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On the comparison of multiplier processes in Banach spaces 

R. J. NESSEL and E. VAN WICKEREN 

Dedicated to Professor K. Tandori on the occasion of his 60th birthday, 
in friendship and high esteem 

1. Introduction. This paper continues our previous investigations (cf. [3—5; 7]) 
on the comparison of (commutative) approximation processes in Banach spaces. 
Whereas the results of [3—5] were based upon rather restrictive global divisibility 
conditions, a local divisibility property was employed in [7] to estimate a given process 
in terms of the particular one of best approximation. The present paper now yields 
results on the general comparison of different processes, which in particular include 
classical inverse approximation theorems in the applications. 

Since this paper, though essentially self-contained, may indeed be considered 
as a sequel to [7], we may be very brief concerning motivation for the approach and 
results. In fact, in [7] we followed the multiplier approach of [3—5] and employed 
global criteria for multipliers, based upon (radial) Riesz summability and correspond-
ing global BVJ+1[0, °°]-classes of functions. Section 2 now indicates how these con-
cepts may be localized in order to formulate counterparts to those local conditions, 
important in the classical context of trigonometric analysis. 

In Section 3 these localized concepts are then used to derive the general compari-
son Theorem 3.8. Here we are heavily influenced by work of H. S. Shapiro concerned 
with local divisibility within the Wiener ring of Fourier—Stieltjes transforms (see 
[13, Chapter 9], also Remark 3.11 for more detailed information). Indeed, standard 
"partition of unity" arguments are now available, even in the present abstract setting 
(cf. [2; 10; 12; 17] for similar arguments in the context of Besov spaces). 

In Section 4 some first illustrating applications are gi\en, emphasizing the uni-
fying approach to the subject. In fact, we essentially confine ourselves to those con-
crete problems, already treated in [7], in order to point out the additional results now 
available. 
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2. Local multipliers in Banach spaces. For a complex Hilbert space H let E be 
a (countably additive, selfadjoint, bounded linear) spectral measure in R", the Eu-
clidean «-space (n€N, the set of natural numbers) with inner product (x, y)'= 

il 
2 xkyk and norm |.v| :—(x, x)11'-. If L " ( R " , E) is the space of complex-valued, 

k = l 
¿"-essentially bounded functions, then for each T £ Z . ~ ( R " , E) the integral 

T( t):= f T{x)dE{x) 
R" 

is a bounded linear operator of H into itself (for basic properties and further details 
see [9, pp. 900, 1930, 2186]). 

For a given orthonormal structure (H, E) let I be a complex Banach space 
with norm || • || such that H and X are continuously embedded in some linear Haus-
dorff space (this hypothesis should be added in [5], see [17, p. 116]) and such that 
Hf\X is dense in H and X, i.e., 

(2.1) ¿ / f ix 1 1 ' " " = h, imx11 ml = x. 

Then (cf. [5]) z£L°°(R", E) is called a multiplier on A" if for each f£HC\X 

(2.2) J ( T ) / : = / T ( x ) d E ( x ) f £ H C \ X , | | r ( R ) / | | S C | | / | | 
R" 

(here and in the following C denotes a constant which may have different values at 
each occurrence). In view of (2.1, 2) the closure of 7*(T) (represented by the same sym-
bol) belongs to [X], the space of bounded linear operators of X into itself. The set 
of all multipliers T on X is denoted by M=M(X), the corresponding set of multi-
plier operators T{r) by [X]M. With the natural vector operations, pointwise mul-
tiplication, and norm 

IMU:= ITOII t« := sup {||T(t)/||: feHHX, \\f\\ ^ 1} 

M is a commutative Banach algebra with unit, isometrically isomorphic (under T) 
to the subspace [ ^ „ c l l ] . 

To deal with multipliers, let us consider the Riesz factor («£[0, 0, «>), 
76P:=NU{0}) 

f (1 - ujt)', O^u^t 
0, u>t. 

In the following / denotes an arbitrary index set. Moreover, a o /? is the composition 
(in case it is defined) of the functions a and /?: (ctofi)(x):=cr.(P(x)), and a - 1 the 
inverse function. 
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D e f i n i t i o n 2.1. Let I be a Banach space satisfying (2.1) (with respect to a 
given orthonormal structure (H, E)) and consider a family \p:= {i/^: g€</} of 
functions \pe(x), defined on R" with values in [0, If T(rj to\j/p) is ^-measurable 
in / > 0 (this condition should be added in [7], see [5]) and if for some P the 
Riesz summability condition 

(2.3) r J t t o ^ M with | | ry , ,o^ e | |M ^ C 

holds true, uniformly for / > 0 , Q ^ f , then X is called R^-bounded. 

