On the rate of approximation by orthogonal series

H. SCHWINN
Dedicated to Professor K. Tandori on his sixtieth birthday

1. Introduction

Let $\left\{\varphi_{n}(x)\right\}$ be a normalized system of orthogonal functions (ONS) with respect to the space $L^{2}[0,1]$. We ask for additional conditions on coefficients $\left\{c_{n}\right\}$ with $\sum_{n=0}^{\infty} c_{n}^{2}<\infty$ such that the partial sums $\left\{s_{n}(x)\right\}$ of the orthogonal series $\sum_{n=0}^{\infty} c_{n} \varphi_{n}(x)$ are convergent to a limit function $f(x)$, uniquely a.e. determined by the Riesz-Fischer theorem, with a certain speed. K. Tandori [10] proved the following basic result:

Theorem A. Assume that $\{\lambda(n)\}$ is an increasing sequence tending to ∞. If $\sum_{n=2}^{\infty} c_{n}^{2} \lambda^{2}(n)(\ln n)^{2}<\infty$, then the estimate

$$
\begin{equation*}
f(x)-s_{n}(x)=o_{x}\left(\frac{1}{\lambda(n)}\right) \text { a.e. } \tag{1}
\end{equation*}
$$

holds.
Asking for the finality of Theorem A as a consequence of a result of L. Leindler ([7], Hilfssatz 2) it follows that in case $\lambda(n+1)>C^{*} \lambda(n)\left(C^{*}>1\right)$ the factor $(\ln n)^{2}$ may be omitted. On the other side, for certain sequences increasing slowly enough; V. A. Andrienko [2] proved the finality of Theorem A. Later on V. I. Kolyada [6] proved the following result:

Theorem B. Assume that the positive increasing sequence $\{\lambda(n)\}$ is such that

$$
\ln n=o(\lambda(n))
$$

and that there exists a sequence $\left\{v_{n}\right\}$ with the properties:

$$
\mu(n)=v_{n+1}-v_{n} \geqq 2, \quad 1<\varrho \leqq \frac{\lambda\left(v_{n+1}\right)}{\lambda\left(v_{n}\right)} \leqq r .
$$

Received August 7, 1984.

If $\sum_{n=0}^{\infty} c_{n}^{2} \lambda^{2}(n)<\infty$, then we have the estimate

$$
f(x)-s_{n}(x)=o_{x}\left(\frac{\ln \mu\left(q_{n+1}\right)}{\lambda(n+1)}\right) \quad \text { a.e. }
$$

where q_{n} is defined with the aid of the strictly increasing function $v(t)$ with $v(n)=v_{n}$ and its inverse $v^{-1}(t)$ by $q_{n}=\left[v^{-1}(n)\right]$.
V. I. Kolyada also proved in [6] the finality of Theorem B in the following way: the speed $\ln \mu\left(q_{n+1}\right) / \lambda(n+1)$ may not be replaced by a speed $(\Lambda(n))^{-1}$ tending faster to zero, i.e. if $\Lambda(n) \cdot \ln \mu\left(q_{n+1}\right) / \lambda(n+1) \rightarrow \infty$.

In this paper we want to establish a general condition for estimations of type (1), which is also necessary for a special class of coefficients $\left\{c_{n}\right\}$. In the following let $\{\lambda(n)\}$ be a nondecreasing sequence tending to infinity. We consider in dependence of a fixed chosen constant $q>1$ the uniquely determined sequence of increasing natural numbers $\left\{\mu_{k}\right\}$ with

$$
\begin{equation*}
\lambda\left(\mu_{k+1}\right) \geqq q \cdot \lambda\left(\mu_{k}\right) \quad \text { and } \quad \lambda\left(\mu_{k+1}-1\right)<q \cdot \lambda\left(\mu_{k}\right) \quad(k=0,1, \ldots) . \tag{2}
\end{equation*}
$$

Theorem 1. Let

$$
\sum_{k=1}^{\infty} \sum_{n=\mu_{k}}^{\mu_{k+1}^{-1}} c_{n}^{2} \lambda^{2}(n)\left(\ln \left(n-\mu_{k}+2\right)\right)^{2}<\infty
$$

be fulfilled. Then the estimation

$$
\begin{equation*}
f(x)-s_{n}(x)=o_{x}\left(\frac{1}{\lambda(n+1)}\right) \quad \text { a.e. } \tag{3}
\end{equation*}
$$

holds.
We can extend this statement to partial sums $\left\{s_{n_{i}}(x)\right\}$, where $\left\{n_{i}\right\}$ is an increasing sequence of natural numbers. With respect to the above considered sequence $\left\{\mu_{n}\right\}$, let $l(k)$ be defined by

$$
\begin{equation*}
n_{1(k)-1}<\mu_{k}-1 \leqq n_{1(k)} \quad(k=1,2, \ldots) \tag{4}
\end{equation*}
$$

Then $\mathfrak{I}(k+1)-\mathfrak{I}(k)$ indicates the number out of $\left\{n_{i}\right\}$ between $\mu_{k}-1$ and $\mu_{k+1}-1$. The above definition also admits the case $I(k)=I(k+1)$; therefore let $\left\{k_{j}\right\}$ denote the sequence of those numbers when $1\left(k_{j}+1\right)-1\left(k_{j}\right)>0$. Putting

$$
\begin{equation*}
C_{i}=\left\{\sum_{n=n_{i-1}+1}^{n_{i}} c_{n}^{2}\right\}^{1 / 2} \quad\left(i=0,1, \ldots ; \quad n_{-1}=-1\right) \tag{5}
\end{equation*}
$$

we prove
Theorem 2. Let

$$
\sum_{j=1}^{\infty} \sum_{i=1\left(k_{j}\right)+1}^{1\left(k_{j}+1\right)} C_{i}^{2} \lambda^{2}\left(n_{i-1}+1\right)\left(\ln \left(i-1\left(k_{j}\right)+2\right)\right)^{2}<\infty
$$

be fulfilled. Then for $\left\{s_{n_{i}}(x)\right\}$ the estimation

$$
f(x)-s_{n_{i}}(x)=o_{x}\left(\frac{1}{\lambda\left(n_{i}+1\right)}\right) \quad \text { a.e. }
$$

holds.
Theorem 3. Let

$$
\sum_{n=1}^{\infty} c_{n}^{2} \lambda^{2}(n)<\infty
$$

be fulfilled and let $\alpha(n)$ be defined by $\alpha(n)=\ln \left(n-\mu_{k}+2\right)$ if $\mu_{k} \leqq n<\mu_{k+1}$. Then the estimation

$$
f(x)-s_{n}(x)=o_{x}\left(\frac{\alpha(n)}{\lambda(n+1)}\right) \quad \text { a.e. }
$$

holds.
It is possible to show that the conditions of these theorems are also necessary if the coefficients $\left\{c_{n}\right\}$ resp. $\left\{C_{i}\right\}$ are nonincreasing in a restricted sense. The following theorem is close to K. Tandori's theorem [9] on the necessity of the condition of coefficients in the Rademacher-Menchoff-theorem (cf. G. Alexits [1, p. 83]).

