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On the rate of approximation by orthogonal series 
H. SCHWINN 

Dedicated to Professor K. Tandori on his sixtieth birthday 

I. Introduction 

Let {<£>„(*)} be a normalized system of orthogonal functions (ONS) with respect 
to the space L2[0, 1]. We ask for additional conditions on coefficients {c„} with 

CO « 

2 such that the partial sums {s„(x)} of the orthogonal series 2 cn9n(x) 
n = 0 n = 0 

are convergent to a limit function f(x), uniquely a.e. determined by the Riesz—Fischer 
theorem, with a certain speed. K. TANDORI [10] proved the following basic result: 

T h e o r e m A. Assume that {A(n)} is an increasing sequence tending to If 

2 c2
nX2(ri) (In n)2< then the estimate 

11 = 2 

(1) f(x)-sn(x) = o* (-J^j) a.e. 

holds. 

Asking for the finality of Theorem A as a consequence of a result of L. Leindler 
([7], Hilfssatz 2) it follows that in case A(n+l)>C*A(/i) (C*>1) the factor (In n)2 

may be omitted. On the other side, for certain sequences increasing slowly enough, 
V. A. ANDRIENKO [2] proved the finality of Theorem A. Later on V. I. KOLYADA [6] 
proved the following result: 

T h e o r e m B. Assume that the positive increasing sequence (A(n)} is such that 

In n = o(A(n)) 

and that there exists a sequence {v„} with the properties: 

Mn) = v „ + i - v . ä 2 , 
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If then we have the estimate 

where qn is defined with the aid of the strictly increasing function v(t) with v(n) = v„ 
and its inverse v - 1 ( / ) by <7„ = [v_1(/i)]. 

V. I. Kolyada also proved in [6] the finality of Theorem B in the following way: 
the speed In fi(qn+i)P.(n + l) may not be replaced by a speed ( / t (« ) ) _ 1 tending faster 
to zero, i.e. if A(n)-\n + — °=>. 

In this paper we Want to establish a general condition for estimations of type (1), 
which is also necessary for a special class of coefficients {c„}. In the following let 
{A(n)} be a nondecreasing sequence tending to infinity. We consider in dependence of 
a fixed chosen constant q > \ the uniquely determined sequence of increasing 
natural numbers {/ik} with 

(2) X{tik+x)^q-X{nk) and < q • AGO (fc = 0, 1, ...). 

T h e o r e m 1. Let 

2 ""Z1 ( n - - n k + 2 ) y < -k = l n= 

be fulfilled. Then the estimation 

( 3 ) = 

holds. 

We can extend this statement to partial sums {sn (x)}, where {«,} is an increasing 
sequence of natural numbers. With respect to the above considered sequence 
let I (k) be defined by 
( 4 ) " I ( I I ) - I < / I I - L S % ) (FC = 1 , 2 , . . . ) . 

Then I(& + 1 ) — i n d i c a t e s the number out of {«,} between fik — l and pk+1 —1. 
The above definition also admits the case I (A:)=I(fc + 1 ) ; therefore let } denote the 
sequence of those numbers when 1 (^ + 1 ) — P u t t i n g 

(5) C, = { 1 c2}1'2 (¡ = 0 , 1 , . . . ; b _ x = - 1 ) 

we prove 

T h e o r e m 2. Let 

2 2 c i
2 A 2 (« i _ 1 + i )( in( i - i (fc,)+2» 2 <-

j=l ¡=1(^0+1 
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be fulfilled. Then for {i„.(*)} the estimation 

= a J . 

holds. 

T h e o r e m 3. Let 

n=l 

be fulfilled and let a(n) be defined by a(n) = ln (n —¡ik +2) if (ik^n*=.[ik+l. Then 
the estimation 

f(x)-s^) = a.e. 

holds. 