Local multiplier criteria may then be derived in terms of the following classes of 
functions (see [11]). 

D e f i n i t i o n 2.2. For and / £ P the space BVj+1[a,b] is defined 
as the set of all complex-valued functions r which are /-times di f ferent ia te on 
(a, b) such that r 0 ) is of bounded variation on each compact subinterval of (a, b) and 

b-

a + 

Obviously, BVJ+1[c, d]czBVJ+1[a; b] for Moreover, 
BVJ+1[a, b] is a Banach space under the norm 

MBVj.Aa.n-i J Ui\dx"\u)\ + £ J I J k = 0kl 'u—b-

T h e o r e m 2.3. Let X be R^ -bounded and % a complex-valued function, defined 
on [0, such that T£BVJ+1[a, b] for some Then for each oe^M(X) 
satisfying 

(2.4) ae(x) = 0 for x£R" with ipe(x)$[a,b] 

one has ffe(foij/e)£M(X). In fact, 

(2-5) K ( T O ^ ) | | M C\\ae\{M\\Tl\BVj^aM. 
For a proof of this theorem as well as for further details concerning these 

localized concepts of BVJ+1 -classes and multipliers see [11]. 

R e m a r k 2.4. For a=0, b — °° condition (2.4) is empty so that the unit 
a t(x) = 1 for all x£ R" is admissible. Thus Theorem 2.3 also includes our previous 
multiplier criterion BVj+1[0, oo]oi//czM(X), in particular, for every t£BVj+1[0, °=] 
(cf. Remark 2.8) 

.(2.6) | | R ( T O W e ) ) | | „ j = : ||T O (tij/e)\\M S£ CM\BVj+ll0>^, 

uniformly for 0, Q d f (cf. [5; 15], also for fractional extensions). 
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To formulate some further results concerning BVj+1[a, b] (see [11; 16] for de-
tailed proofs), let C^[0, be the set of realvalued functions on [0, » ) , arbitrarily 
often dilferentiable with compact support (in notation: supp). 

P r o p o s i t i o n 2.5. One has °°)<zBVJ+1[0, »]• Moreover, for 
A6C^[0, OO) the family {A(/w): /€(0, is continuous in t with respect to the top-
ology of BVJ+1[Q, oo], thus 

lim P (sw)—A (/«) || BV [o,<»] = 0. S-. i 

As an immediate consequence of (2.6) we conclude that for oo) and 
ij/, subject to (2.3), the family {?.(til/e(x)): 16(0, oo)} is continuous in t with respect 
to the topology of M, thus for each /6(0, 

(2.7) lim \\T(). O ( s^ e ) ) -T( ; . o (l^Q))\\m = 0, 

uniformly for q 

T h e o r e m 2.6. Consider families {ae}, {fce} of numbers with 0 
for each Qdf- Suppose that the functions Te£BVj+1[ae, be] satisfy (cf Definition 
3.7) 

(2-8) sup ||TjBK,+1[ae,f,c]<~, 
eii 

(2.9) inf {|re(M)|: ae < u < be, > 0. 

Then l/Te£BVJ+1[ae, be], uniformly for / . 

R e m a r k 2.7. To illustrate condition (2.8), let Du\ / 6 N , be the set of real-
valued, continuous, strictly increasing functions rj on [0, with r j (0)~0, 
lim M(M)=OO which are ( / '+ l)-times dilferentiable on (0, such that 

u — oo 

(0 i iV i + 1 >(«) | == Ct]'(u) (0 ^ k S j, u > 0), 

(ii) lim ut]'(u) = 0. 
If (p(o) is a (real-valued) positive function on f , then for every T £ B V J + i [ a , b] 
and t]£DU) the functions T ^ , (M) : = T (<P ( £>) R; (M) ) (of Hardy-type) belong to 
BVJ+1[ae, be] with ae=ri~1(a/(p(e)), be=t]~1{b/(p(e)), and one has, uniformly for 
<?e / , 

