On the rate of approximation by orthogonal series

H. SCHWINN

Dedicated to Professor K. Tandori on his sixtieth birthday

1. Introduction

Let $\{\varphi_n(x)\}\$ be a normalized system of orthogonal functions (ONS) with respect to the space $L^2[0, 1]$. We ask for additional conditions on coefficients $\{c_n\}\$ with $\sum_{n=0}^{\infty} c_n^2 < \infty$ such that the partial sums $\{s_n(x)\}\$ of the orthogonal series $\sum_{n=0}^{\infty} c_n \varphi_n(x)$ are convergent to a limit function f(x), uniquely a.e. determined by the Riesz—Fischer theorem, with a certain speed. K. TANDORI [10] proved the following basic result:

Theorem A. Assume that $\{\lambda(n)\}$ is an increasing sequence tending to ∞ . If $\sum_{n=2}^{\infty} c_n^2 \lambda^2(n) (\ln n)^2 < \infty$, then the estimate

(1)
$$f(x)-s_n(x) = o_x\left(\frac{1}{\lambda(n)}\right) \quad a.e.$$

holds.

Asking for the finality of Theorem A as a consequence of a result of L. Leindler ([7], Hilfssatz 2) it follows that in case $\lambda(n+1) > C^*\lambda(n)$ ($C^* > 1$) the factor $(\ln n)^2$ may be omitted. On the other side, for certain sequences increasing slowly enough, V. A. ANDRIENKO [2] proved the finality of Theorem A. Later on V. I. KOLYADA [6] proved the following result:

Theorem B. Assume that the positive increasing sequence $\{\lambda(n)\}$ is such that

$$\ln n = o(\lambda(n))$$

and that there exists a sequence $\{v_n\}$ with the properties:

$$\mu(n) = v_{n+1} - v_n \ge 2, \quad 1 < \varrho \le \frac{\lambda(v_{n+1})}{\lambda(v_n)} \le r.$$

Received August 7, 1984.

If $\sum_{n=0}^{\infty} c_n^2 \lambda^2(n) < \infty$, then we have the estimate

$$f(x)-s_n(x)=o_x\left(\frac{\ln\mu(q_{n+1})}{\lambda(n+1)}\right) \quad a.e.;$$

where q_n is defined with the aid of the strictly increasing function v(t) with $v(n) = v_n$ and its inverse $v^{-1}(t)$ by $q_n = [v^{-1}(n)]$.

V. I. Kolyada also proved in [6] the finality of Theorem B in the following way: the speed $\ln \mu(q_{n+1})/\lambda(n+1)$ may not be replaced by a speed $(\Lambda(n))^{-1}$ tending faster to zero, i.e. if $\Lambda(n) \cdot \ln \mu(q_{n+1})/\lambda(n+1) \to \infty$.

In this paper we want to establish a general condition for estimations of type (1), which is also necessary for a special class of coefficients $\{c_n\}$. In the following let $\{\lambda(n)\}$ be a nondecreasing sequence tending to infinity. We consider in dependence of a fixed chosen constant q>1 the uniquely determined sequence of increasing natural numbers $\{\mu_k\}$ with

(2)
$$\lambda(\mu_{k+1}) \ge q \cdot \lambda(\mu_k)$$
 and $\lambda(\mu_{k+1}-1) < q \cdot \lambda(\mu_k)$ $(k = 0, 1, ...).$

Theorem 1. Let

$$\sum_{k=1}^{\infty} \sum_{n=\mu_{k}}^{\mu_{k+1}-1} c_{n}^{2} \lambda^{2}(n) (\ln (n-\mu_{k}+2))^{2} < \infty$$

be fulfilled. Then the estimation

(3) $f(x)-s_n(x)=o_x\left(\frac{1}{\lambda(n+1)}\right) \quad a.e.$

holds.

We can extend this statement to partial sums $\{s_{n_i}(x)\}$, where $\{n_i\}$ is an increasing sequence of natural numbers. With respect to the above considered sequence $\{\mu_n\}$, let I(k) be defined by

(4)
$$n_{i(k)-1} < \mu_k - 1 \leq n_{i(k)} \quad (k = 1, 2, ...).$$

Then I(k+1)-I(k) indicates the number out of $\{n_i\}$ between μ_k-1 and $\mu_{k+1}-1$. The above definition also admits the case I(k)=I(k+1); therefore let $\{k_j\}$ denote the sequence of those numbers when $I(k_j+1)-I(k_j)>0$. Putting

(5)
$$C_i = \left\{ \sum_{n=n_{i-1}+1}^{n_i} c_n^2 \right\}^{1/2} \quad (i = 0, 1, ...; n_{-1} = -1)$$

we prove

Theorem 2. Let

$$\sum_{j=1}^{\infty} \sum_{i=l(k_j)+1}^{l(k_j+1)} C_i^2 \lambda^2 (n_{i-1}+1) \left(\ln (i-l(k_j)+2) \right)^2 < \infty$$

be fulfilled. Then for $\{s_{n_i}(x)\}$ the estimation

$$f(x)-s_{n_i}(x)=o_x\left(\frac{1}{\lambda(n_i+1)}\right)$$
 a.e.

holds.

Theorem 3. Let

$$\sum_{n=1}^{\infty} c_n^2 \lambda^2(n) < \infty$$

be fulfilled and let $\alpha(n)$ be defined by $\alpha(n) = \ln(n - \mu_k + 2)$ if $\mu_k \leq n < \mu_{k+1}$. Then the estimation

$$f(x)-s_n(x)=o_x\left(\frac{\alpha(n)}{\lambda(n+1)}\right)$$
 a.e.

holds.