Theorem 4. If $c_{n} \geqq c_{n+1}$ for $\mu_{k} \leqq n \leqq \mu_{k+1}-2 ; k=1,2, \ldots$, and

$$
\sum_{k=1}^{\infty} \sum_{n=\mu_{k}}^{\mu_{k+1}^{1}-1} c_{n}^{2} \lambda^{2}(n)\left(\ln \left(n-\mu_{k}+2\right)\right)^{2}=\infty
$$

then there exists an ONS $\left\{\varphi_{n}(x)\right\}$ with

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \lambda(n+1)\left|f(x)-s_{n}(x)\right|=\infty \quad(x \in[0,1]) \tag{6}
\end{equation*}
$$

Remark. V. A. Andrienko and L. V. G'rnevska [3] have proved that $\sum_{n=0}^{\infty} c_{n}^{2} \lambda^{2}(n)<\infty$ implies estimation (3) if $\left\{\varphi_{n}(x)\right\}$ defines a convergence system (i.e. $\sum_{n=0}^{\infty} c_{n}^{2}<\infty$ implies the convergence a.e. of $\sum_{n=0}^{\infty} c_{n} \varphi_{n}(x)$); they further proved that in (3) $\{\lambda(n)\}$ must not be replaced by a sequence $\{\Lambda(n)\}$ tending faster to infinity. By Lemma 3 we can conclude that $\sum_{n=0}^{\infty} c_{n}^{2} \lambda^{2}(n)<\infty$ is also necessary, for in the case $\sum_{n=0}^{\infty} c_{n}^{2} \lambda^{2}(n)=\infty$ it always exists a convergence system such that estimation (3) fails.

In a way similiar to that of L. Csernyík and L. Leindler [4] used to extend K. Tandori's theorem [9] to subsequences $\left\{s_{n_{i}}(x)\right\}$, we can prove with terms (5)

Theorem 5. If $C_{i} \geqq C_{i+1}$ for $1\left(k_{j}\right) \leqq i \leqq 1\left(k_{j}+1\right)-2, j=1,2, \ldots$, and

$$
\sum_{j=1}^{\infty} \sum_{i=1\left(k_{j}\right)}^{1\left(k_{j}+1\right)-1} C_{i}^{2} \lambda^{2}\left(n_{i}+1\right)\left(\ln \left(i-l\left(k_{j}\right)+2\right)\right)^{2}=\infty
$$

then there exists an ONS $\left\{\varphi_{n}(x)\right\}$ with

$$
\overline{\lim }_{i \rightarrow \infty} \lambda\left(n_{i}+1\right)\left|f(x)-s_{n_{1}}(x)\right|=\infty \quad(x \in[0,1]) .
$$

Obviously Theorems 2 and 4 are generalizations of Theorems 1 and 3. But the result of Theorem 3 is a necessary step in the proof of Theorem 4 and the proof of Theorem 2 is based on Theorem 1. The finality of Theorem 3 follows finally with

Theorem 6. If $c_{n} \geqq c_{n+1}$ for $\mu_{k} \leqq n \leqq \mu_{k+1}-2 ; k=1,2, \ldots$, and

$$
\sum_{n=1}^{\infty} c_{n}^{2} \lambda^{2}(n)=\infty,
$$

then there exists an ONS $\left\{\varphi_{n}(x)\right\}$ with

$$
\lim _{n \rightarrow \infty} \frac{\lambda(n+1)}{\alpha(n)}\left|f(x)-s_{n}(x)\right|=\infty \quad(x \in[0,1]) .
$$

2. Proof of Theorems 1, 2 and 3

The following result will be essential.
Lemma 1. For any ONS $\left\{\varphi_{n}(x)\right\}$ the following estimation holds:

$$
\int_{0}^{1}\left\{\max _{1 \leq i \leq j \leq N}\left|c_{i} \varphi_{i}(x)+\ldots+c_{j} \varphi_{j}(x)\right|^{2}\right\} d x \leqq K_{1}\left(c_{1}^{2}+\sum_{n=2}^{N} c_{n}^{2}(\ln n)^{2}\right) .^{1)}
$$

Proof: cf. K. Tandori [11, Satz VII]; see also A. Zygmund [13, p. 193].
Proof of Theorem 1. In the first step we prove the assertion for the partial sums $s_{\mu_{k}-1}(x), k=1,2, \ldots$; namely by (2) we get

$$
\begin{gathered}
\sum_{k=1}^{\infty} \int_{0}^{1} \lambda^{2}\left(\mu_{k}\right) \cdot\left(f(x)-s_{\mu_{k}-1}(x)\right)^{2} d x=\sum_{k=1}^{\infty} \lambda^{2}\left(\mu_{k}\right) \sum_{j=k}^{\infty} \sum_{n=\mu_{j}}^{\mu_{j+1}^{-1}} c_{n}^{2}= \\
=\sum_{j=1}^{\infty} \sum_{n=\mu_{j}}^{\mu_{j+1}^{-1}} c_{n}^{2} \sum_{k=1}^{j} \lambda^{2}\left(\mu_{k}\right)=O(1) \sum_{n=\mu_{1}}^{\infty} c_{n}^{2} \lambda^{2}(n)<\infty .
\end{gathered}
$$

${ }^{\text {I }} K_{2}, K_{2}, \ldots$ denote absolute constants.