( 2 - 1 1 ) II T « > ( < ( ) I I L L B K , + , [ « „ , & „ ] ~ C | M I B K J + 1 | > , I O -

R e m a r k 2.8. Obviously, rJtl£BVJ+1[0, H , and therefore by (2.11) (take 
i](u) = u) rJtt£BVJ+1[0, oo], uniformly for f > 0 . Again by (2.11) it then follows 
that for every T]£D(J) and positive function <P(Q) on J 

IIOV. t) «>(e)i II BVj + ,[o, = C || rjt x || BVj + ,[o, , 



C o m p a r i s o n o f m u l t i p l i e r p rocesses 383 

uniformly for t > 0 , In view of Remark 2.4 this implies that if X is R^ -bounded, 
then X is also Rfy -bounded with ipe=<p(Q)(ri oij/e). 

3. General comparison theorems. Throughout X denotes an R^ -bounded Ba-
nach space. 

D e f i n i t i o n 3.1. A family { t g } e ( s of uniformly bounded multipliers is called 
locally divisible (at the origin) of order ij/ if (cf. \T\) there exist some ¿ > 0 and a 
family of uniformly bounded multipliers such that 

(3.1) Te(x) = \pe(x)Oe(x) in case ij/e(x) S 8. 

If (3.1) holds true for all x€R", then the family {ie} is said to be globally 
divisible. 

P r o p o s i t i o n 3.2. Local divisibility implies the global one of the same order. 

P r o o f . We proceed as in [7]. Let {xe} satisfy (3.1) and °°) be such 
that A(/) = l for 0 ^ t ^ d f 2 and = 0 for Since 1 - A ( i ) = 0 for 0 ^ t ^ 8 / 2 , 
the function a(t):=(l-X(t))lt belongsto BVJ+1[0, «>]. Thus {ao\j/e}, { / o ^ } c M , 
uniformly for q ^ f (cf. (2.6)). Moreover, on R" 

1 - A o ^ = ipe(<ro ij/e), t e(Ao il/e) = iAe0e(Ao^c), 

and therefore t e = r e (Ao\ j / e )+T e ( l -Aoi /^) = i//c[0ff(Ao^e)+Te(<roi/>e)]. Hence the 
assertion follows since the terms in [...] are bounded in M, uniformly for 

R e m a r k 3.3. Let x be a function on [0, satisfying {T o i | i J c M , uniformly 
for Q^f. Let t]£D<J) be such that Tjrj£BVJ+1[0, 8] for some ¿ > 0 . If A is given 
as in the previous proof, then again AOIj/e£M and (A o</^)(x)=0 for all x6R" 
with i j / e (x)>8. Therefore 0 e := (Ao^ e ) ( ( r /» j )o i^J^M by Theorem 2.3 with 

m M ' m II ̂ A? i BVj+ito, ^ cm BVj + xto, IIT/11I BVj +1[0, i] > 

uniformly for But if (tj o ij/e)(x) ^ t](5/2)(— : 8), then 

O f < > * , ) ( * ) # , ( * ) = A ( ^ ( X ) ) T ( ^ ( X ) ) - ( T O ^ ) ( X ) 

so that the family {T O ipe} is locally divisible of order rjoip (cf. Remark 2.8). Thus, 
local BVj+i-conditions (at the origin) ensure corresponding local (and therefore 
global) divisibility properties. 

For 1 let p£C~Q[0, =») be such that (partition of unity) 

CO 1 

(3.2) 0 s i ( 8 ) s l , s u p p ( p ) c r [ l , 9 ] , / p ( « ) J i = i . 
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Since J p(us)u 1du=\ for every s>0 , one has for the function 
o 

(3.3) »(0):=1, v(s):= f p(us)^-= f p(u 
1 s 

that i>eC™[0, OO) with U(J)=1 for O ^ I ^ l and U(J) = 0 for s ^ q . 

L e m m a 3.4. For s, t£[0, there hold true the identities 

(3.4) 1 -v(ts)= f p(us)—, 
0 " 

(3.5) p(s) = p(s)(l-v(qs)), 

(3.6) l - » ( s ) = / [1 -v(us)-p(us)]^-. 
i u 

Proof . (3.4,5) are immediate consequences of the definitions. Moreover, 

1 1 U 0 1 

= / p ( « ) 7 + / u = pO-s)~. 
0 I t . 1 

Consider the operators T(po(njjg)), T(vo(t\j/e)) which belong to [X]M, uni-
formly for />0 , (cf. (2.6)). By (2.7) terms like T(p o(t\jjQ))f are continuous in t 
with respect to the topology of X so that the following integrals are well-defined 
(in X). 