It is possible to show that the conditions of these theorems are also necessary if 
the coefficients {c„} resp. {C;} are nonincreasing in a restricted sense. The following 
theorem is close to K. Tandori 's theorem [9] on the necessity of the condition of 
coefficients in the Rademacher—Menchoff-theorem (cf. G . ALEXITS [1 , p. 8 3 ] ) . 

T h e o r e m 4. If c„^c„+1 for nk^n^nk+1—2; k= 1 ,2 , . . . , and 

Z ^ Z 1 cU*(n)(ln(n-fik+2)Y=~, • 
k=l n=tik 

then there exists an ONS {(pn(x)} with 

(6) " ' ESA(n + l ) | / ( * ) - s ; ( j e ) | = o o (x€[0,l]). . 
«-»•CO V-

R e m a r k . V. A . ANDRIENKO and L. V. G'RNEVSKA [3] have proved that 
oe> . ' . . . . 

implies estimation (3) if {<?„(*)} defines a convergence system 
«=0 oo OO 
(i.e. ^ c 2 < implies the convergence a.e. of 2 cn(Pn(x)); they further proved 

n=0 n=0 
that in (3) {A(«)} must not be replaced by a sequence {/1(h)} tending faster to infinity. 

By Lemma 3 we can conclude that 2 °° is also necessary, for in the case 
11 = 0 oo 

2 C2-12(H)="° it always exists .a convergence system such that estimation (3) fails. n = 0 

In a way similiar to that of L . CSERNYAK and L . LEINDLER [4 ] used to extend 
K. TANDORI'S theorem [9] to subsequences {^(x)}, we can prove with terms (5) 

27 • 
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T h e o r e m 5. If C , S C i + 1 for 1 ( ^ ) ^ / ^ 1 ( ^ + 1 ) - 2 , j=],2, ..., and 

2 2 c? ; . 2 (n ; +i ) ( in (/ - / ( k j ) + 2 ) ) 2 = 
j=1 i=Hkj) 

then there exists an ONS {«¡»„(x)} with 

E S ¿ (« ¡+ l ) | / ( * ) -5„ ( (x ) | - - (*€[<>,1]). I-*- co 

Obviously Theorems 2 and 4 are generalizations of Theorems 1 and 3. But the 
result of Theorem 3 is a necessary step in the proof of Theorem 4 and the proof of 
Theorem 2 is based on Theorem 1. The finality of Theorem 3 follows finally with 

T h e o r e m 6. If e„^cn+1 for 2; k= 1 ,2 , . . . , and 

¿ c 2 ; . 2 ( « ) = - , 
n=i 

then there exists an ONS {<?>„(*)} with 

m !/<*)-s»Ml = -n—co a(n) 

2. Proof of Theorems 1, 2 and 3 

The following result will be essential. 

L e m m a 1. For any ONS {<p„(x)} the following estimation holds: 

1 * 
/ { max \ci(pi(x)+...+Cj(pj(x)\s)dx S 2 c2(ln n)2).1) 
0 lilS/SH n=2 

P r o o f : cf. K. TANDORI [ 1 1 , Satz VII]; see also A. ZYGMUND [ 1 3 , p. 1 9 3 ] . 

P r o o f of T h e o r e m 1. In the first step we prove the assertion for the partial 
sums ifli(_1(jc), k= 1 , 2 , . . . ; namely by (2) we get 

2 J A2(/It) • ( m - s ^ w f d x = 2 k\nk) 2*'*2 4 = 
k—1q *=1 j=k n=fij 

= 2 *J 2'1 el 2 = 0(1) 2 c№(n) < oo. 
J — 1 " = * = 1 "=|i| 

*) Ku K2,... denote absolute constants. 
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With the aid of B. Levi's theorem we conclude 

(7) / M - V ^ L W = A E " 

For the remaining partial sums Lemma 1 leads us with 

5k(x) = max |s„ (jc)—5 t _ x (x) 
to 

2 / k)st(x)dx s k2 "2 1 cn0n(w—ftt +2))2 = (t=l 0 4=1 •>=Mfc 

= O(l) 2 " " f 1 clX\n){\n(n-nk+2)f^~>. k=1 n=Mk 
This shows 

s . w - s f t t r i w = °x(j^)) a e - fe - " -

by X(n + \ ) ^ q • X(nk) for 2 (cf. (2)) together with (7) it follows 

f(x)-s„(x) = 0 (1) {|/(x) - s ^ . ^ l + l s „ k + 3 (x) - su (x) |} = ^(IOTH)") a"e" 

thus Theorem 1 is proved. 