It is possible to show that the conditions of these theorems are also necessary if the coefficients $\{c_n\}$ resp. $\{C_i\}$ are nonincreasing in a restricted sense. The following theorem is close to K. Tandori's theorem [9] on the necessity of the condition of coefficients in the Rademacher—Menchoff-theorem (cf. G. ALEXITS [1, p. 83]).

Theorem 4. If $c_n \ge c_{n+1}$ for $\mu_k \le n \le \mu_{k+1} - 2$; k=1, 2, ..., and

$$\sum_{n=1}^{\infty} \sum_{n=\mu_{k}}^{\mu_{k+1}-1} c_{n}^{2} \lambda^{2}(n) (\ln (n-\mu_{k}+2))^{2} = \infty,$$

then there exists an ONS $\{\varphi_n(x)\}$ with

(6)
$$\lim_{n\to\infty} \lambda(n+1)|f(x)-s_n(x)| = \infty \quad (x\in[0,1]).$$

Remark. V. A. ANDRIENKO and L. V. G'RNEVSKA [3] have proved that $\sum_{n=0}^{\infty} c_n^2 \lambda^2(n) < \infty$ implies estimation (3) if $\{\varphi_n(x)\}$ defines a convergence system (i.e. $\sum_{n=0}^{\infty} c_n^2 < \infty$ implies the convergence a.e. of $\sum_{n=0}^{\infty} c_n \varphi_n(x)$); they further proved that in (3) $\{\lambda(n)\}$ must not be replaced by a sequence $\{\Lambda(n)\}$ tending faster to infinity. By Lemma 3 we can conclude that $\sum_{n=0}^{\infty} c_n^2 \lambda^2(n) < \infty$ is also necessary, for in the case $\sum_{n=0}^{\infty} c_n^2 \lambda^2(n) = \infty$ it always exists a convergence system such that estimation (3) fails.

In a way similiar to that of L. CSERNYÁK and L. LEINDLER [4] used to extend K. TANDORI's theorem [9] to subsequences $\{s_{n_i}(x)\}$, we can prove with terms (5)

27*

H. Schwinn

Theorem 5. If
$$C_i \ge C_{i+1}$$
 for $1(k_j) \le i \le 1(k_j+1)-2$, $j=1, 2, ...,$ and

$$\sum_{j=1}^{\infty} \sum_{i=l(k_j)}^{l(k_{j+1})-1} C_i^2 \lambda^2 (n_i+1) (\ln (i-l(k_j)+2))^2 = \infty,$$

then there exists an ONS $\{\varphi_n(x)\}$ with

$$\lim_{i\to\infty} \lambda(n_i+1)|f(x)-s_{n_i}(x)|=\infty \quad (x\in[0,\,1]).$$

Obviously Theorems 2 and 4 are generalizations of Theorems 1 and 3. But the result of Theorem 3 is a necessary step in the proof of Theorem 4 and the proof of Theorem 2 is based on Theorem 1. The finality of Theorem 3 follows finally with

Theorem 6. If $c_n \ge c_{n+1}$ for $\mu_k \le n \le \mu_{k+1} - 2$; k = 1, 2, ..., and

$$\sum_{n=1}^{\infty} c_n^2 \lambda^2(n) = \infty,$$

then there exists an ONS $\{\varphi_n(x)\}$ with

$$\lim_{n\to\infty}\frac{\lambda(n+1)}{\alpha(n)}|f(x)-s_n(x)|=\infty\quad (x\in[0,\,1]).$$

2. Proof of Theorems 1, 2 and 3

The following result will be essential.

Lemma 1. For any ONS $\{\varphi_n(x)\}$ the following estimation holds:

$$\int_{0}^{1} \left\{ \max_{1 \le i \le j \le N} |c_i \varphi_i(x) + \ldots + c_j \varphi_j(x)|^2 \right\} dx \le K_1 \left(c_1^2 + \sum_{n=2}^{N} c_n^2 (\ln n)^2 \right).^{1}$$

Proof: cf. K. TANDORI [11, Satz VII]; see also A. ZYGMUND [13, p. 193].

Proof of Theorem 1. In the first step we prove the assertion for the partial sums $s_{\mu_{k-1}}(x)$, k=1, 2, ...; namely by (2) we get

$$\sum_{k=1}^{\infty} \int_{0}^{1} \lambda^{2}(\mu_{k}) \cdot (f(x) - s_{\mu_{k}-1}(x))^{2} dx = \sum_{k=1}^{\infty} \lambda^{2}(\mu_{k}) \sum_{j=k}^{\infty} \sum_{n=\mu_{j}}^{\mu_{j+1}-1} c_{n}^{2} =$$
$$= \sum_{j=1}^{\infty} \sum_{n=\mu_{j}}^{\mu_{j+1}-1} c_{n}^{2} \sum_{k=1}^{j} \lambda^{2}(\mu_{k}) = O(1) \sum_{n=\mu_{j}}^{\infty} c_{n}^{2} \lambda^{2}(n) < \infty.$$

¹) K_1, K_3, \dots denote absolute constants.

420

With the aid of B. Levi's theorem we conclude

(7)
$$f(x) - s_{\mu_k - 1}(x) = o_x \left(\frac{1}{\lambda(\mu_k)}\right)$$
 a.e..