P r o p o s i t i o n 3.5. (a): For each / £ X , />0 , 

(3.7) ||Г(р о (1фе))/1| s C\\f-T(v о Wej)f\\, 

(3.8) \f~T(voфв)/\\ = J [\\/-Т^о(ифе))/\\ЦТ(ро(ифе))/\\]^, 
i 

(3.9) / \\T{p о (ифеЩ $ - С / | | f - T ( v о (ифв))/\\ ^ . 
1 1 и 

(b): If for each f£X, (theorem of Weierstrass-type) 

(3.10) . Um \\T(voWe))f-f\\ = 0, 

then one has additionally 

(3.11) | | / - r ( , o ( ^ e ) ) / | j s / | | T ( p ° № ) / | | ^ -
о " 
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P r o o f . In view of (2.6) assertion (3.7) is an immediate consequence of (3.5), 
whereas (3.8) follows by (3.6). Furthermore, (3.7) delivers 

/ | | Г ( Р о ( # е ) ) / | | ^ С / \\f-T{vo^e))f\\^ = 
l " i " 

= qC f \\/-T(voW)f\\ \\f-T(voW)f\\ g , 
q " 1 " 

t h u s (3.9). Concerning (3.11), the identity (3.4) implies that for f£X, 0 < e < / 

f-T(v о (1ф0))/ = j T(p о « ) ) / ^ + [f-T(v о (ефв))/]. 
8 

In view of (3.10) this yields the assertion upon letting e—0 + . 

The following result is to be compared with the Steckin-type estimate of [7] 
which now appears as an auxiliary result towards Theorem 3.8. 

T h e o r e m 3.6. If {re}gejf is locally divisible of order ф, then for each f£X, 

е е / 

(3.12) «Г(те)/ | | г*с/\\Т(ьо(ифв))/-/\\^. 
1 " 

Moreover, if (3.10) holds true, then 

(3.13) ||Г(тв)/|! - С / ||T(p о W e ) ) f || min {l, 1 } ^ . 

P r o o f . Since x{u)-.= up(u) = uv(ujq)p(u), uv(u/q)^C^[0, °°)cBK J + 1[0, 
one has the estimate (cf. (2.6)) 

(3-14) | |Г(*о || s? C\\T(pо ((ф0))/\\ 

as well as the identity (cf. (3.3)) 

Фе(»°Фв) = f = f 

the latter integral being absolutely convergent with respect to the topology of M 
(cf. (2.6, 7)). Consequently, since by Proposition 3.2 the family {тс} is also globally 
divisible of order ф, say тв=фввв, one has the representation 

*е&офе) = 0Q f 
i " 

25 
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and therefore by (3.14) 

| |Г(те)/| | =g || T(r0) T(v о фе)Д +1| T(t0) [ f - T ( v o ^ ) f \ \ ^ 

(3.i5) == c [ f ||т(ро(ифе))/1|^ + i z - n ^ ^ / l l ] • 

Thus (3.12) follows by (3.8, 9). Finally, (3.13) is a consequence of (3.10, 11, 15) since 

| |Г(гг)/ | | - c \ f \\Т(ро(ифе))/\\^+ J | | Г ( Р о ( ^ е ) ) / | | ^ 1 = 

l i о 

= c / | | r ( P o ( ^ ) ) / | | m i n { l , i } ^ . 
To formulate the main result, let si be the set of functions a, continuously dif-

ferentiable and positive on (0, such that 
(lim a (0 = 0, lim a (t) = со, a' (,) > 0 (t > 0). 

Obviously, Da)<zsi for every P. Moreover, if a, then a о/J, a~y(zsd, 
too. 

D e f i n i t i o n 3.7. Let a.£si and P be any function With a(/)</?(?) for each 
i > 0 . A family {ff,}(>0 v/ith a,£BVj+l[a(t), P(t)] is said to satisfy the Tauberian 
condition of type (a, ¡1) if 

(3-16) SUP N | F L H , + 1[A(0,«0] < 0 0 > 
r=-0 

(3.17) inf {|<7,(м)|:а(0 < и < P(t), 1 > 0} > 0. 