P r o o f of T h e o r e m 2. We represent {^„ (x)} as (direct) partial sums {5,(a:)} 
of an appropriate orthogonal series with coefficients (5); instead of {A(«)} the sequence 
{/1(1» with A(i)=X(fik) if / i kSnj- | - l</ i f c + 1 is taken. Here with respect to (2) 
{[(&,)} assumes the role of {fik} (cf. (4)). Theorem 1 gives f(x)—Si(x)=f(x)—s„i(x)= 

=ox( i 1; noting that l (« , + l )=0(A( / i t ) ) for »¡ + 1 the assertion fol-
V A(i+ 1) ) 

lows immediately. 

P r o o f of T h e o r e m 3. By the proof of Theorem 1 it yields 

(8) =
 a e

" 

Now, for the partial sums s* (x) of the series 2 ct<Pn ( x ) with c*=c„- (In (n—fik+2) )~1 

n = 0 

if nk^n<nk+1; k—0,1,..., the proof of Theorem 1 has shown that 

k(x) = max |5i(x)-s*k + 1_1(x) | = 0J7777YJ a.e. and 

St(x)= max \s*(x)—s^1 (x) | = ox j-r^-r) a"e" 
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By Abel's transformation (cf. G. ALEXITS [1; p. 68]) we get with f i k ^ n < p k + l 

I ^ W - ^ - i W I = I 2 c v < P v ( * ) | = 1 2 in (y- / i k +2)c v > v (*) | = 
V = Jl f c v = f i f c 

= | "2 ( l n ( v - ^ + 2 ) - l n (v+\ -fik + 2))(s*(x)-s*k_t(x)) + 
v = i i f c 

+ l n ( n - ^ + 2 ) ( s i ( x ) - s * t _ 1 ( x ) ) | ^ 3In(n —¡.ik+2)5t(x). 

This proves ¿ ( /^( ln (n —/¿fc+2))_1(jn(x) — iPfc_i(x))-*0 a.e. («-«>), the assertion 
follows by (8) and (2). 

3. Proof of Theorems 4, 5 and 6 

To prove the necessity of the conditions stated in these theorems we need some 
auxiliary results. We use the following lemma of K. TANDORI [9] (cf. G. ALEXITS 
[1, p. 87]) which plays an important role in the proof of divergence phenomena of 
orthogonal series in general. 

L e m m a 2. Let {an} be a nonincreasing sequence of positive real numbers, and let 
7Vr=2r+2—4, r = 0 , 1, .... Then, for every r, there exists a measurable set Fr with 
measure 

p{Fr)^K*mm{i,Nr+ialr+l(lnNr+1f} (K*>0), 

and an ONS {<£„(*)} consisting of piecewiSe functionSi such that 
(a) the sets F„. Fx, ... are stochastically independentx) 

(b) for all x£ F, it exists a number n r W < 2 r + 2 such that $N (x), ..., 4>N + ((x) 
are of the same sign and 

\<fiNr(x) + ... +<PNr+„r(v)(*)| §r - (K* > 0). 