With the aid of B. Levi's theorem we conclude

$$
\begin{equation*}
f(x)-s_{\mu_{k}-1}(x)=o_{x}\left(\frac{1}{\lambda\left(\mu_{k}\right)}\right) \quad \text { a.e.. } \tag{7}
\end{equation*}
$$

For the remaining partial sums Lemma 1 leads us with

$$
\delta_{k}(x)=\max _{\mu_{k} \cong n<\mu_{k+1}^{-1}}\left|s_{n}(x)-s_{\mu_{k+1}-1}(x)\right|
$$

to

$$
\begin{gathered}
\sum_{k=1}^{\infty} \int_{0}^{1} \lambda^{2}\left(\mu_{k}\right) \delta_{k}^{2}(x) d x \leqq K_{2} \sum_{k=1}^{\infty} \lambda^{2}\left(\mu_{k}\right) \sum_{n=\mu_{k}}^{\mu_{k+1}^{-1}} c_{n}^{2}\left(\ln \left(n-\mu_{k}+2\right)\right)^{2}= \\
=O(1) \sum_{k=1}^{\infty} \sum_{n=\mu_{k}}^{\mu_{k+1}-1} c_{n}^{2} \lambda^{2}(n)\left(\ln \left(n-\mu_{k}+2\right)\right)^{2}<\infty .
\end{gathered}
$$

This shows

$$
s_{n}(x)-s_{\mu_{k+1}-1}(x)=o_{x}\left(\frac{1}{\lambda\left(\mu_{k}\right)}\right) \quad \text { a.e. } \quad\left(\mu_{k} \leqq n \leqq \mu_{k+1}-1\right) ;
$$

by $\lambda(n+1) \leqq q \cdot \lambda\left(\mu_{k}\right)$ for $\mu_{k} \leqq n \leqq \mu_{k+1}-2$ (cf. (2)) together with (7) it follows

$$
f(x)-s_{n}(x)=O(1)\left\{\left|f(x)-s_{\mu_{k+1}-1}(x)\right|+\left|s_{\mu_{k+2}-1}(x)-s_{n}(x)\right|\right\}=o_{x}\left(\frac{1}{\lambda(n+1)}\right) \quad \text { a.e., }
$$

thus Theorem 1 is proved.
Proof of Theorem 2. We represent $\left\{s_{n_{i}}(x)\right\}$ as (direct) partial sums $\left\{S_{i}(x)\right\}$ of an appropriate orthogonal series with coefficients (5); instead of $\{\lambda(n)\}$ the sequence $\{\Lambda(i)\}$ with $\Lambda(i)=\lambda\left(\mu_{k}\right)$ if $\mu_{k} \leqq n_{i}+1<\mu_{k+1}$ is taken. Here with respect to (2) $\left\{1\left(k_{j}\right)\right\}$ assumes the role of $\left\{\mu_{k}\right\}$ (cf. (4)). Theorem 1 gives $f(x)-S_{i}(x)=f(x)-s_{n_{i}}(x)=$ $=o_{x}\left(\frac{1}{\Lambda(i+1)}\right)$; noting that $\lambda\left(n_{i}+1\right)=O\left(\lambda\left(\mu_{k}\right)\right)$ for $n_{i}+1<\mu_{k+1}$ the assertion follows immediately.

Proof of Theorem 3. By the proof of Theorem 1 it yields

$$
\begin{equation*}
f(x)-s_{\mu_{k}-1}(x)=o_{x}\left(\frac{1}{\lambda\left(\mu_{k}\right)}\right) \quad \text { a.e.. } \tag{8}
\end{equation*}
$$

Now, for the partial sums $s_{n}^{*}(x)$ of the series $\sum_{n=0}^{\infty} c_{n}^{*} \varphi_{n}(x)$ with $c_{n}^{*}=c_{n} \cdot\left(\ln \left(n-\mu_{k}+2\right)\right)^{-1}$ if $\mu_{k} \leqq n<\mu_{k+1} ; k=0,1, \ldots$, the proof of Theorem 1 has shown that

$$
\hat{\delta}_{k}(x)=\max _{\mu_{k} \equiv n<\mu_{k+1}}\left|s_{n}^{*}(x)-s_{\mu_{k+1}-1}^{*}(x)\right|=o_{x}\left(\frac{1}{\lambda\left(\mu_{k}\right)}\right) \quad \text { a.e. }
$$

and

$$
\delta_{k}^{*}(x)=\max _{\mu_{k} \geqq n<\mu_{k+1}}\left|s_{n}^{*}(x)-s_{\mu_{k}-1}^{*}(x)\right|=o_{x}\left(\frac{1}{\lambda\left(\mu_{k}\right)}\right) \quad \text { a.e.. }
$$

By Abel's transformation (cf. G. Alexits [1; p. 68]) we get with $\mu_{k} \leqq n<\mu_{k+1}$

$$
\begin{aligned}
& \left|s_{n}(x)-s_{\mu_{k}-1}(x)\right|=\left|\sum_{v=\mu_{k}}^{n} c_{v} \varphi_{v}(x)\right|=\left|\sum_{v=\mu_{k}}^{n} \ln \left(v-\mu_{k}+2\right) c_{v}^{*} \varphi_{v}(x)\right|= \\
& =\mid \sum_{v=\mu_{k}}^{n-1}\left(\ln \left(v-\mu_{k}+2\right)-\ln \left(v+1-\mu_{k}+2\right)\right)\left(s_{v}^{*}(x)-s_{\mu_{k}-1}^{*}(x)\right)+ \\
& \quad+\ln \left(n-\mu_{k}+2\right)\left(s_{n}^{*}(x)-s_{\mu_{k}-1}^{*}(x)\right) \mid \leqq 3 \ln \left(n-\mu_{k}+2\right) \delta_{k}^{*}(x) .
\end{aligned}
$$

This proves $\lambda\left(\mu_{k}\right)\left(\ln \left(n-\mu_{k}+2\right)\right)^{-1}\left(s_{n}(x)-s_{\mu_{k}-1}(x)\right) \rightarrow 0$ a.e. $(n \rightarrow \infty)$, the assertion follows by (8) and (2).

3. Proof of Theorems 4, 5 and 6

To prove the necessity of the conditions stated in these theorems we need some auxiliary results. We use the following lemma of K. Tandori [9] (cf. G. Alexits [1, p. 87]) which plays an important role in the proof of divergence phenomena of orthogonal series in general.

Lemma 2. Let $\left\{a_{n}\right\}$ be a nonincreasing sequence of positive real numbers, and let $N_{r}=2^{r+2}-4, r=0,1, \ldots$ Then, for every r, there exists a measurable set F_{r} with measure

$$
\mu\left(F_{r}\right) \geqq K_{1}^{*} \min \left\{1, N_{r+1} a_{N_{r+1}}^{2}\left(\ln N_{r+1}\right)^{2}\right\} \cdot\left(K_{1}^{*}>0\right),
$$

and an ONS $\left\{\Phi_{n}(x)\right\}$ consisting of piecewise functions; such that
(a) the sets F_{0}, F_{1}, \ldots are stochastically independent ${ }^{1)}$
(b) for all $x \in F_{r}$ it exists a number $n_{r(x)}<2^{r+2}$ such that $\Phi_{N_{r}}(x), \ldots, \Phi_{N_{r}+n_{r(x)}}(x)$ are of the same sign and

$$
\left|\Phi_{N_{r}}(x)+\ldots+\Phi_{N_{r}+n_{r(x)}}(x)\right| \supseteqq \frac{K_{2}^{*}}{a_{N_{r+1}}} \quad\left(K_{2}^{*}>0\right)
$$

Remark. The proof of the lemma shows that F_{r} may be chosen as a simple set (i.e. consisting of a finite number of segments) and with the additional property: if $\Phi_{0}(x), \ldots, \Phi_{N_{r+1}-1}(x)$ are constant in a segnient I^{*}, then either $F_{r} \cap I^{*}=\emptyset$ or $I^{*} \subset F_{r}$.