In view of Theorem 2.6 conditions (3.16, 17) are chosen in such a way that 
l / a ,6BK j + 1 [a (0 , /?(0], uniformly for / > 0 . 

T h e o r e m 3.8. Let y:—{y^eif<zsi be such that X is (R^-and) RJ
yo^-bounded. 

Suppose that the family {rc}e£jr is locally divisible of order ф and that the family 
{<?,},> о satisfies the Tauberian condition of type (a, /?) such that for some q> 1 

(3.18) sup ye(q5e(t)) == P(t) ( / > 0 ) , 

where 5e:=y~1 oa. Let огоуеофе belong to M(X) such that \\Т(р,оуеоф^\\ is 
measurable in t. If P(t) = °° for all t>0 (i.e., (3.18) is trivial), then one has the com-
parison estimate (fdX, 

(3.19) | | Г ( т е ) / | | ё С / \\T(ouoy^t)f\\d'Q(u)du, 
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whereas in the general case the additional assumption (3.10) implies 

(3.20) | |Г(т е)/ | | ё С / \\Т(<тиоувофв)/\\ min {1, ij8e(u)}d'e(u)du. 
0 

P r o o f . First of all, a , y e £ s / imply у~г, for each o i f . Substituting 
u=l/de(t) it follows by (3.12, 13) that 

'.-'Mil ( ,/. V I 
(3.21) \\T(xe)f\\^C J Mvo-lf-)f-f\d'e(t)dt, 

о e W I 

(3.22) |Г(т е ) / | | si С / | | r ( p o A ^ ) / | m i n {1, i/de(t)}S'„(t)dt, 

respectively. Let us first consider the case P(t) = °° for all / > 0 . Since X is Щ-
bounded, the multipliers 1 — v(\l/e(x)/5e(t)) belong to M, uniformly for 0, 
е б / (cf. (2.6)), and vanish (cf. (3.3)) for (уеофв)(х)^а(0. Thus Theorem 2.3, 6 
yield 

Ik,ellм = С UI^WbVj^U),^ s c> 

since X is . R ^ - b o u n d e d , too. Hence 

(3-23) | | / - T [v o - A - j / I ^ C|| Т(<7, оУе офе)/1 

which establishes (3.19) in view of (3.21). To prove (3.20), one has by (3.2, 18) that 
p{^e(x)/5e(t))=0 for (yeo\l/e)(x)$[a(t), /9(0]. Again Theorem 2.3, 6 yield 

ft,r=i° J j q l <?t° 7e ° iAee M 

with \\fitJM^C. Hence 

||r(po A_]/|| ^ C\\T(<7toyeo^e)f\\, 

giving (3.20) in view of (3.22). 

R e m a r k 3.9. Concerning the measurability of \\T(ouoyeoty^f\\ with respect 
to u, assumed in Theorem 3.8, the proof indeed proceeds via the integrals on the 
right-hand side of (3.21, 22) (well-defined in view of (2.7)) plus a pointwise estimate 
of the integrands (cf. (3.23)). So, if the measurability of \\T(cruoyeoil/e)f\\ cannot be 
assured in advance, one may replace the majorant || T(ou o ye o ̂ e ) / | | in the pointwise 

25* 
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estimate (3.23) by some measurable one, e.g., by the monotone majorant 
sup {\\T(aroyeoi¡/e)f\\: rSw} (cf. [13, p. 219 ff], in particular the notion of a cr-mod-
ulus, which indeed generalizes the classical modulus of continuity (4.10)). 

R e m a r k 3.10. Obviously, (3.18) is satisfied if yQ is a homogeneous function 
(of some fixed positive degree) and qtx(t)^/}(t) for some 1. On the other hand, 
if, e.g., ^ ( x ^ i T ' l o g O + M ) and ye(t) = e"-\ so that (y e o^)(x)= |A- | (cf. 
(4.1)), then (3.18) reduces to (1 +p(t). 

R e m a r k 3.11. As already mentioned, the results of this section are extensions 
of corresponding ones known in the concrete situation of the (trigonometric) Fourier 
spectral measure (cf. Section 4). More specifically, the estimate (3.19) of Theorem 
3.8 is to be compared with [1, Corollary 2.4], whereas (3.20) is related to [13, Theorem 
9.4.4.5]. Of course, the present methods of proof need different tools (cf. Section 2), 
due to the abstract setting. Let us mention that one may now also formulate a coun-
terpart to [13, Theorem 9.4.4.4], based upon local divisibility (at the origin) of two 
families of multipliers. 