For the remaining partial sums Lemma 1 leads us with

$$\delta_k(x) = \max_{\mu_k \le n < \mu_{k+1} - 1} |s_n(x) - s_{\mu_{k+1} - 1}(x)|$$

to

$$\sum_{k=1}^{\infty} \int_{0}^{1} \lambda^{2}(\mu_{k}) \, \delta_{k}^{2}(x) \, dx \leq K_{2} \sum_{k=1}^{\infty} \lambda^{2}(\mu_{k}) \sum_{n=\mu_{k}}^{\mu_{k+1}-1} c_{n}^{2} \left(\ln(n-\mu_{k}+2) \right)^{2} = O(1) \sum_{k=1}^{\infty} \sum_{n=\mu_{k}}^{\mu_{k+1}-1} c_{n}^{2} \lambda^{2}(n) \left(\ln(n-\mu_{k}+2) \right)^{2} < \infty.$$

This shows

$$s_n(x) - s_{\mu_{k+1}-1}(x) = o_x\left(\frac{1}{\lambda(\mu_k)}\right)$$
 a.e. $(\mu_k \le n \le \mu_{k+1}-1);$

by $\lambda(n+1) \leq q \cdot \lambda(\mu_k)$ for $\mu_k \leq n \leq \mu_{k+1} - 2$ (cf. (2)) together with (7) it follows

$$f(x) - s_n(x) = O(1)\{|f(x) - s_{\mu_{k+1}-1}(x)| + |s_{\mu_{k+1}-1}(x) - s_n(x)|\} = o_x\left(\frac{1}{\lambda(n+1)}\right) \quad \text{a.e.},$$
thus Theorem 1 is proved

Proof of Theorem 2. We represent $\{s_{n_i}(x)\}$ as (direct) partial sums $\{S_i(x)\}$ of an appropriate orthogonal series with coefficients (5); instead of $\{\lambda(n)\}$ the sequence $\{\Lambda(i)\}$ with $\Lambda(i) = \lambda(\mu_k)$ if $\mu_k \le n_i + 1 < \mu_{k+1}$ is taken. Here with respect to (2) $\{l(k_j)\}$ assumes the role of $\{\mu_k\}$ (cf. (4)). Theorem 1 gives $f(x) - S_i(x) = f(x) - s_{n_i}(x) =$ $=o_x\left(\frac{1}{\Lambda(i+1)}\right)$; noting that $\lambda(n_i+1)=O(\lambda(\mu_k))$ for $n_i+1<\mu_{k+1}$ the assertion follows immediately.

Proof of Theorem 3. By the proof of Theorem 1 it yields

(8)
$$f(x) - s_{\mu_k-1}(x) = o_x \left(\frac{1}{\lambda(\mu_k)}\right)$$
 a.e..

Now, for the partial sums $s_n^*(x)$ of the series $\sum_{n=0}^{\infty} c_n^* \varphi_n(x)$ with $c_n^* = c_n \cdot (\ln (n - \mu_k + 2))^{-1}$ if $\mu_k \leq n < \mu_{k+1}$; k=0, 1, ..., the proof of Theorem 1 has shown that

$$\hat{\delta}_k(x) = \max_{\mu_k \leq n < \mu_{k+1}} |s_n^*(x) - s_{\mu_{k+1}-1}^*(x)| = o_x \left(\frac{1}{\lambda(\mu_k)}\right) \quad \text{a.e}$$

and

$$\delta_k^*(x) = \max_{\mu_k \leq n < \mu_{k+1}} |s_n^*(x) - s_{\mu_k-1}^*(x)| = o_x \left(\frac{1}{\lambda(\mu_k)}\right) \quad \text{a.e.}.$$

By Abel's transformation (cf. G. ALEXITS [1; p. 68]) we get with $\mu_k \leq n < \mu_{k+1}$

$$\begin{aligned} |s_n(x) - s_{\mu_k - 1}(x)| &= \left| \sum_{\nu = \mu_k}^n c_\nu \varphi_\nu(x) \right| = \left| \sum_{\nu = \mu_k}^n \ln\left(\nu - \mu_k + 2\right) c_\nu^* \varphi_\nu(x) \right| = \\ &= \left| \sum_{\nu = \mu_k}^{n-1} \left(\ln\left(\nu - \mu_k + 2\right) - \ln\left(\nu + 1 - \mu_k + 2\right) \right) (s_\nu^*(x) - s_{\mu_k - 1}^*(x)) + \\ &+ \ln\left(n - \mu_k + 2\right) (s_n^*(x) - s_{\mu_k - 1}^*(x)) \right| \le 3 \ln\left(n - \mu_k + 2\right) \delta_k^*(x). \end{aligned}$$

This proves $\lambda(\mu_k)(\ln(n-\mu_k+2))^{-1}(s_n(x)-s_{\mu_k-1}(x)) \rightarrow 0$ a.e. $(n \rightarrow \infty)$, the assertion follows by (8) and (2).

3. Proof of Theorems 4, 5 and 6

To prove the necessity of the conditions stated in these theorems we need some auxiliary results. We use the following lemma of K. TANDORI [9] (cf. G. ALEXITS [1, p. 87]) which plays an important role in the proof of divergence phenomena of orthogonal series in general.