To prove the necessity of the condition in Theorem 4 we first state

[^0]Lemma 3. Let $\left\{c_{n}\right\}$ be an arbitrary sequence of real numbers. If condition

$$
\sum_{n=0}^{\infty} c_{n}^{2} \lambda^{2}(n)=\infty
$$

is fulfilled, then there exists an $O N S\left\{\varphi_{n}(x)\right\}$ consisting of piecewise constant functions which forms a convergence system with

$$
\varlimsup_{n \rightarrow \infty} \lambda(n+1)\left|f(x)-s_{n}(x)\right|=\infty
$$

Proof. We can find a nonincreasing positive sequence $\left\{\varepsilon_{n}\right\} \rightarrow 0$ with

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}^{2} \lambda^{2}(n) \varepsilon_{n}^{2}=\infty \tag{9}
\end{equation*}
$$

We define the system of functions by induction. In the basic step we put with $r_{1}(x)=\operatorname{sign}(\sin 2 \pi x)(0 \leqq x \leqq 1)$

$$
\varphi_{0}(x)=r_{1}(x)
$$

Now let $\varphi_{0}(x), \ldots, \varphi_{m-1}(x)$ be defined. The segments where each of these functions are constant are denoted by $I_{0}^{(m)}, \ldots, I_{q_{m}}^{(m)}$ (with $\sum_{l=0}^{q_{m}} \mu\left(I_{l}^{(m)}\right)=1$). Putting

$$
\gamma(m)=\left\{\begin{array}{cl}
1 & \text { if } c_{m}=0 \quad \text { or } \quad c_{m}^{2} \lambda^{2}(m) \varepsilon_{m}^{2}>1 \\
c_{m}^{2} \lambda^{2}(m) \varepsilon_{m}^{2} & \text { elsewhere }
\end{array}\right.
$$

we choose in each $I_{l}^{(m)}=\left(s_{l}^{(m)}, t_{l}^{(m)}\right)$ a partial segment $J_{l}^{(m)}=\left(u_{l}^{(m)}, v_{l}^{(m)}\right)$ with $\mu\left(J_{l}^{(m)}\right)=$ $=\gamma(m) \mu\left(I_{l}^{(m)}\right)$ and with $\cdot u_{l}^{(m)}=s_{l}^{(m)}$. In general, for a segment $J=(u, v)$ and a function $f(x)$ defined on $[0,1]$, let the denotation

$$
f(J ; x)=\left\{\begin{array}{ccc}
f\left(\frac{x-u}{v-u}\right) & \text { if } & x \in J \tag{10}\\
0 & \text { if } & x \notin J
\end{array}\right.
$$

be valid. Then we put

$$
\varphi_{m}(x)=\frac{1}{\sqrt{\gamma(m)}} \sum_{l=0}^{q_{m}} r_{1}\left(J_{l}^{(m)} ; x\right)
$$

It is easy to verify that $\varphi_{0}(x), \ldots, \varphi_{m}(x)$ constitute a set of orthogonal and normalized functions.

The sets

$$
G_{m}=\bigcup_{l=0}^{q_{m}} J_{l}^{(m)}, \quad m=1,2, \ldots
$$

are stochastically independent. Thus by the second Borel-Cantelli lemma (cf. W. Feller [5, p. 155]) we deduce that with $\mu\left(G_{m}\right)=\gamma(m)$ and $\sum_{n=1}^{\infty} \mu\left(G_{m}\right)=\infty$ (cf. (9)).
for $\bar{G}=\overline{\lim } G_{m} \mu(\bar{G})=1$ holds. Taking $x_{0} \in \bar{G}$ we can find an infinite set of numbers m with

$$
\lambda(m)\left|c_{m} \varphi_{m}(x)\right|=\frac{\left|c_{m}\right| \lambda(m)}{\sqrt{\gamma(m)}} \geqq \frac{1}{\varepsilon_{m}}
$$

Because of $\varepsilon_{m} \rightarrow 0$ and because of the estimate

$$
\left|f(x)-s_{m-1}(x)\right| \geqq\left|c_{m} \varphi_{m}(x)\right|-\left|f(x)-s_{m}(x)\right|
$$

the above stated equality contradicts the estimation $f(x)-s_{m-1}(x)=O_{x}\left(\frac{1}{\lambda(m)}\right)$ a.e.. Changing the values of $\left\{\varphi_{n}(x)\right\}$ in $[0,1]-\bar{G}$ in an appropriate way, we get the assertion of Lemma 3.

To prove that $\left\{\varphi_{n}(x)\right\}$ is a convergence system, we mention a lemma of D. E. Menchoff ([8], Lemma 2) proving that the following conditions are sufficient for $\left\{\psi_{n}(x)\right\}$ to be a convergence system: Let the segments $I_{l}^{(n)}, l=1, \ldots, p_{n}$, with $I_{l}^{(n)} \cap I_{l_{0}}^{(n)}=\emptyset$ if $l \neq l_{0}$ and $\sum_{l=1}^{p_{n}} \mu\left(I_{l}^{(n)}\right)=1$, satisfy
(i) $\psi_{n}(x)$ has constant value in $I_{l}^{(n)}, l=1, \ldots, p_{n}$;
(ii) $\int_{I_{i}^{(n)}} \psi_{m}(x) d x=0$ for $l=1, \ldots, p_{n} ; m=n+1, n+2, \ldots$;
(iii) $\lim _{n \rightarrow \infty} \max _{l} \mu\left(I_{l}^{(n)}\right)=0$;
(iv) if $m>n$ then for every $I_{i}^{(n)}=(s, t) \quad\left(1 \leqq l \leqq p_{n}\right)$ it exists an index $\sigma=\sigma(l, n, m)$ such that for $I_{\sigma}^{(m)}=(u, v)$ yields $u=s$.

It is obvious, that the above mentioned functions $\left\{\varphi_{n}(x)\right\}$ and the sets $J_{i}^{(m)}$ ($l=0,1, \ldots, q_{m} ; m=1,2, \ldots$) satisfy conditions (i)-(iv), which completes the proof.