Without going into details, let us finally mention that, even in the present ab-
stract frame, the sharpness of the estimates obtained may again be discussed along 
the lines outlined in [7] (see also the literature cited there). 

4. Applications. Let us recall that the approach of Section 2 to a multiplier 
theory in abstract spaces subsumes many classical orthogonal expansions in the appli-
cations. Since this is already worked out in our previous papers (cf. [5; 15] and the 
literature cited there), we may here concentrate ourselves to a very important special 
situation, the (trigonometric) Fourier spectral measure over R". 

To this end, let X be one of the spaces LP(W), 1 S / x of functions f, />th 
power (Lebesgue) integrable over R" with (finite) norm 

||/||p := ((In)-"12 f \f(x)\pdx)llp. 
R" 

Let be the Fourier—Plancherel transform on L2 and J * - 1 the inverse transform. 
For a Borel measurable set B e R " let &>

B be the multiplication projection 

(0>Bf)(x):=f(x) 

for x£B and = 0 for x$B. Then £'(B):=J2r~1áa
BJs" is a spectral measure for 

H=L2 (cf. [ 9 , p. 1 9 8 9 ] ) . Furthermore, for the spaces X mentioned above condition 
(2.1) is satisfied, and (2.2) coincides with the classical definition of Fourier multipliers 
T € M P ( R " ) : = M ( L " ( R ' í ) ) ( c f . [ 1 4 , p . 9 4 ] ) . 

Concerning the Riesz summability condition (2.3) it is a classical result (cf. [14, 
p. 114]) that 

(4.1) * , ( * ) = / = { ! } = > (2.3) for j > (n-l)\\lp-l/2\. 
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Other admissible choices of фе used in the following are based upon the fact that (in 
the Fourier spectral case) any surjective affine transformation A from R" to Rm 

induces an isometry from Mp(Rm) to Mp(R") via a (Ax), x€R", <r£Mp( Rm) (cf. 
[2, p. 15]). For example, take m= 1, and Ax—{q,x). Then it follows by 
(4.1) (on R1) that 

(4.2) фе(х)=\(в,х)\, </ = R" \{0} => (2.3) for j > 0. 

Note that in all these cases condition (3.10) is satisfied (theorem of Weierstrass-type). 
In the following we revisit those applications, already mentioned in [7], and point 

out what kind of additional results are now available via the (localized) concepts of 
the previous sections. 

4.1. Abel—Cartwright means. Let r\£D ( j ) for some у>(и —1)| 1/p —1/2| and 
ф ( 0 > 0 for f > 0 . Consider the Abel—Cartwright means W(<p(t)ri), corresponding 
to the multiplier w((p(i)»i(W)), w(u):=e~". Since w£BVJ+1[0, for every 
Д Р , the operators W(<p(t)tj) are well-defined in [LP(R")] (cf. (2.6, 11), (4.1)). The 
results of Section 3 may now be used to compare means of different orders rj. 

C o r o l l a r y 4.1. Let y > ( n - l ) | l / p - l / 2 | and i j t6D 0 ) , ¿ = 1,2. Then for 
every f£L"(R"), t> 0 

vl(4 ( n \ 
( 4 . 3 ) | И < Н 0 ^ ) / - / | И < > ( / ) / Г , I , ЧЛ \ f ~ f 

P r o o f . Let i € / = ( 0 , •ct(x) = l-w((p(t)r]1(\x\)). Since 

(l-e-u)/u£BVJ+1[0, »], 

it follows that T, is globally divisible of order «¡»(OliiM) (cf- (2.6, 11), Remark 2.8, 
(4.1)). Setting O-s(H)=1— w(rj2(u)lr]2(r}x

1(s))), one has as£BVj+1[0, °°]> uniformly for 
s > 0 (cf. (2.11)), and o s (u)S 1 - е - 1 for u ^ r i ^ ( s ) . Hence it follows that {<7S}S>0 

satisfies the Tauberian condition with a ( s ) = r j ~ 1 ( s ) , fi(s) = °°. Moreover, for yt(u)— 
=tl-\ul<p(t)), thus S,(u)=(p(t)u, one has ff,.(y,(<p(0>h(W)))=ffs(W)€M (cf. 
(2.6), (4.1)). Therefore (3.19) implies (4.3) (note that the integrand depends contin-
uously upon u, analogously to Proposition 2.5, (2.7)). 