Lemma 2. Let $\{a_n\}$ be a nonincreasing sequence of positive real numbers, and let $N_r=2^{r+2}-4$, r=0, 1, ... Then, for every r, there exists a measurable set F, with measure

$$\mu(F_r) \ge K_1^* \min \{1, N_{r+1}a_{N_{r+1}}^2 (\ln N_{r+1})^2\} \quad (K_1^* > 0),$$

and an ONS $\{\Phi_n(\mathbf{x})\}$ consisting of piecewise functions, such that

(a) the sets F_0, F_1, \dots are stochastically independent¹)

(b) for all $x \in F_r$, it exists a number $n_{r(x)} < 2^{r+2}$ such that $\Phi_{N_r}(x), ..., \Phi_{N_r+n_{r(x)}}(x)$ are of the same sign and

$$|\Phi_{N_r}(x) + \ldots + \Phi_{N_r + n_{r(x)}}(x)| \ge \frac{K_2^*}{a_{N_{r+1}}} \quad (K_2^* > 0).$$

Remark. The proof of the lemma shows that F_r may be chosen as a simple set (i.e. consisting of a finite number of segments) and with the additional property: if $\Phi_0(x), ..., \Phi_{N_{r+1}-1}(x)$ are constant in a segment I^* , then either $F_r \cap I^* = \emptyset$ or $I^* \subset F_r$.

To prove the necessity of the condition in Theorem 4 we first state

 $^{{}^{1}}F_0, F_1, \dots$ are stochastically independent with respect to [0, 1], if $k_1 < k_2 \dots < k_i$ then $\mu(F_{k_1} \cap F_{k_2} \cap \cap \cap F_{k_i}) = \mu(F_{k_1}) \mu(F_{k_2}) \dots \mu(F_{k_i})$.

Lemma 3. Let $\{c_n\}$ be an arbitrary sequence of real numbers. If condition

$$\sum_{n=0}^{\infty} c_n^2 \lambda^2(n) = \infty$$

is fulfilled, then there exists an ONS $\{\varphi_n(x)\}\$ consisting of piecewise constant functions which forms a convergence system with

$$\lim_{n\to\infty}\lambda(n+1)|f(x)-s_n(x)|=\infty.$$

Proof. We can find a nonincreasing positive sequence $\{\varepsilon_n\} \rightarrow 0$ with

(9)
$$\sum_{n=1}^{\infty} c_n^2 \lambda^2(n) \varepsilon_n^2 = \infty.$$

We define the system of functions by induction. In the basic step we put with $r_1(x) = \text{sign}(\sin 2\pi x) \ (0 \le x \le 1)$

$$\varphi_0(x) = r_1(x).$$

Now let $\varphi_0(x), ..., \varphi_{m-1}(x)$ be defined. The segments where each of these functions are constant are denoted by $I_0^{(m)}, ..., I_{q_m}^{(m)}$ (with $\sum_{l=0}^{q_m} \mu(I_l^{(m)}) = 1$). Putting

$$\gamma(m) = \begin{cases} 1 & \text{if } c_m = 0 & \text{or } c_m^2 \lambda^2(m) \varepsilon_m^2 > 1, \\ c_m^2 \lambda^2(m) \varepsilon_m^2 & \text{elsewhere,} \end{cases}$$

we choose in each $I_l^{(m)} = (s_l^{(m)}, t_l^{(m)})$ a partial segment $J_l^{(m)} = (u_l^{(m)}, v_l^{(m)})$ with $\mu(J_l^{(m)}) = \gamma(m)\mu(I_l^{(m)})$ and with $u_l^{(m)} = s_l^{(m)}$. In general, for a segment J = (u, v) and a function f(x) defined on [0, 1], let the denotation

(10)
$$f(J; x) = \begin{cases} f\left(\frac{x-u}{v-u}\right) & \text{if } x \in J \\ 0 & \text{if } x \notin J \end{cases}$$

be valid. Then we put

$$\varphi_m(x) = \frac{1}{\sqrt{\gamma(m)}} \sum_{l=0}^{q_m} r_1(J_l^{(m)}; x).$$

It is easy to verify that $\varphi_0(x), ..., \varphi_m(x)$ constitute a set of orthogonal and normalized functions.

The sets

$$G_m = \bigcup_{l=0}^{q_m} J_l^{(m)}, \quad m = 1, 2, ...,$$

are stochastically independent. Thus by the second Borel--Cantelli lemma (cf. W. FELLER [5, p. 155]) we deduce that with $\mu(G_m) = \gamma(m)$ and $\sum_{n=1}^{\infty} \mu(G_m) = \infty$ (cf. (9)),

for $\overline{G} = \lim_{m \to \infty} G_m \mu(\overline{G}) = 1$ holds. Taking $x_0 \in \overline{G}$ we can find an infinite set of numbers *m* with

$$\lambda(m)|c_m \varphi_m(x)| = \frac{|c_m|\lambda(m)|}{\sqrt{\gamma(m)}} \ge \frac{1}{\varepsilon_m}.$$

Because of $\varepsilon_m \rightarrow 0$ and because of the estimate

$$|f(x) - s_{m-1}(x)| \ge |c_m \varphi_m(x)| - |f(x) - s_m(x)|$$

the above stated equality contradicts the estimation $f(x) - s_{m-1}(x) = O_x \left(\frac{1}{\lambda(m)}\right)$ a.e.. Changing the values of $\{\varphi_n(x)\}$ in $[0, 1] - \overline{G}$ in an appropriate way, we get the assertion of Lemma 3.

To prove that $\{\varphi_n(x)\}$ is a convergence system, we mention a lemma of D. E. Menchoff ([8], Lemma 2) proving that the following conditions are sufficient for $\{\psi_n(x)\}$ to be a convergence system: Let the segments $I_l^{(n)}$, $l=1, ..., p_n$, with $I_l^{(n)} \cap I_{l_0}^{(n)} = \emptyset$ if $l \neq l_0$ and $\sum_{l=1}^{p_n} \mu(I_l^{(n)}) = 1$, satisfy (i) $\psi_n(x)$ has constant value in $I_l^{(n)}$, $l=1, ..., p_n$; (ii) $\int_{I_l^{(n)}} \psi_m(x) dx = 0$ for $l=1, ..., p_n$; m=n+1, n+2, ...;

(iii) $\lim_{n \to \infty} \max_{l} \mu(I_l^{(n)}) = 0;$

(iv) if m > n then for every $I_1^{(n)} = (s, t)$ $(1 \le l \le p_n)$ it exists an index $\sigma = \sigma(l, n, m)$ such that for $I_{\sigma}^{(m)} = (u, v)$ yields u = s.