Proof of Theorem 4. We first mention that the case $\sum_{n=1}^{\infty} c_{n}^{2} \lambda^{2}(n)=\infty$ is treated in Lemma 3. Therefore, in the following, we may assume that $\sum_{n=1}^{\infty} c_{n}^{2} \lambda^{2}(n)<\infty$. For the terms

$$
\sigma_{k}=\left\{\begin{array}{cll}
\mu_{k+1}^{-1} \sum_{n=\mu_{k}}^{\sum_{n}^{2} \lambda^{2}(n)\left(\ln \left(n-\mu_{k}+2\right)\right)^{2}} & \text { if } & \mu_{k+1}-\mu_{k}>4 \\
0 & \text { if } & \mu_{k+1}-\mu_{k} \leqq 4
\end{array}\right.
$$

where $\left\{\mu_{k}\right\}$ is given in (2), the series $\sum_{k=1}^{\infty} \sigma_{k}$ is divergent. Again we can find a nonincreasing sequence $\left\{\varepsilon_{k}\right\} \rightarrow 0$ with

$$
\begin{equation*}
\sum_{k=1}^{\infty} \sigma_{k} \varepsilon_{k}^{2}=\infty \tag{11}
\end{equation*}
$$

On the basis of this series we define an ONS which satisfies (6). By the aid of the Rademacher functions $r_{n}(x)=\operatorname{sign}\left(\sin 2^{n} \pi x\right), n=0,1, \ldots$, we take

$$
\varphi_{n}(x)=r_{n}(x), \quad n=0,1, \ldots, \mu_{1}-1
$$

Now let $\varphi_{0}(x), \ldots, \varphi_{\mu_{k}-1}(x)$ be defined and let us denote by $I_{l}^{(k)}, l=0, \ldots ; q_{k} ;$ the segments in which each of these functions have constant value; we may assume that either $I_{l}^{(k)} \subset I_{l_{0}}^{(k-1)}$ or $I_{l}^{(k)} \cap I_{l_{0}}^{(k-1)}=\emptyset$. In the case of $\mu_{k+1}-\mu_{k} \leqq 4$ we put (by transformation (10))

$$
\varphi_{n}(x)=\sum_{l=0}^{q_{k}} r_{n-\mu_{k}+1}\left(I_{l}^{(k)} ; x\right), \quad n=\mu_{k}, \ldots, \mu_{k+1}-1
$$

Otherwise if $\mu_{k+1}-\mu_{k}>4$ we select $r_{0}=r_{0}(k) \geqq 0$ such that with the numbers $\left\{N_{r}\right\}$ defined in Lemma $2 N_{r_{0}+1}<\mu_{k+1}-\mu_{k} \leqq N_{r_{0}+2}$ is satisfied. Then we refer to Lemma 2 and set

$$
\begin{equation*}
a_{n}=c_{\mu_{k}+n} \varepsilon_{k} \lambda\left(\mu_{k}\right), \quad n=0,1, \ldots, N_{r_{0}+1} \tag{12}
\end{equation*}
$$

Let I_{l}^{\prime} and $I_{l}^{\prime \prime}$ denote the two halves of $I_{l}, l=0,1, \ldots, q_{k}$; then we put with the functions $\left\{\Phi_{n}(x)\right\}$ out of Lemma 2

$$
\varphi_{\mu_{k}+n}(x)=\sum_{l=0}^{q_{k}}\left\{\Phi_{n}\left(I_{l}^{\prime} ; x\right)-\Phi_{n}\left(I_{l}^{\prime \prime} ; x\right)\right\}, \quad n=1, \ldots, N_{r_{0}+1}
$$

In the case $N_{r_{0}+1}+1<\mu_{k+1}-\mu_{k}$, we again select all segments $I_{l}^{*}, l=0,1, \ldots ; q_{k}^{*}$; in which the already stated functions have constant value. We then put

$$
\varphi_{\mu_{k}+N_{r_{0}+1}+n}(x)=\sum_{l=0}^{q_{k}^{*}} r_{n}\left(I_{l}^{*} ; x\right), \quad n=1, \ldots, \mu_{k+1}-N_{r_{0}+1}-1
$$

With the transformation $(0,1) \rightarrow I_{l}^{\prime}$ resp. $(0,1) \rightarrow I_{l}^{\prime \prime}$ if $\mu_{k+1}-\mu_{k}>4$ the sets F_{r}, $r=0,1, \ldots, r_{0}(k)$, considered in Lemma 2 will be transformed into the sets $F_{r}\left(I_{l}^{\prime}\right)$ resp. $F_{r}\left(I_{l}^{\prime \prime}\right)$. Then we set

$$
G_{r}^{(k)}=\bigcup_{l=0}^{q_{k}}\left\{F_{r}\left(I_{l}^{\prime}\right) \cup F_{r}\left(I_{l}^{\prime \prime}\right)\right\} .
$$

Let l_{1}, l_{2}, \ldots denote those numbers with $\mu_{l_{j}+1}-\mu_{l_{j}}>4$. Then the following is true:
(i) the sets $G_{r}^{\left(l_{r}\right)}, r=0,1, \ldots, r_{0}\left(l_{j}\right)$, are stochastically independent (which follows by the definition and by the Remark to Lemma 2); furthermore

$$
\begin{gathered}
\left.\mu\left(G_{r}^{\left(l_{j}\right)}\right)=\sum_{l=0}^{q_{l_{j}}}\left\{\mu\left(F_{r}\left(I_{l}^{\prime}\right)\right)+\mu\left(F_{r}\left(I_{l}^{\prime \prime}\right)\right)\right\}=\mu\left(F_{r}\right) \sum_{l=0}^{q_{l_{j}}}\left\{\mu\left(I_{l}^{\prime}\right)+\mu\left(I_{l}^{\prime \prime}\right)\right)\right\}=\mu\left(F_{r}\right) \geqq \\
\geqq K^{*} \min \left\{1, N_{r+1} c_{\mu_{l_{j}}}^{2}+N_{r+1} \varepsilon_{l_{j}}^{2} \lambda^{2}\left(\mu_{l_{j}}\right)\left(\ln N_{r+1}\right)^{2}\right\} ;
\end{gathered}
$$

(ii) if $x \in G_{r}^{\left(l_{j}\right)}$, then there exists a number $n_{r}(x)=n_{r}\left(l_{j} ; x\right)<2^{r+2}$ with

$$
\left|\varphi_{\mu_{l_{j}}+N_{r}}(x)+\ldots+\varphi_{\mu_{l_{j}}+N_{r}+n_{r}(x)}(x)\right| \geqq \frac{B^{*}}{c_{\mu_{l_{j}}+N_{r+1}} \varepsilon_{l_{j}} \lambda\left(\mu_{l_{j}}\right)}
$$

and the considered functions have the same sign at x. By the second Borel-Cantelli lemma, using $c_{n} \geqq c_{n+1}$ and $\lambda(n) \leqq q \lambda\left(\mu_{l_{j}}\right)$ if $\mu_{l_{j}} \leqq n \leqq \mu_{l_{j}+1}-1$, furthermore that

$$
\begin{equation*}
\sum_{j=1}^{\infty} \sum_{r=0}^{r_{0}\left(l_{j}\right)} \mu\left(G_{r}^{\left(l_{j}\right)}\right)=\infty \tag{13}
\end{equation*}
$$