In particular, r\y(u)=(p(u) = uy, у>0 , yields the standard Abel—Cartwright 
means fVy(t)(:=W(tyt]y)) which subsume for y = l the Abel—Poisson and for 
y—2 the Gauss—Weierstrass means (cf. (4.12)). Corollary 4.1 then reduces to 

C o r o l l a r y 4.2. For every y, ¿ > 0 one has 

CO 

(4.4) \\Wy(t)f-f\\p =§ Cf J WMf-fhu-^du. 

du. 
p 
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Since (1 —exp {—wT})/(l —exp { — us})£BVj+1[0, for 0<<5Sy (cf: [15, p . 
54 if]), it follows by (2.6) that in these cases one has indeed thé direct estimate (cf. 
[5]) 
(4.5) ' WyW-fh = C\\Wa(f)f-f\p, 

which, of course, is stronger than (4.4). 

On the other hand, concerning the sharpness of (4.4) for <5>y, it is shown in [6J 
that for each 0 < / i < 1 / 2 , 0 < v < 1 there exists an element /„ iV such that for e.g. 
y = l> <5=2,• /7=1 

r= 0(f2") (= Oit"1) 
f it-o+), it^) 

(4.6) limsup 

Thus an estimate of type (4.5) is impossible for <5>y, even for nonsmooth elements. 

4.2. Marchaud-type inequalities. For h£R" let symmetric differences of order 
2r, r£ N, be given by 

(4.7) Aff:= (AlYf, (A*hf)(x):= f(x + h)-2f(x)+fix-h), 

corresponding to the multipliers (2(cos (h, x)— l)) r . Let S„-i:= {oo^R": [(«¡ = 1}. 

C o r o l l a r y 4.3. Given r, and 1 oo, there exists a constant C such 
that for every f£L"(R"), coeSn^1, i > 0 

(4-8) \\AtJ\\p^^-J \\A^f\\pmm {I, it/u)^}du. 
1 o 

P r o o f . To apply Theorem 3.8, consider 

i 
(4.9) d(u) := 2(1—cos u), a(u):= f dsiuv)il-v)dv: 

0 
s 

Obviously, d\u)= Zasjcosjii with as<1>0, and therefore 
j = o 

f \ «50 , 1 djju) 

Now, d(u)jti2 and consequently (cf. (2.11)) d(ju)/iju)2 belong to BVJ+1[0, so that 
in view of lim o(u) =a^/l^O there exists a > 0 such that 

U — DO 

o(u) ^ as0l4 7^0 for W = CJ, o£BVj+1[a, 
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Again by (2.11) this implies that a,(u):—a(u/t)£BVj+1[at, with 

WIbk, + ! [ « , - ] = C||ff|| BVj + 1la,^J — C ||cr||BKj. + l[0>~], 

uniformly for / > 0 . Since also \a,(u)\^as0/4 for u^a.(t):—at, the family {<r,}(>o 
satisfies the Tauberian condition with a(t)=at and /?(?) = 

Thus, in order to apply (3.19), set 

( / , « ) € / = ( 0 , ^ X S , , - ! , t,,o>(x) = [t\(a>,x)\laF, 

yuo(u) = au1,2rlt, Tum(x) = d'(t\(co, *>|). 

Since d(u)/(u/.a)2 and hence [d(u)l(u/a)2]r belong to BVJ+1[0, it follows that 
T,j(0 is globally divisible of order \pt o (cf. (2.6, 11), (4.2)). Moreover, 

(yt,«,°^t,J(x) = \(co,x)\, 

and therefore (ff„oyr,(0o"/'r,fl))(x)=cru(|<©, x) | )£M p . Thus X—L" is R^- and 
RJ

yo^- bounded and 
1 l/u 

0 0 

Moreover, 5Ua,(u)=y£(au)=№*, S'ttto(u)=2rvV"1, and • ¿ - ¿ ( l ) = y,1<D(l) = l / r 
Hence with (3.19) 

lit llu 
\\A%,f\\P=-\\T{tt,a)f\\P-iC f u f №afitdz2rt»tp-1du* 

0 0 

C ^ / . r * " * ( / + / ) = 
I 0 t 

= CP [ f \\A^f\\pdz f v_2r~2dv+ f \\A?J\\pdz f v-*-2dv\ = 
0 I 1 2 

= t ! l ^ f l d z + Ct^ f z-^\\A%f\\pdz = 
o I 

- ~ / IMf./IUmin j l , 

Let the 2rth modulus of continuity of /€£"(R") be defined for r^N, h>0 
by (cf. (4.7)) 

(4.10) L'(R")) := sup { № £ / ! , : © e S ^ , 0 < i < h}. 