It is obvious, that the above mentioned functions $\{\varphi_n(x)\}\$ and the sets $J_l^{(m)}$ $(l=0, 1, ..., q_m; m=1, 2, ...)$ satisfy conditions (i)—(iv), which completes the proof.

Proof of Theorem 4. We first mention that the case $\sum_{n=1}^{\infty} c_n^2 \lambda^2(n) = \infty$ is treated in Lemma 3. Therefore, in the following, we may assume that $\sum_{n=1}^{\infty} c_n^2 \lambda^2(n) < \infty$. For the terms

$$\sigma_k = \begin{cases} \sum_{n=\mu_k}^{\mu_{k+1}-1} c_n^2 \lambda^2(n) (\ln (n-\mu_k+2))^2 & \text{if } \mu_{k+1}-\mu_k > 4\\ 0 & \text{if } \mu_{k+1}-\mu_k \le 4 \end{cases}$$

where $\{\mu_k\}$ is given in (2), the series $\sum_{k=1}^{\infty} \sigma_k$ is divergent. Again we can find a nonincreasing sequence $\{\varepsilon_k\} \rightarrow 0$ with

(11)
$$\sum_{k=1}^{\infty} \sigma_k \varepsilon_k^2 = \infty.$$

On the basis of this series we define an ONS which satisfies (6). By the aid of the Rademacher functions $r_n(x) = \text{sign}(\sin 2^n \pi x)$, n=0, 1, ..., we take

$$\varphi_n(x) = r_n(x), \quad n = 0, 1, ..., \mu_1 - 1.$$

Now let $\varphi_0(x), ..., \varphi_{\mu_k-1}(x)$ be defined and let us denote by $I_l^{(k)}$, $l=0, ...; q_k$, the segments in which each of these functions have constant value; we may assume that either $I_l^{(k)} \subset I_{l_0}^{(k-1)}$ or $I_l^{(k)} \cap I_{l_0}^{(k-1)} = \emptyset$. In the case of $\mu_{k+1} - \mu_k \leq 4$ we put (by transformation (10))

$$\varphi_n(x) = \sum_{l=0}^{q_k} r_{n-\mu_k+1}(I_l^{(k)}; x), \quad n = \mu_k, \dots, \mu_{k+1}-1.$$

Otherwise if $\mu_{k+1} - \mu_k > 4$ we select $r_0 = r_0(k) \ge 0$ such that with the numbers $\{N_r\}$ defined in Lemma 2 $N_{r_0+1} < \mu_{k+1} - \mu_k \le N_{r_0+2}$ is satisfied. Then we refer to Lemma 2 and set

(12)
$$a_n = c_{\mu_k + n} \varepsilon_k \lambda(\mu_k), \quad n = 0, 1, ..., N_{r_0 + 1}$$

Let I'_l and I''_l denote the two halves of I_l , $l=0, 1, ..., q_k$; then we put with the functions $\{\Phi_n(x)\}$ out of Lemma 2

$$\varphi_{\mu_k+n}(x) = \sum_{l=0}^{q_k} \{ \Phi_n(I'_l; x) - \Phi_n(I''_l; x) \}, \quad n = 1, \dots, N_{r_0+1}.$$

In the case $N_{r_0+1}+1 < \mu_{k+1}-\mu_k$, we again select all segments I_l^* , $l=0, 1, ..., q_k^*$; in which the already stated functions have constant value. We then put

$$\varphi_{\mu_k+N_{r_0+1}+n}(x) = \sum_{l=0}^{q_k^*} r_n(I_l^*; x), \quad n = 1, \dots, \mu_{k+1}-N_{r_0+1}-1.$$

With the transformation $(0, 1) \rightarrow I'_l$ resp. $(0, 1) \rightarrow I''_l$ if $\mu_{k+1} - \mu_k > 4$ the sets F_r , $r=0, 1, ..., r_0(k)$, considered in Lemma 2 will be transformed into the sets $F_r(I'_l)$ resp. $F_r(I''_l)$. Then we set

$$G_r^{(k)} = \bigcup_{l=0}^{q_k} \{F_r(I_l') \cup F_r(I_l'')\}.$$

Let l_1, l_2, \ldots denote those numbers with $\mu_{l_j+1} - \mu_{l_j} > 4$. Then the following is true:

(i) the sets $G_r^{(l_j)}$, $r=0, 1, ..., r_0(l_j)$, are stochastically independent (which follows by the definition and by the Remark to Lemma 2); furthermore

$$\mu(G_{r}^{(l_{j})}) = \sum_{l=0}^{q_{l_{j}}} \left\{ \mu(F_{r}(I_{l}')) + \mu(F_{r}(I_{l}'')) \right\} = \mu(F_{r}) \sum_{l=0}^{q_{l_{j}}} \left\{ \mu(I_{l}') + \mu(I_{l}'') \right\} = \mu(F_{r}) \ge K^{*} \min \left\{ 1, \ N_{r+1} c_{\mu_{l_{j}}}^{2} + N_{r+1} \varepsilon_{l_{j}}^{2} \lambda^{2} (\mu_{l_{j}}) (\ln N_{r+1})^{2} \right\};$$