(cf. (i), (11)) for $\bar{G}=\overline{\lim } G_{r}^{\left(l_{j}\right)}$ we have $\mu(\bar{G})=1$. On the other side we get by (ii) with $x \in G_{p}^{\left(l_{j}\right)}, 0 \leqq r \leqq r_{0}\left(l_{j}\right) ; j=1,2, \ldots$, that for a suitable $n_{r}(x)$ it holds

$$
\lambda\left(\mu_{l_{j}}+N_{r}\right)\left|\sum_{n=\mu_{l_{j}}+N_{r}}^{\mu_{l_{j}}+N_{r}+n_{r}(x)} c_{n} \varphi_{n}(x)\right| \geqq \frac{B^{*}}{\varepsilon_{l_{j}}} \rightarrow \infty,
$$

whence (6) obviously follows (changing the values of $\left\{\varphi_{n}(x)\right\}$ in a suitable set of measure 0 , if necessary).

The proof of Theorem 5 is based on Theorem 4, the method being close to that of L. Csernyák and L. Leindler [4] where the following extension of K. Tandori's theorem [9] is proved: Let $\left\{C_{i}\right\}$ (cf. (5)) be a nonincreasing sequence. If $\sum_{i=2}^{\infty} C_{i}^{2}(\ln i)^{2}=\infty$, then it exists an ONS $\left\{\varphi_{n}(x)\right\}$ with $\varlimsup_{i \rightarrow \infty}\left|f(x)-s_{n_{i}}(x)\right|=\infty$. But at first we want to mention a result concerning the Rademacher functions $\left\{r_{n}(x)\right\}$. For any sequence $\left\{c_{n}\right\}, \sum_{n=0}^{\infty} c_{n}^{2}<\infty$, and for $f(x) \sim \sum_{n=0}^{\infty} c_{n} r_{n}(x)$ given by the RieszFischer theorem it holds

$$
\begin{equation*}
A\left\{\sum_{n=0}^{\infty} c_{n}^{2}\right\}^{1 / 2} \leqq \int_{0}^{1}|f(x)| d x \leqq B\left\{\sum_{n=0}^{\infty} c_{n}^{2}\right\}^{1 / 2} \tag{14}
\end{equation*}
$$

(A, B absolutely constant; cf. A. Zygmund [12, p. 213]). On the basis of estimation (14) L. Csernyák and L. Leindler proved

Lemma 4. For an arbitrary sequence $\left\{c_{n}\right\}$ let the sets $E_{n, m}$ be defined by

$$
E_{n, m}=\left\{x:\left|\sum_{v=n}^{n+m} c_{v} r_{v}(x)\right|>\frac{1}{2}\left\{\sum_{v=n}^{n+m} c_{v}^{2}\right\}^{1 / 2}\right\} .
$$

Then the sets $E_{n, m}$ are simple sets with

$$
\mu\left(E_{n, m}\right) \geqq \frac{A^{2}}{4}
$$

A given by (14).
Proof of Theorem 5. (a) By Theorem 4 we can find for the sequence $\left\{C_{i}\right\}$ an ONS $\left\{\Phi_{i}(x)\right\}$ such that for the partial sums $\left\{S_{i}(x)\right\}$ of the series $\sum_{i=0}^{\infty} C_{i} \Phi_{i}(x)$ we have

$$
\varlimsup_{i \rightarrow \infty} \lambda\left(n_{i}+1\right)\left|f(x)-S_{i}(x)\right|=\infty \quad(x \in[0,1])
$$

As in [4] it will be proved that with the aid of $\left\{\Phi_{i}(x)\right\}$ we can set up an ONS $\left\{\varphi_{n}(x)\right\}$ for which the assertion of the theorem is true. We outline the proof and refer the reader to [4] for complete argumentation.

We distinguish two cases: $\mathfrak{l}\left(k_{j}+1\right)-\mathfrak{l}\left(k_{j}\right)=O(1)$ and $\mathfrak{l}\left(k_{j}+1\right)-\mathfrak{l}\left(k_{j}\right) \neq O(1)$ (for definition of $\mathrm{I}\left(k_{j}\right) \mathrm{cf}$. the preliminary remark regarding Theorem 2) and treat only the (more complicate) latter one.

When $\mathfrak{l}\left(k_{j}+1\right)-\mathrm{I}\left(k_{j}\right) \neq O(1)$ let $l_{1}^{*}, l_{2}^{*}, \ldots$ denote those indices with

$$
\mathfrak{I}\left(l_{j}^{*}+1\right)-\mathfrak{I}\left(l_{j}^{*}\right)>4
$$

By the proof of Theorem 4 we can find some simple sets $G_{r}^{\left(l_{j}^{*}\right)}, r=0,1, \ldots, r_{0}\left(l_{j}^{*}\right)$, with

$$
\sum_{j=1}^{\infty} \sum_{r=0}^{r_{0}\left(l_{j}^{*}\right)} \mu\left(G_{r}^{\left(l_{j}^{*}\right)}\right)=\infty
$$

(cf. (13)), and for $x \in G_{r}^{\left(l_{j}^{*}\right)}$ numbers $i_{0}=I\left(l_{j}^{*}\right)+N_{r}$ and $n_{r}(x)$ such that

$$
\begin{equation*}
\lambda\left(n_{i_{0}}+1\right)\left|\sum_{i=i_{0}}^{i_{0}+n_{r}(x)} C_{i} \Phi_{i}(x)\right|>\frac{B^{*}}{\varepsilon_{l_{j}^{*}}} \quad\left(\left\{\varepsilon_{n}\right\} \rightarrow 0\right) \tag{15}
\end{equation*}
$$

and these functions are of the same sign on $G_{r}^{\left(l_{j}^{*}\right)}$.
(b) Next, corresponding to l_{j}^{*} and $r \equiv r_{0}\left(l_{j}^{*}\right)$ the number $\varkappa(j, r)$ is defined by

$$
\begin{gathered}
\varkappa(j, r)=\max \left\{\left(n_{i+1}-n_{i}\right): \mathfrak{l}\left(l_{j}^{*}\right)+N_{r} \leqq i<\mathfrak{I}\left(l_{j}^{*}\right)+N_{r+1}\right\}, \\
r=0,1, \ldots, r_{0}\left(l_{j}^{*}\right) ; \quad j=1,2, \ldots
\end{gathered}
$$