R e m a r k . The proof of the lemma shows that Fr may be chosen as a simple set 
(i.e. consisting of a finite number of segments) and with the additional property: 
if <2>0(x), ...,$N _J(X) are constant in a segriient /*, then either Fr(~)I* = 0 or 
/ * c F r . • : 

To prove the necessity of the condition in Theorem 4 we first state 

1)/*o, are stochastically independent with respect to [0,1], if then ^(Fi^ fl F/ij 0 
O... O Fkl)^ti{FuJ,,(rkt).:.,ih\). " 
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L e m m a 3. Let {c„} be an arbitrary sequence of real numbers. If condition 

n = 0 

is fulfilled, then there exists an ONS {(p„(x)} consisting of piecewise constant functions 
which forms a convergence system with 

n 5 ; . ( H + l ) | / ( x ) - s „ ( x ) | = ~ . It—oo 

P r o o f . We can find a nonincreasing positive sequence {£„}-*0 with 

(9) • i « e;i=<~. 
»=1 

We define the system of functions by induction. In the basic step we put with 
ri (x)=sign (sin 2nx) (0 ^ x ^ 1) 

<Po(x) = rx(x). 

Now let (p0(x), ..., fp„,-1(x) be defined. The segments where each of these functions 

are constant are denoted by /0
(m), ..., l'q

m) (with 2 n(l{m)) = 1). Putting 

y ( m ) = LuHn 

if cm = 0 or c2
mX2(m)el> i, 

2(m)e2 elsewhere, 

we choose in each /<"'=(4"', ?[m)) a partial segment J}m)=(u\n,\ v'^) with ju(J/m)) = 
=y(m)fi(tfm)) and with w[m)=si

(m). In general, for a segment J—{u, v) and a func-
tion f(x) defined on [0, 1], let the denotation 

(10) / ( / ; x) 

be valid. Then we put 

if * € / 
\v— u ) 

0 if x i J 

<pm(x) = -J= 2rMm)\ x). 
y y (m) ifo 

It is easy to verify that (p0(x), ..., <pm (x) constitute a set of orthogonal and normalized 
functions. 

The sets 

Gm = U •//"'>, m = 1 ,2 , . . . , 
1=0 

are stochastically independent. Thus by the second Borel—Cantelli lemma (cf. 

W. FELLER [5, p. 155]) we deduce that with p(G„,) = y(m) and 2 M (6,,,)= 0 3 (cf. (9)), 
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for G=l im Gm p(G) = 1 holds. Taking x0£G we can find an infinite set of numbers 
m with 

Vy(m) m 

Because of £m—0 and because of the estimate 

l/W-J.-itol s \cmcpm(x)\-\Ax)-sm(x)\ 

the above stated equality contradicts the estimation f(x) —sm_1(x) = Ox I 1 
\A.(m)J 

a.e.. Changing the values of {<p„(x)} in [0, 1] — G in an appropriate way, we get the 
assertion of Lemma 3. 

To prove that {<p„(x)} is a convergence system, we mention a lemma of D. E. 
Menchoff ([8], Lemma 2) proving that the following conditions are sufficient 
for {»/'„(A)} to be a convergence system: Let the segments /(

(n), 1=1, ...,p„, with 

7/" )n/ i
( n )=0 if and = 1, satisfy 0 /=i 

(i) ij/n(x) has constant value in 7,(n), / = 1 , • ••,/>„; 
(ii) f*l/m(x) dx = 0 for l=\,...,pn\ m=n + l,n+2, ...; 

7(n) 
(iii) j im max n(I^n ))=0; 
(iv) if m>-n then for every 7 , w = ( i , /) (1 it exists an index 

<r=a(l,n,m) such that for I^i)=(u,v) yields u=s. 
It is obvious, that the above mentioned functions {(pn (x)} and the sets J[m) 

(1=0, 1, ..., qm; m=1, 2, ...) satisfy conditions (i)—(iv), which completes the proof. 

