O s i s ^ l , 

and the uniform quantile process 

where 
/?„(«) = i/„(s)}, O ^ s l , 

Ukn, if < s ^ kin, k=l, f U k 1 
if 5 = 0, 

we have 

(8) sup 
1/nSsSl s 1 

ro\ c„„ K O O D O O I _ n /„-¿A 
( 9 ) 

(10) sup 
i/(n+i)asai s ' 1 

and 

< u> . i t S ^ " 0 ' « " - ' ' ' -
o=issi-i/(n + i) U s) 1 « 

where and <52 are any fixed numbers such that O s ^ c l / 4 and 0^<52-= 1/2. State-
ments (8) and (9) are contained in Corollary 2.1, while statements (10) and (11) follow 
from Theorem 2.1 of the above paper. We shall also need the fact that statements (8) 
and (9) remain true on this probability space for any O - ^ d ^ l / 2 with the supremum 
taken over [0,1] and the 0P(ti~Sl) replaced by oP( 1). This follows from the general 
results on q-metric convergence in Cs—Cs—H—M [4]. In the proofs of the next sec-
tion it will be assumed without comment that we are on the probability space just 
described. 
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2. The main results 
For any 0 ^ v < l / 2 , let 

s u p — 
o s t s i 1 

and 

^v : = sup — — . 
OSiSl » 

Since OS v < 1/2, a simple application of the law of the iterated logarithm for Brow-
nian motion shows that Xv and Yv are almost surely finite. 

When v=0 , our first theorem contains the results of RENYI [11] and CSAKI 

[2] quoted in the Introduction. 

T h e o r e m 1. Let a„ be any sequence of positive contants such that for some 
0 < / ? < 1 we have for all large enough n, and nan— Then for every 
0 S v < l / 2 , as n— 

( a 1 1 , 2 _ v 

< l 2> T ^ H S U P ^ ¡ ( s ^ i i - s y ) ^ xv; 

\l/2 —v ( a Y1 

sup a . ( s ) / ( ( l - s ) i - V ) i . 
i "n' 0Ss ï l -o„ 
/ „ \ i /2-v 

(14) I "j sup ¡ a „ ( 5 ) | / ( s 1 - v ( l - s > v ) ^ 

and ( n \ll2~v < 1 5 ) T ^ S U P k ( s ) l / ( ( l - s ) 1 " , s v ) — y , . 
"n/ 0s s s l -a„ 0Ss31-a„ 

P r o o f . First consider (12) and (14). Choose any 1/2. Observe that for 
all n sufficiently large 

vl/2—v ( a V'2~v 

U - M sup \xn(s)-En(s)\l(si->(\ - s y ) s 

^ ( l - / 0 " 1 / , f l i / a - v sup \ccn(s) Bn(s)l/s1—v-f-

+P~ 1 / 2 ( l—fi)~V 2 + v sup | a „ ( s ) - ( s ) 1/(1 - s ) v := „ + . 
1 

Applying the version of statement (9) with the choice 8 ^ 1 / 2 — v, where the supre-
mum is taken over [0, 1], we see that 

(16) = o , ( l ) . 

Also notice that for 0 < 5 i < l / 4 , not necessarily the same 8l as above, 

(17) sup M s ) - ^ » ' 2 - ' 1 . 
1/nSsSl 
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Now applying (8) we see that the right side of inequality (17) equals 

(18) (1 -py^a-sl0p(n-Sl) = 0p((nany>>), 

which by the assumption that /?«„ — «> as °° equals oP{\). 
Since for each n s l such that 0 < a „ < l the process 

IY \L/2 —V -V 

l i l ^ J Bn(sW-v(\-sr): l j 

is equal in distribution to the process 

we have for each' — that 

W f ^ f ' sup 5 „ ( S ) / ( S > - " ( 1 - S ) ' ) ^ i 

= P { s u p W(t)/tv^x}. 
OStSl 

Obviously the same statement holds with Bn(s) and W(t) replaced by [B„(J)[ and 
\W(t)\ respectively. Thus on account of (16), (17), and (18) we have (12) and (14). 
Assertions (13) and (15) follow from (12) and (14) respectively by symmetry consid-
erations. This completes the proof of Theorem 1. 

T h e o r e m 2. Let an be any sequence of positive constants such that nan — °° 
and —0 as Then for every 0 S v< 1 /2, as «-»<==>, 

(19) S„y.= a1*-' sup « „ ( s V s 1 - ^ JTV; 
"n -S—1 

(20) S'n,v:= aY^ sup a„(s)/( l - s ) 1 " ^ 
OSsSl-a,, 

(21) r „ > v : = a ^ - v sup k ( s ) | / * 1 - v — Yv; 
a n— s —1 

and 
(22) Tn'iV:=ay*~* sup | a „ ( s ) | / ( l s ) 1 - - * - Yv. 

0 s s s i - a „ 

Moreover, the random variables S„t v S'n v, respectively the random variables Tn v 

and T'n v, are asymptotically independent. 
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P r o o f . Choose any 0 = v < 1 /2. Let b„ denote any sequence of positive constants 
such that (i) nbn — ( i i ) ¿„—0, and (iii) a„/6„ —0 as Write 

Sn,v(an,bn):= a,1/2"" sup «„(sVs1-" 
an-s-bn 

and 
bn):=aT~v sup a n ( s ) / ( | _ s y - v . 

1 - / > „ S S 5 1 - O „ 

Notice that for all n sufficiently large 

(23) \ s n ! V - S n , v ( a n , b n ) \ s { - \ - ) ! sup K(s ) | / ( s 1 " v ( l - s ) v ) . 