Now let us choose a fixed l_{j}^{*} and r. With the above value $\varkappa=x(j, r)$ we divide $[0,1]$ $Q^{*}=2^{\kappa+1}$ partial segments with equal length $I_{q}=\left(u_{q}, v_{q}\right), 1 \leqq q \leqq Q^{*}$. With respect to some $n_{i_{0}}$, where $n_{1\left(l_{j}^{*}\right)+N_{r}} \leqq n_{i_{0}}<n_{1\left(l_{j}^{*}\right)+N_{r+1}}$, the number of segments I_{q}, where

$$
\begin{equation*}
\sum_{n=1}^{n_{i_{0}}+1-n_{i_{0}}} c_{n_{i_{0}}+n} r_{n}(x)>\frac{A}{2}\left\{\sum_{n=1}^{n_{i_{0}}+1-n_{i_{0}}} c_{n_{i_{0}}+n}^{2}\right\}^{1 / 2}, \tag{16}
\end{equation*}
$$

is at least $p^{*}=2^{-3} A^{2} Q^{*}$ bearing in mind that $r_{n}((1 / 2)+x)=r_{n}((1 / 2)-x)$. Let us then change the segments I_{q} and simultaneously the corresponding values of the functions $r_{n}(x), n=1, \ldots, n_{i_{0}+1}-n_{i_{0}}$, in such a way that (16) holds for the first p^{*} segments. The new functions are denoted by $r_{i_{0}, n}(x), n=1, \ldots, n_{i_{0}+1}-n_{i_{0}}$, i.e. it yields

$$
\begin{gathered}
\sum_{n=1}^{n_{i_{0}}+1^{-n_{i_{0}}}} c_{n_{i_{0}+n}} r_{i_{0}, n}(x)=\frac{A}{2}\left\{\sum_{n=n_{i_{0}}+1}^{n_{i_{0}+1}} c_{n}^{2}\right\}^{1 / 2} \\
x \in I_{q} ; \quad q=1, \ldots, p^{*}
\end{gathered}
$$

With the ONS $\left\{\Phi_{i}(x)\right\}$ mentioned in (a), we consider the functions (cf. (10))
and we put

$$
g_{i_{0} q}(x)=\Phi_{i_{0}}\left(I_{q} ; x\right), \quad q=1, \ldots, Q^{*}
$$

$$
\begin{equation*}
\gamma_{n_{i_{0}}+n}(x)=\sum_{q=1}^{Q^{*}} r_{i_{0}, n}(x) g_{i_{0} q}(x), \quad n=1, \ldots, n_{i_{0}+1}-n_{i_{0}} . \tag{17}
\end{equation*}
$$

As in [4] we can prove that $\left\{\gamma_{n}(x)\right\}$ are orthogonal and normalized functions.
(c) For those n_{i} which are not covered by (b), namely when $i^{*}=l\left(l_{j}^{*}\right)+N_{r_{0}\left(l_{j}^{*}\right)+1}$ and $n_{i^{*}} \leqq n_{i}<n_{\left(l_{j+1}^{*}\right)}$ we put $Q^{*}=2^{n_{i+1}-n_{i}+1}$ and define $\gamma_{n_{i}+1}(x), \ldots, \gamma_{n_{i+1}}(x)$ analogously to (17) in (b).
(d) For fixed l_{j}^{*} and r with respect to the transformation $(0,1) \rightarrow I_{q}$ in (b) the set $G_{r}^{\left(l_{j}^{*}\right)}$ will be transformed into the set $G_{r}^{\left(l_{j}^{*}\right)}\left(I_{q}\right)$. Taking

$$
\bar{G}_{r}^{\left(l_{j}^{*}\right)}=\bigcup_{q=1}^{Q^{*}} G_{r}^{\left(l_{j}^{*}\right)}\left(I_{q}\right)
$$

we get

$$
\begin{equation*}
\mu\left(\bar{G}_{\boldsymbol{r}}^{\left(l_{j}^{*}\right)}\right) \geqq 2^{-4} A^{3} \mu\left(G_{r}^{\left(l_{j}^{*}\right)}\right) . \tag{18}
\end{equation*}
$$

On the other side, with $i_{0}=\mathrm{l}\left(l_{j}^{*}\right)+N_{r}$ we can find for $x \in \bar{G}_{r}^{\left(l_{j}^{*}\right)}$, e.g. $x \in G_{r}^{\left(l_{j}^{*}\right)}\left(I_{q_{0}}\right)$, a number $n_{r}(x)$ with (cf. (15), (16))

$$
\begin{equation*}
\left|\sum_{i=i_{0}}^{i_{0}+n_{r}(x)} \sum_{k=n_{i}+1}^{n_{i+1}} c_{k} \gamma_{k}(x)\right|=\left|\sum_{i=i_{0}}^{i_{0}+n_{r}(x)} g_{i q_{0}}(x) \sum_{k=n_{i}+1}^{n_{i+1}} c_{k} r_{i, k-n_{i}}(x)\right|>\frac{A \cdot B^{*}}{2 \varepsilon_{l_{j}} \lambda\left(\mu_{l_{j}^{*}}^{*}\right)} . \tag{19}
\end{equation*}
$$

(e) In the last step we have to give the ONS $\left\{\varphi_{n}(x)\right\}$ asked for. At first we put

$$
\varphi_{n}(x)=r_{n}(x), \quad n=0,1, \ldots, n_{1\left(l_{1}^{*}\right)}
$$

Now let with $i_{0}=l\left(l_{j}^{*}\right)+N_{v}$ the functions $\varphi_{0}(x), \ldots, \varphi_{n_{i_{0}}}(x)$ be defined. Denoting with $J_{\sigma}=J_{\sigma}^{\left(i_{0}\right)}, \sigma=1, \ldots, R\left(i_{0}\right)$ all those partial segments where these functions have constant value, we may assume that $J_{\sigma}^{\left(i_{0}\right)} \cap J_{\sigma^{\circ}}^{\left(i_{0}-1\right)}=J_{\sigma}^{\left(i_{0}\right)}$ or that $J_{\sigma}^{\left(i_{0}\right)} \cap J_{\sigma^{\prime}}^{\left(i_{0}-1\right)}=\emptyset$. The two halves of J_{σ} may be marked by J_{σ}^{\prime} and $J_{\sigma}^{\prime \prime}$.