P r o o f of T h e o r e m 4. We first mention that the case 2 C2A2(H) = °° is 
n=i 

treated in Lemma 3. Therefore, in the following, we may assume that 2 c t ^ 2 ( n ) < 
n=i 

For the terms 

0* = 
P 2 - 1 c ; A a ( n ) ( I n ( n - / x k + 2))* if 

n=ffc 
0 if pk+1-pkS 4 

where {//,.} is given in (2), the series 2 ak is divergent. Again we can find a nonincreas-
«:=i 

ing sequence {e*}—0 with 

(11) ¿ < x * e £ = ~ . 
fc=i 

On the basis of this series we define an ONS which satisfies (6). By the aid of the 
Rademacher functions r„(x)=sign (sin 2"itx), « = 0 , 1 , . . . , we take 

<Pn(x)=r„(x), n = 0, 1, ..., Pi-1. 
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Now let <p0(x),..., cpf,k_1(x) be defined and let us denote by /¡(k>, 1=0, qk, 
the segments in which each of these functions have constant value; we may assume 
that either / f ' c / J " 1 ' or / (

( k )n/ I
(
o

f c-1 )=0. In the case of [ i k + 1 - f x k ^ 4 we put 
(by transformation (10)) 

<pn(x) = 2 r.-K+tVr; x), n = (ik, ...,nk+1-i. 
1=0 

Otherwise if nk+1—^>4 we select r0=r0(k)^0 such that with the numbers {A r̂} 
defined in Lemma 2 2Vr —n k^N r t ) + 2 is satisfied. Then we refer to Lemma 
2 and set 

(12) an = < ^ + „ £ ^ ( / 0 , n = 0 ,1 , ..., Nro+1. 

Let 7/ and 1" denote the two halves of / = 0 , 1, qk, then we put with the 
functions {<Pn(x)} out of Lemma 2 

<p,k+n(x)= 2 x ) - $ M \ x)}, n = i, ...,Nro+1. 
1 = 0 

In the case Nro+1 + l<iik+1—nk, we again select all segments I*, 1=0, l j •••, qk; 
in which the already stated functions have constant value. We then put 

* 
<?fc 

<P„k + Nr tl+nW = 2rn(I?\ X), U = 1, ...,Hk + 1-N +1-1. 
0 ( = 0 

With the transformation (0, 1)—/,' resp. (0, 1)—/," if — t h e sets Fr, 
r=0, 1, ..., r0(k), considered in Lemma 2 will be transformed into the sets F r(7/) 
resp. F r (//'). Then we set 

U { F r ( / ; ) U F r ( / / ' ) } . 
i = 0 

Let /x, /2, ... denote those numbers with n, +1—M ( j>4. Then the following is 
true: 

(i) the sets G^^, r=0, I, ..., r0(lj), are stochastically independent (which follows 
by the definition and by the Remark to Lemma 2); furthermore 

KGM = 2 {n(Fr(I{))+n(F,an)} = KFr) 2 {KI{)+KI('j)} = V(Fr) ^ 
1=0 1=0 

s K* min {1, Nr+1c* +Nr+iEfjP(filj)(\n yvr+1)2}; j 

(ii) if then there exists a number nr(x)=nr(lj;x)<2r+2 with 
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and the considered functions have the same sign at x. By the second Borel—Cantelli 
lemma, using c„^cn+1 and if t1iJ~n—l1iJ+1 — '» furthermore that 

(13) 2 2 = 
J=lr=0 

(cf. (i), (11)) for G=IImG(
r 'j) we have p(G) = l. On the other side we get by (ii) 

with X£G('J\ OSrSr0(lj); j= 1 ,2 , . . . , that for a suitable nr(x) it holds 

H+Nr+nr(x) n* 

+ 2 cn<pn(x) —, 

whence (6) obviously follows (changing the values of {<p„(x)} in a suitable set of 
measure 0, if necessary). 