(ii) if $x \in G_r^{(l_j)}$, then there exists a number $n_r(x) = n_r(l_j; x) < 2^{r+2}$ with

$$|\varphi_{\mu_{l_j}+N_r}(x) + \dots + \varphi_{\mu_{l_j}+N_r+n_r(x)}(x)| \ge \frac{B^*}{c_{\mu_{l_j}+N_{r+1}}\varepsilon_{l_j}\lambda(\mu_{l_j})}$$

and the considered functions have the same sign at x. By the second Borel—Cantelli lemma, using $c_n \ge c_{n+1}$ and $\lambda(n) \le q\lambda(\mu_l)$ if $\mu_{l_i} \le n \le \mu_{l_i+1} - 1$, furthermore that

(13)
$$\sum_{j=1}^{\infty} \sum_{r=0}^{r_0(l_j)} \mu(G_r^{(l_j)}) = \infty,$$

(cf. (i), (11)) for $\overline{G} = \overline{\lim} G_r^{(l_j)}$ we have $\mu(\overline{G}) = 1$. On the other side we get by (ii) with $x \in G_r^{(l_j)}$, $0 \le r \le r_0(l_j)$; j = 1, 2, ..., that for a suitable $n_r(x)$ it holds

$$\lambda(\mu_{l_j}+N_r)\Big|\sum_{n=\mu_{l_j}+N_r}^{\mu_{l_j}+N_r+n_r(\mathbf{x})}c_n\varphi_n(\mathbf{x})\Big| \geq \frac{B^*}{\varepsilon_{l_j}} \to \infty,$$

whence (6) obviously follows (changing the values of $\{\varphi_n(x)\}\$ in a suitable set of measure 0, if necessary).

The proof of Theorem 5 is based on Theorem 4, the method being close to that of L. CSERNYÁK and L. LEINDLER [4] where the following extension of K. Tandori's theorem [9] is proved: Let $\{C_i\}$ (cf. (5)) be a nonincreasing sequence. If $\sum_{i=2}^{\infty} C_i^2(\ln i)^2 = \infty$, then it exists an ONS $\{\varphi_n(x)\}$ with $\overline{\lim_{i\to\infty}} |f(x) - s_{n_i}(x)| = \infty$. But at first we want to mention a result concerning the Rademacher functions $\{r_n(x)\}$. For any sequence $\{c_n\}$, $\sum_{n=0}^{\infty} c_n^2 < \infty$, and for $f(x) \sim \sum_{n=0}^{\infty} c_n r_n(x)$ given by the Riesz—Fischer theorem it holds

(14)
$$A\left\{\sum_{n=0}^{\infty} c_n^2\right\}^{1/2} \leq \int_0^1 |f(x)| \, dx \leq B\left\{\sum_{n=0}^{\infty} c_n^2\right\}^{1/2}.$$

(A, B absolutely constant; cf. A. ZYGMUND [12, p. 213]). On the basis of estimation (14) L. Csernyák and L. Leindler proved

Lemma 4. For an arbitrary sequence $\{c_n\}$ let the sets $E_{n,m}$ be defined by

$$E_{n,m} = \left\{ x : \left| \sum_{\nu=n}^{n+m} c_{\nu} r_{\nu}(x) \right| > \frac{1}{2} \left\{ \sum_{\nu=n}^{n+m} c_{\nu}^{2} \right\}^{1/2} \right\}.$$

Then the sets $E_{n,m}$ are simple sets with

$$\mu(E_{n,m}) \geq \frac{A^2}{4},$$

A given by (14).

Proof of Theorem 5. (a) By Theorem 4 we can find for the sequence $\{C_i\}$ an ONS $\{\Phi_i(x)\}$ such that for the partial sums $\{S_i(x)\}$ of the series $\sum_{i=0}^{\infty} C_i \Phi_i(x)$ we have

$$\lim_{i\to\infty} \lambda(n_i+1)|f(x)-S_i(x)| = \infty \quad (x\in[0,\,1]).$$

As in [4] it will be proved that with the aid of $\{\Phi_i(x)\}\$ we can set up an ONS $\{\varphi_n(x)\}\$ for which the assertion of the theorem is true. We outline the proof and refer the reader to [4] for complete argumentation.

We distinguish two cases: $I(k_j+1)-I(k_j)=O(1)$ and $I(k_j+1)-I(k_j)\neq O(1)$ (for definition of $I(k_j)$ cf. the preliminary remark regarding Theorem 2) and treat only the (more complicate) latter one.

When $l(k_i+1)-l(k_i) \neq O(1)$ let l_1^*, l_2^*, \dots denote those indices with

$$l(l_i^*+1) - l(l_i^*) > 4.$$

By the proof of Theorem 4 we can find some simple sets $G_r^{(l_j^*)}$, $r=0, 1, ..., r_0(l_j^*)$, with

$$\sum_{j=1}^{\infty} \sum_{r=0}^{r_0(l_j^*)} \mu(G_r^{(l_j^*)}) = \infty$$

(cf. (13)), and for $x \in G_r^{(l_j^*)}$ numbers $i_0 = \mathbb{I}(l_j^*) + N_r$ and $n_r(x)$ such that

(15)
$$\lambda(n_{i_0}+1)\Big|\sum_{i=i_0}^{i_0+n_r(x)} C_i \Phi_i(x)\Big| > \frac{B^*}{\varepsilon_{l_j^*}} \quad (\{\varepsilon_n\} \to 0),$$

and these functions are of the same sign on $G_r^{(l_r^*)}$.