In the case $v=r_{0}\left(l_{j}^{*}\right)+1$ and $\mathrm{I}\left(l_{j+1}^{*}\right)-\mathrm{I}\left(l_{j}^{*}\right)>N_{v+1}$, we put with $R=R\left(i_{0}\right)$ (cf. (10))

$$
\varphi_{k}(x)=\sum_{\sigma=1}^{R}\left(\gamma_{k}\left(J_{\sigma}^{\prime} ; x\right)-\gamma_{k}\left(J_{\sigma}^{\prime \prime} ; x\right)\right), \quad k=n_{i_{0}}+1, \ldots, n_{1\left(l_{j+1}^{*}\right)}
$$

otherwise if $v \leqq r_{0}\left(l_{j}^{*}\right)$, then we take

$$
\varphi_{k}(x)=\sum_{\sigma=1}^{R}\left(\gamma_{k}\left(J_{\sigma}^{\prime} ; x\right)-\gamma_{k}\left(J_{\sigma}^{\prime \prime} ; x\right)\right), \quad k=n_{i_{0}}+1, \ldots, n_{1\left(l_{j}^{*}\right)+N_{v+1}}
$$

In the last case we also take up the set

$$
H_{v}^{(j)}=\bigcup_{\sigma=1}^{R}\left(G_{v}^{\left(l_{j}^{*}\right)}\left(J_{\sigma}^{\prime}\right) \cup G_{v}^{\left(l_{j}^{*}\right)}\left(J_{\sigma}^{\prime \prime}\right)\right)
$$

whereby $G_{v}^{\left(l_{j}^{*}\right)}$ is transformed into $G_{v}^{\left(l_{j}^{*}\right)}\left(J_{\sigma}^{\prime}\right)$ when $(0,1)$ is transformed into J_{σ}^{\prime}.
The sets $H_{v}^{(j)}, v=0,1, \ldots, r_{0}\left(l_{j}\right) ; j=1, \ldots$ are stochastically independent and

$$
\sum_{j=1}^{\infty} \sum_{v=0}^{r_{0}\left(l^{*}\right)} \mu\left(H_{v}^{(j)}\right)=\infty
$$

(cf. (18)), i.e.

$$
\mu\left(\overline{\lim } H_{v}^{(j)}\right)=1
$$

But with $x \in H_{v}^{(j)}$ we can find $n(x)$ such that for $i^{*}=l\left(l_{j}^{*}\right)+N_{v}$ then e.g. for $x \in G_{v}^{\left(l_{j}^{*}\right)}\left(J_{\sigma}^{\prime}\right)$

$$
\left|\sum_{i=i^{*}}^{i^{*}+n(x)} \sum_{n=n_{i}+1}^{n_{l+1}} c_{n} \varphi_{n}(x)\right|=\left|\sum_{i=i^{*}}^{i *+n(x)} \sum_{n=n_{i}+1}^{n_{i+1}} c_{n} \gamma_{n}\left(J_{\sigma}^{\prime} ; x\right)\right| \geqq \frac{A B^{*}}{2 \varepsilon_{l_{j}^{*}} \lambda\left(\mu_{l_{j}^{*}}\right)}
$$

(cf. (19)) which is not bounded. But this contradicts the estimation $f(x)-s_{n_{i}}(x)=$ $=O_{x}\left(\frac{1}{\lambda\left(n_{i}+1\right)}\right)$. Changing the values of $\left\{\varphi_{n}(x)\right\}$ on a set with measure 0 we get the assertion of Theorem 5.
(f) In the case $\mathfrak{I}\left(k_{j}+1\right)-I\left(k_{j}\right)=O(1)$ we proceed as in (c).

The proof of Theorem 6 is similiar to that of Theorem 4, taking

$$
\sigma_{k}^{2}=\left\{\begin{array}{cc}
\mu_{k+1}^{-1} c_{n=\mu_{k}}^{2} \lambda^{2}(n) & \text { if } \mu_{k+1}-\mu_{k}>4 \\
0 & \text { if } \mu_{k+1}-\mu_{k} \leqq 4
\end{array}\right.
$$

in case $\mu_{k+1}-\mu_{k} \neq O$ (1) with

$$
\sum_{k=1}^{\infty} \sigma_{k}^{2} \epsilon_{k}^{2}=\infty \quad\left(\left\{\varepsilon_{k}\right\} \rightarrow 0\right)
$$

and putting in (12)

$$
a_{n}=c_{\mu_{k}+n} \varepsilon_{k}, \quad n=0,1, \ldots, N_{r_{0}+1}
$$

otherwise, if $\mu_{k+1}-\mu_{k}=O(1)$ the assertion follows by Lemma 3.

References

[1] G. Alexits, Konvergenzprobleme der Orthogonalreihen, Akadémiai Kiadó (Budapest, 1960).
[2] V. A. Andrienko, On the speed of convergence of orthogonal series, Vestnik Moskov. Univ. Ser. I. Mat. Meh., 22 (1967), 17-24.
[3] V. A. Andrienko and L. V. G'rnevska, The rate of approximation of functions by their orthogonal series in convergence systems, Ukrainian Math. J., 34 (1982), 278-280.
[4] L. Csernyák und L. Leindler, Über die Divergenz der Partialsummen von Orthogonalreihen, Acta Sci. Math., 27 (1966), 55-61.
[5] W. Feller, An introduction to probability theory and its applications. I, 2nd ed., John Wiley and Sons (New York-London, 1957).
[6] V. I. Kolyada, On the rate of convergence of orthogonal series, Ukrainian Math. J., 25 (1973), 19-29.
[7] L. Leindler, Über die Rieszschen Mittel allgemeiner Orthogonalreihen, Acta Sci. Math., 24 (1963), 129-138.
[8] D. E. Menchoff, On summation of orthogonal series, Trudy Moscow Mat. Obs., 10 (1961), 351-418. (in Russian)
[9] K. Tandori, Über die orthogonalen Funktionen I, Acta Sci. Math., 18 (1957), 57-130.
[10] K. Tandori, Über die orthogonalen Funktionen VII, Acta Sci. Math., 20 (1959), 19-24.
[11] K. Tandori, Über die Konvergenz der Orthogonalreihen II, Acta Sci. Math., 25 (1964), 219-234.
[12] A. Zygmund, Trigonometric series. I, University Press (Cambridge, 1959).
[13] A. Zygmund, Trigonometric series. II, University Press (Cambridge, 1959).

MATHEMATISCHES INSTITUT
ARNDSTRASSE 2
6300 GIESSEN, GERMANY

[^0]: ${ }^{1)} F_{0}, F_{1}, \ldots$ are stochastically independent with respect to [0, 1], if $k_{1}<k_{2} \ldots<k_{1}$ then $\mu\left(F_{k_{1}} \cap F_{k_{\mathbf{2}}} \cap\right.$ $\left.\cap \ldots \cap F_{k_{1}}\right)=\mu\left(F_{k_{1}}\right) \mu\left(F_{k_{2}}\right) \ldots \mu\left(F_{k_{1}}\right)$.