The proof of Theorem 5 is based on Theorem 4, the method being close to that of 
L . CSERNYÁK and L . LEINDLER [4 ] where the following extension of K . Tandori 's 
theorem [9] is proved: Let {C,} (cf. (5)) be a nonincreasing sequence. If 

2 Cf(ln i ) 2 =°° , then it exists an ONS {<?„(*)} with Em | / ( * ) - s „ ( x ) j = °°. But 
.1 = 2 ¡ - »CO ' 

at first we want to mention a result concerning the Rademacher functions {''„(x)}. 
CO CO 

For any sequence {c„}, 2 c l < and for / ( x ) ~ 2 ^ / » W given by the Riesz— 
n = 0 11 = 0 

Fischer theorem it holds 

(14) A { 2 c2} l /2 S / I fix) | dxSB{ 2 4 1 / 2 . 
; n=a g /1=0 

(A, B absolutely constant; cf. A . ZYGMUND [ 1 2 , p. 2 1 3 ] ) . On the basis of estimation 
(14) L. Csernyák and L. Leindler proved 

L e m m a 4. For an arbitrary sequence {c„} let the sets En m be defined by 

M+m 1 n+m 

v=n v=n 

Then the sets Enm are simple sets with 
A2 

ti(E„,,n) = - 4 - . 

A given by (14). 

P r o o f of T h e o r e m 5. (a) By Theorem 4 we can find for the sequence {Cj} 

an ONS {<J>,(x)} such that for the partial sums {«^(x)} of the series 2 ^¡^¡(x) 
¡ = 0 

we have 
m;.(«,.+ i ) | / ( x ) - s , ( x ) | = - (x€[o, l]). 
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As in [4] it will be proved that with the aid of {^¡(x)} we can set up an ONS {<?„(*)} 
for which the assertion of the theorem is true. We outline the proof and refer the 
reader to [4] for complete argumentation. 

We distinguish two cases: 1(^ + 1)-!(&;) = 0(1) and l(kj + l)-1(^)^0(1) 
(for definition of \ ( k j ) cf. the preliminary remark regarding Theorem 2) and treat only 
the (more complicate) latter one. 

When \(kj + l)-\(kj)^0(l) let If, I*, ... denote those indices with 

[(/t + l ) - I ( / * ) > 4 . 

By the proof of Theorem 4 we can find some simple sets G^J>, r~0, 1, r0(l*), 
with 

j=1r=0 

(cf. (13)), and for A-eG^5 numbers i0 = l(l*) + Nr and nr(x) such that 

'0 + "rW ft* 
(15) ¿ 0 » , O + L ) | 2 Q<l>,(x)\ > F - ( { E „ } — 0 ) , 

> = 'o £l*j 

and these functions are of the same sign on G('s I 
(b) Next, corresponding to /* and r^r0{l*) the number x(j, r) is defined by 

x(j, r) = max {(n,.+1 -n,): l(IJ) + Nr i < !(//) +ATr+1>, 

r = 0, 1, .. . , r0(l*); j = 1 ,2 , . . . . 

Now let us choose a fixed /? and r. With the above value x = x(j, r) we divide [0, 1] 
Q*=2X+1 partial segments with equal length Iq=(uq, vq), 1 ^q^Q*. With respect 
to some where >h(i*)+,vr = *)+,vr+,, the number of segments Iq , where 

%+1-"/0 a ";0+i-"i0 
(16) 2 c +nr„(x)>-{ 2 <+,.}1/2' 

/1 = 1 ^ « = 1 0 

is at least p*=2~3A2Q* bearing in mind that r„((1 /2) +x)=r„((1 / 2 ) - x ) . Let us 
then change the segments Iq and simultaneously the corresponding values of the 
functions r„(x), 77=1, . . . , 7 7 i ( ) + 1 — 7 7 J o , in such a way that (16) holds for the first p* 
segments. The new functions are denoted by r( (x), 77 = 1, ..., n, +1—n^, i.e. it 
yields 

2 c +„r,•„,„(*)>—{ 2 c»}1/2> 
n = l 0 £ n-n, +1 'o 

q = i,...,p*. 
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With the ONS {$,-(*)} mentioned in (a), we consider the functions (cf. (10)) 

gi„,W = <*>,•„Uql x), q = I, ...,Q*, 
and we put 

Q* 
(17) yni +„(*) = 2 ri0,„(x)gioq(x), n = 1, ..., nio+1-nio. 0 9 = 1 

As in [4] we can prove that (yn(x)} are orthogonal and normalized functions. 
(c) For those 7jf which are not covered by (b), namely when z* =!(/*)+A r

ro( i j* )+1 

and n ^ n ^ n m * ^ ) we put Q*=2" i + '~"<+1 and define y„.+1(x), ..., y„ i t i(x) 
analogously to (17) in (b). 