(b) Next, corresponding to l_i^* and $r \leq r_0(l_i^*)$ the number $\varkappa(j, r)$ is defined by

$$\varkappa(j,r) = \max\{(n_{i+1}-n_i): \mathbb{I}(l_j^*) + N_r \le i < \mathbb{I}(l_j^*) + N_{r+1}\},\$$

$$r = 0, 1, \dots, r_0(l_j^*); \quad j = 1, 2, \dots.$$

Now let us choose a fixed I_j^* and r. With the above value $\varkappa = \varkappa(j, r)$ we divide [0, 1] $Q^* = 2^{\varkappa + 1}$ partial segments with equal length $I_q = (u_q, v_q)$, $1 \le q \le Q^*$. With respect to some n_{i_0} , where $n_{I(l_j^*)+N_r} \le n_{i_0} < n_{I(l_j^*)+N_{r+1}}$, the number of segments I_q , where

(16)
$$\sum_{n=1}^{n_{i_0+1}-n_{i_0}} c_{n_{i_0}+n} r_n(x) > \frac{A}{2} \left\{ \sum_{n=1}^{n_{i_0+1}-n_{i_0}} c_{n_{i_0}+n}^2 \right\}^{1/2},$$

is at least $p^*=2^{-3}A^2Q^*$ bearing in mind that $r_n((1/2)+x)=r_n((1/2)-x)$. Let us then change the segments I_q and simultaneously the corresponding values of the functions $r_n(x)$, $n=1, ..., n_{i_0+1}-n_{i_0}$, in such a way that (16) holds for the first p^* segments. The new functions are denoted by $r_{i_0,n}(x)$, $n=1, ..., n_{i_0+1}-n_{i_0}$, i.e. it yields

$$\sum_{n=1}^{n_{i_0}+1} c_{n_{i_0}+n} r_{i_0,n}(x) > \frac{A}{2} \left\{ \sum_{n=n_{i_0}+1}^{n_{i_0}+1} c_n^2 \right\}^{1/2},$$
$$x \in I_q; \quad q = 1, \dots, p^*.$$

With the ONS $\{\Phi_i(x)\}$ mentioned in (a), we consider the functions (cf. (10))

$$g_{i_0q}(x) = \Phi_{i_0}(I_q; x), \quad q = 1, \ldots, Q^*,$$

and we put

(17)
$$\gamma_{n_{i_0}+n}(x) = \sum_{q=1}^{Q^*} r_{i_0,n}(x) g_{i_0,q}(x), \quad n = 1, \ldots, n_{i_0+1}-n_{i_0}.$$

As in [4] we can prove that $\{y_n(x)\}\$ are orthogonal and normalized functions.

(c) For those n_i which are not covered by (b), namely when $i^* = \mathbb{I}(l_j^*) + N_{r_0(l_j^*)+1}$ and $n_{i^*} \leq n_i < n_{\mathbb{I}(l_{j+1}^*)}$ we put $Q^* = 2^{n_{i+1}-n_i+1}$ and define $\gamma_{n_i+1}(x), \ldots, \gamma_{n_{i+1}}(x)$ analogously to (17) in (b).

(d) For fixed l_j^* and r with respect to the transformation $(0, 1) \rightarrow I_q$ in (b) the set $G_r^{(l_j^*)}$ will be transformed into the set $G_r^{(l_j^*)}(I_q)$. Taking

$$\bar{G}_{r}^{(l_{j}^{*})} = \bigcup_{q=1}^{Q^{*}} G_{r}^{(l_{j}^{*})}(I_{q})$$

we get

(18) $\mu(\bar{G}_{r}^{(l_{j}^{*})}) \geq 2^{-4} A^{3} \mu(G_{r}^{(l_{j}^{*})}).$

On the other side, with $i_0 = \mathbb{I}(l_j^*) + N_r$, we can find for $x \in \overline{G}_r^{(l_j^*)}$, e.g. $x \in G_r^{(l_j^*)}(I_{q_0})$, a number $n_r(x)$ with (cf. (15), (16))

(19)
$$\left|\sum_{i=i_{0}}^{i_{0}+n_{r}(x)}\sum_{k=n_{i}+1}^{n_{i+1}}c_{k}\gamma_{k}(x)\right| = \left|\sum_{i=i_{0}}^{i_{0}+n_{r}(x)}g_{iq_{0}}(x)\sum_{k=n_{i}+1}^{n_{i+1}}c_{k}r_{i,k-n_{i}}(x)\right| > \frac{A\cdot B^{*}}{2\varepsilon_{l_{j}}\lambda(\mu_{l_{j}^{*}})}$$

(e) In the last step we have to give the ONS $\{\varphi_n(x)\}$ asked for. At first we put

$$\varphi_n(x) = r_n(x), \quad n = 0, 1, \dots, n_{\mathfrak{l}(l_1^*)}.$$

Now let with $i_0 = \mathbb{I}(l_j^*) + N_v$ the functions $\varphi_0(x), \dots, \varphi_{n_{i_0}}(x)$ be defined. Denoting with $J_{\sigma} = J_{\sigma}^{(i_0)}, \sigma = 1, \dots, R(i_0)$ all those partial segments where these functions have constant value, we may assume that $J_{\sigma}^{(i_0)} \cap J_{\sigma'}^{(i_0-1)} = J_{\sigma}^{(i_0)}$ or that $J_{\sigma}^{(i_0)} \cap J_{\sigma'}^{(i_0-1)} = \emptyset$. The two halves of J_{σ} may be marked by J_{σ}' and J_{σ}'' .