Then (4.8) implies the familiar Marchaud inequality (see also [1]) 

(4.11) ©»(&,/;. L'(R")) S Ch2* f f; EL'(&r))u-»-1du. 
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Indeed, for a>£Sn-u 0 
oo 

II¿YJ\\p == C[cogj(t,f;Lp(R")) +t2' f a>2s(u,f L P ( R d t i ] s 
t 

== (2r + l)Ct2r f co2s{u,f; L"(R"))«-2'-1(/M 
t 

so that (4.11) follows since c o ^ t , / ; Z,P(R")) as well as the right-hand side are increas-
ing functions of t. 

4.3. A semidiscrete difference scheme for the heat equation. Let n=1 . In order 
to approximate the exact solution of the heat equation (JC£R, />0 ) 

d/dt u(x, t) = d2/dx2 u(x, t), u(x, 0) =/(x)eZ,"(R), 

given by the Gauss—Weierstrass means (cf. Section 4.1) 

(4.12) = (4tt0_1/2 f f(x-y)e-y*l«dy, 

consider the initial value problem for / i>0 

d/dt uh(x, i) = h-2[uh(x+h, t)-2uh(x, t) + u„(x-h, 0 ] , u„(x, 0) =/(x). 

This leads to the semidiscrete difference scheme (cf. [2, p. 69]) 

uh(x, t) = Dh(t)f(x) := T(e~^^)f(x), 
the function d being given by (4.9). Thus the multiplier xh>I(€Mp(R), uniformly for 
h, / > 0 ) of the remainder Dh(t) — W2(t1/2) has the representation 

(4.13) J < M ( i ) = £ - ( « № x ) _ r l i ' (/¡, t > 0). 

For example by the results obtained in [7] (see also [2, p. 72] for a concrete approach) 
it follows that for t=h2 

||Dh(h2)f-W2(h)f\\p ^ Coj^Kf - L»(R)). 

Theorem 3.8 now enables one to derive the following inverse estimate (cf. [2, p. 79]). 

C o r o l l a r y 4.4.' One has (cf. (4.10) with n = l) 

(4.14) co4(/i, / ; L ' ( R ) ) S C / \\Du(u2)f-W2(u)f\\pmm{l,(h/uf}^-. 
o u 

Proo f . With h£f=(0, zh(x)=d2(h\x\) (cf. (4.9)) it follows as in Section 
4.2 that {Tk}„>0 is globally divisible of order (/j|x|)4. Consider 

<r(s) := e~s&—e~s*, au(s):= a((2n~l)s/u). 
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Since <r€BVj+1[2n—l, 2n + l] a n d f o r | i - 2 w | s l 

a ( s ) - e ~ i ( s ~ ^ - e - s i
 e - ( s - 2 n ) 8 _ e - ( 2 n - i ) » s > q, 

{ff„}u>0 satisfies t h e T a u b e r i a n cond i t ion w i t h a ( u ) = u , P (u)=[(2k + 1 )/(2TT — 1)] u 
(cf. (2.11)) . M o r e o v e r , f o r yh(s)=slli/h(2n~l), t h u s dh(s) = (sh(2n-\))\ c o n -
d i t ion (3.18) h o l d s t r u e f o r q={(2n + \)l(2n-\)]\ a n d o n e h a s (cf. (4 .13)) 

(<Juoyhoi],h)(x) = a(\x\ju) = xtt-liU-!(x)£Mp( R). 

T h e r e f o r e b y (3.20) 

M i / 1 1 , 3 - C / | | Z > u - i ( m - 2 ) / — ^ ( m - 1 ) / ! , min { l , («/i(27r—l))4} . 
o 

Subs t i tu t ing 1/M=Z, t h e resu l t fo l lows. 

L e t us finally m e n t i o n t h a t o n e m a y employ the analysis ou t l i ned in [8] in o r d e r 
t o discuss t h e sha rpnes s of (4.14) in a sense s imilar t o (4.6). 
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