(d) For fixed /* and r with respect to the transformation (0, 1 ) — i n (b) the 
set G ^ will be transformed into the set G^'*'(/,). Taking 

Gp = U G f m 
9 = 1 

we get 
(18) 3= 2~'iA3/.i(G^*>). 

On the other side, with i0 = \(l*)+Nr we can find for xtG^K e.g. 
a number nr(x) with (cf. (15), (16)) 

'o+'vW "¡ + i 'o+"rW "¡ + 1 A • B* 
(19) 2 2 c ty t(x) = 2 giqo(x) 2 Ckn.k-nXx) | > 0c , , . • 

¡ = ¡0 >i + l > = <o k = ni + l ¿SljAWl*) 

(e) In the last step we have to give the ONS {^„(-v)} asked for. At first we put 

<Pn(x) = r„(x), n = 0, 1, . . . , nm). 

Now let with i0=\(lj) +NV the functions (p0(x), ..., q>n. (A) be defined. Denoting with 
J „ = J ^ , <t= 1, ..., i?(/0) all those partial segments where these functions have con-
stant value, we may assume that ^ ^ J ^ r ^ o r that The 
two halves of J„ may be marked by J'a and J"a. 

In the case v = r0(/?) + l and I ( /J + 1 ) - I ( /p>7V v + 1 , we put with R = R(i0) 
(cf. (10)) 

R 
<Pk(x) = 2 {'hiJal x)-yk(JZ; x)), k = Hfo + l , . . . , « , ( /» , ) ; 

<r = l J + 1 

otherwise if v^/-0(/t), then we take 

R <Pk(x) = 2(Vk(^; x)-yk(j;'; x)), k = «,0 + l , ..., «i(/*)+A'v+1-
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In the last case we also take up the set 

û (GC<Î)(/;)ugc;>(/;)), 

whereby G(
v
/j*J is transformed into G^'V®) when (0, 1) is transformed into 

The sets //v
0), v=0, 1, ..., r0(lj); j= 1, ... are stochastically independent 

and 
CO R„(/*) 

2 2 M(#<J>) = ~ 
j=1 v = 0 

(cf. (18)), i.e. 
nffimHy*) = 1. 

But with x£Hl } ) we can find n{x) such that for i*=l(l*)+Nv then e.g. for 

- v C G f V ; ) 

i* + n(x) ", + , i*+«w "¡ + J 
2 2 cn<pn(x) = 2 2 cn in (Ja; *) = oTTTZTT i=i* « = n, + l i=i* n = n, + l ¿sqAyfil*) 

(cf. (19)) which is not bounded. But this contradicts the estimation f(x)— s (x) = 

= Ox[ - \ Changing the values of {q>„(x)} on a set with measure 0 we get 
U(«i- t -1) / 

the assertion of Theorem 5. 
(f) In the case I(^J + l)-I( /c J) = 0 ( l ) we proceed as in (c). 

T h e p r o o f of T h e o r e m 6 is similiar to that of Theorem 4, taking 

"k+2 1 if 
n=nk 

o if Hk+i—^k — 4, 

in case ft+1-/^^0(1) with 

2 akek = 00 ({«*}-0) 
k=l 

and putting in (12) 
an = Ciik + nEk> n = 0, I, ..., Nro + 1", 

otherwise, if nk+1—fik = 0 ( l ) the assertion follows by Lemma 3. 
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