Applying (14) and (iii), we see that the right side of inequality (23) equals 

( a )1/2_v ( b r1/2+v 

h ^ d ( - r i d < « » = < " « 
Thus we have 
(24) l ^ v - ^ . v C ^ , ¿>„>1 = «/>(!)-

In the same way we have 

(25) | 5„ ' , v -5 ; v (a n , bn)| = oP( 1). 

Hence to prove (19) and (20) it is sufficient to show that, as « —°o, 

(26) S„iV(an, Xv, 
and 
(27) S'n,v(an, b„)^ Xv. 

Clearly 

sup | a i / 2 - v a „ ( s ) A l - v - f T ^ - ) 1 " \ n ( s ) / ( s l - \ l - s y ) \ ^ 
0„sssfrn VI — 0„J 

1/2 —v 

„ „ r "n / 

which obviously equals 

(\ 1/2 —v 

sup |a„(s)|/(s1-v(l —s)v). 

Statement (14) implies that this last expression equals o(\)0P(\)=oP(\). 
Notice that it was shown above that 

( a 
(28) — s u p |aB( s) | /(S i- ' (1.-S) ' ) = op(l). 

Vl —anJ 6_ssai 
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From (28) and (12) we have that 

(\l/2—v 

sup « „ ( s V i s ^ - ^ l - s r ) — XY, t - an> «„SSS(|„ 

which by the preceding arguments implies (26). Since 

S'n, v (an , bn) = S„, V (an; b„), 

assertion (27) follows from (26). Hence we have estabhshed (19) and (20). Statements 
(21) and (22) follow by almost the same argument as that just given. 

We shall now demonstrate that the random variables S„tV and S'n v are asymp-
totically independent. On account of (24) and (25) it suffices to show that the 
random variables S„tV(a„,b„) and S'nv(a„,bn) are asymptotically independent. 

Choose any sequence of positive integers 1 ^ k„ ̂  n such that kjn-* 0 
and nb„/k„ —1/2 as Observe that the function 

K,v := s„, v («„, b„)r(Ukni „ > b„) 

( / ( x > y ) = l or 0 according as x > y or A'^j ') is almost surely a function only of 
the lower extreme older statistics U, ,,,..., Uh „ and the random variable 3 «„, II 

Kv-= b„)i(\-b„ > i/(I _*„,„) 

is almost surely a function only of the upper extreme order statistics Un_k , .... 
.... U„t„. Since k„—<=° and k„/n-*0 as n — we conclude by Satz 4 of ROSSBERG 
[12] that the random variables F„v and V'n v are asymptotically independent. Also 
an elementary argument shows that, as «— 

nUknJk„-^ 1 
and 

nO-U„_knJ/kn-^ i . 

(See page 18 of BALKEMA and DE HAAN [1].) Thus by our choice of k„, we have, as 

P{V„, v = SIU v («„, b„) and K„' v = v (a„, ¿J} - 1, 

which implies that the random variables S„>v(an, b„) and S'n v(an, b„) are asymptotic-
ally independent. Subsequently the same is true for S„iV and S'h v. The proof of the 
assertion that T„tV and T'n v are asymptotically independent is along the same lines, 
so the details are omitted. The proof of Theorem 2 is now complete. 

The following theorem should be compared to the result stated in (4) in the 
Introduction. We see that the generalized Renyi statistic version of the statistic on 
the left side of (4) given in (31) below also exhibts asymptotic independence behavior 
due to the asymptotic independence of the suprema of the weighted empirical proc-

21 
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ess in the upper and lower regions of (0, 1), except that now this behavior is Gaussian 
instead of Poisson. 

T h e o r e m 3. Let an be any sequence of positive constants such that na„^-°° 
and a„— 0 as n — Then for every 0 S v < l / 2 , as n — °°, 

(30) A)!*-* sup a „ ( s ) / ( s ( l - s ) ) 1 - v ^ XV\?XV' 

and 
(31) a j ' 2 - v sup K w i / C s a - s ^ - ' ^ y . v y ; , 

where X'V=XV, respectively Y'v =7V, and Xv and respectively Yv and Y'v, are 
independent random variables. 

P r o o f . Choose any 0 á v < l / 2 . Let bn denote any sequence of positive con-
stants satisfying conditions (i), (ii), and (iii) as stated in the proof of Theorem 2. 
Observe that 

a}/*-* sup |a„(s) | /(s(l-s))1-v s 
b„SsSl—bn 

2 s u p |a„(s)|/s1_v + 2 _ 1 + v f l j / 2 _ v sup | a„(s) | /( . l-s)1" ' , 

b„SsS 1/2 1/2SSS1-6,, 

which by Theorem 2 and (iii) equals 

Op((«„/6„)1/2-v) = oP(l) . Notice that 
| sup « „ ( ^ ( l - ^ ^ - S , , , ^ « , , , ^ ) ^ sup |(1 — s)~1+v —1| |a„(s)|/s1_v, 

which by (21) and (ii) equals o(\)0P(\) = oP(\). Similarly we have 

j sup «„(s)l{s(1 - s))1-v - S'n, v(«„, b„)| = oP(1). 
l - t „Ssg l -»„ 

Therefore by (26), (27) and the asymptotic independence of S„t v(an, b„) and S'n v(an, bn) 
established in the proof of Theorem 2, we have (30). Assertion (31) follows by 
essentially the same argument. Thus Theorem 3 is proven. 

With very slight modification of the proofs of the foregoing theorems it can be 
shown that the statements of Theorems 2 and 3 remain true with a„ replaced by . 
The statements of Theorem 1 with /?„ substituted for a„ also remain true if the suprema 
in (12) and (14) are taken over the interval [a„, 1 —1/(/2 +1)] and the suprema in (13) 
and (15) are taken over the interval [l/(/i + l), 1 — fl„]. 
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