In the case $v = r_0(l_j^*) + 1$ and $l(l_{j+1}^*) - l(l_j^*) > N_{v+1}$, we put with $R = R(i_0)$ (cf. (10))

$$\varphi_k(x) = \sum_{\sigma=1}^{R} (\gamma_k(J'_{\sigma}; x) - \gamma_k(J''_{\sigma}; x)), \quad k = n_{i_0} + 1, \dots, n_{\mathfrak{l}(J'_{j+1})};$$

otherwise if $v \leq r_0(l_i^*)$, then we take

$$\varphi_k(x) = \sum_{\sigma=1}^R (\gamma_k(J'_{\sigma}; x) - \gamma_k(J''_{\sigma}; x)), \quad k = n_{i_0} + 1, \dots, n_{l(l_j^*) + N_{\nu+1}}.$$

In the last case we also take up the set

$$H_{\nu}^{(j)} = \bigcup_{\sigma=1}^{R} \left(G_{\nu}^{(l_{j}^{*})}(J_{\sigma}') \cup G_{\nu}^{(l_{j}^{*})}(J_{\sigma}'') \right),$$

whereby $G_{\nu}^{(l_j^*)}$ is transformed into $G_{\nu}^{(l_j^*)}(J_{\sigma}')$ when (0, 1) is transformed into J_{σ}' . The sets $H_{\nu}^{(J)}$, $\nu=0, 1, ..., r_0(l_j)$; j=1, ... are stochastically independent and - ---

(cf. (18)), i.e.
$$\sum_{j=1}^{\infty} \sum_{\nu=0}^{r_0(j)} \mu(H_{\nu}^{(j)}) = \infty$$
$$\mu(\overline{\lim} H_{\nu}^{(j)}) = 1.$$

But with $x \in H_v^{(j)}$ we can find n(x) such that for $i^* = l(l_i^*) + N_v$ then e.g. for $x \in G_v^{(l_j^*)}(J_\sigma')$

$$\Big|\sum_{i=i^*}^{i^*+n(x)}\sum_{n=n_i+1}^{n_{i+1}}c_n\varphi_n(x)\Big|=\Big|\sum_{i=i^*}^{i^*+n(x)}\sum_{n=n_i+1}^{n_{i+1}}c_n\gamma_n(J'_{\sigma}; x)\Big| \ge \frac{AB^*}{2\varepsilon_{l_j^*}\lambda(\mu_{l_j^*})}$$

(cf. (19)) which is not bounded. But this contradicts the estimation $f(x) - s_{n_i}(x) =$ $=O_x\left(\frac{1}{\lambda(n_i+1)}\right)$. Changing the values of $\{\varphi_n(x)\}$ on a set with measure 0 we get the assertion of Theorem 5.

(f) In the case $l(k_j+1)-l(k_j)=O(1)$ we proceed as in (c).

The proof of Theorem 6 is similiar to that of Theorem 4, taking

$$\sigma_k^2 = \begin{cases} \sum_{n=\mu_k}^{\mu_{k+1}-1} c_n^2 \lambda^2(n) & \text{if } \mu_{k+1}-\mu_k > 4, \\ 0 & \text{if } \mu_{k+1}-\mu_k \le 4, \end{cases}$$

in case $\mu_{k+1} - \mu_k \neq O(1)$ with

$$\sum_{k=1}^{\infty} \sigma_k^2 \varepsilon_k^2 = \infty \quad (\{\varepsilon_k\} \to 0)$$

and putting in (12)

$$a_n = c_{\mu_k + n} \varepsilon_k, \quad n = 0, 1, \dots, N_{r_0 + 1};$$

otherwise, if $\mu_{k+1} - \mu_k = O(1)$ the assertion follows by Lemma 3.

References

- [1] G. ALEXITS, Konvergenzprobleme der Orthogonalreihen, Akadémiai Kiadó (Budapest, 1960).
- [2] V. A. ANDRIENKO, On the speed of convergence of orthogonal series, Vestnik Moskov. Univ. Ser. I. Mat. Meh., 22 (1967), 17-24.
- [3] V. A. ANDRIENKO and L. V. G'RNEVSKA, The rate of approximation of functions by their orthogonal series in convergence systems, Ukrainian Math. J., 34 (1982), 278-280.
- [4] L. CSERNYÁK und L. LEINDLER, Über die Divergenz der Partialsummen von Orthogonalreihen, Acta Sci. Math., 27 (1966), 55—61.
- [5] W. FELLER, An introduction to probability theory and its applications. I, 2nd ed., John Wiley and Sons (New York-London, 1957).
- [6] V. I. KOLYADA, On the rate of convergence of orthogonal series, Ukrainian Math. J., 25 (1973), 19-29.
- [7] L. LEINDLER, Über die Rieszschen Mittel allgemeiner Orthogonalreihen, Acta Sci. Math., 24 (1963), 129–138.
- [8] D. E. MENCHOFF, On summation of orthogonal series, Trudy Moscow Mat. Obs., 10 (1961), 351-418. (in Russian)
- [9] K. TANDORI, Über die orthogonalen Funktionen I, Acta Sci. Math., 18 (1957), 57-130.
- [10] K. TANDORI, Über die orthogonalen Funktionen VII, Acta Sci. Math., 20 (1959), 19-24.
- [11] K. TANDORI, Über die Konvergenz der Orthogonalreihen II, Acta Sci. Math., 25 (1964), 219-234.
- [12] A. ZYGMUND, Trigonometric series. I, University Press (Cambridge, 1959).
- [13] A. ZYGMUND, Trigonometric series. II, University Press (Cambridge, 1959).

MATHEMATISCHES INSTITUT ARNDSTRASSE 2 6300 GIESSEN, GERMANY