On the almost everywhere divergence of Lagrange interpolation on infinite interval

J. SZABADOS and P. VÉrTESI

To Professor K. Tandori on his 60th birthday

1. Introduction

1.1. Let $X=\left\{x_{k n}\right\}, n=1,2, \ldots, \quad l \leqq k \leqq n$, be an interpolatory matrix in $\boldsymbol{R}:=(-\infty, \infty)$, i.e.

$$
\begin{equation*}
-\infty<x_{n n}<x_{n-1, n}<\ldots<x_{2 n}<x_{1 n}<\infty, \quad n=1,2, \ldots \tag{1.1}
\end{equation*}
$$

Restricting ourselves to nodes which are uniformly bounded with n, say $-1 \leqq x_{k n} \leqq 1$, $1 \leqq k \leqq n, n=1,2, \ldots$, the behaviour of the corresponding Lagrange interpolatory polynomials

$$
\begin{equation*}
L_{n}(f, X, x)=L_{n}(f, x)=\sum_{k=1}^{n} f\left(x_{k n}\right) l_{k n}(x) \tag{1.2}
\end{equation*}
$$

for $f \in C$ (i.e. f is continuous on $[-1,1]$) were thoroughly investigated. The first result is due to Faber [1], proving that for any interpolatory matrix $X \subset[-1,1]$ there exists an $f \in C$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}(f, X, x)\right\|=\infty \tag{1.3}
\end{equation*}
$$

Here we used the notations

$$
\begin{equation*}
l_{k n}(X, x)=l_{k n}(x)=\frac{\omega_{n}(x)}{\omega_{n}^{\prime}\left(x_{k n}\right)\left(x-x_{k n}\right)}, \quad k=1,2, \ldots, n, \quad n=1,2, \ldots \tag{1.4}
\end{equation*}
$$

(where $\left.\omega_{n}(X, x)=\omega_{n}(x)=c_{n} \prod_{k=1}^{n}\left(x-x_{k n}\right)\right),\|g(x)\|=\|g\|=\max _{-1 \leq x \leq 1}|g(x)|$ for $g \in C$).
Almost seventy years later the second named author in a joint paper with P. Erdős proved the following conjecture of Erdös [2].

Theorem 1.1 (Erdös and Vértesi [3]). For any interpolatory matrix X in $[-1,1]$ one can find a function $F(x) \in C$ such that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|L_{n}(F, X, x)\right|=\infty \quad \text { for almost all } \quad x \in[-1,1] \tag{1.5}
\end{equation*}
$$

1.2. Some years ago the second of us completed the corresponding result for the unit circle ([4]).

In the same paper results for the trigonometric case were proven.

2. Infinite interval

2.1. Contrary to the case of the finite interval we know very little on the infinite ones. If the nodes are unbounded, as far as we know, even the analogue of Faber's result has not been proved yet.

Generally, the corresponding theorems deal with
a) special nodes (Laguerre or Hermite nodes, see e.g. [7]);
b) nodes where the maximal distance of the consecutive ones tends to zero (see e.g. [8]);
c) a finite interval $[a, b] \subset \boldsymbol{R}$ (see e.g. [9]).
2.2. To illustrate these we quote the following statement of divergence type. Let $X^{(\alpha)}=\left\{x_{k n}^{(\alpha)}\right\}, 1 \leqq k \leqq n, n=1,2, \ldots$, where $x_{k n}^{(\alpha)}$ is the k-th root of the n-th Laguerre polynomial $L_{n}^{(\alpha)}(x), \alpha>-1$.

Theorem 2.1 (Povchun [7]). Let $X=X^{(\alpha)}, \alpha>-1$. Then there exists a function $f(x)$ continuous on $[0, \infty)$ such that

$$
\varlimsup_{n \rightarrow \infty}\left|L_{n}\left(f, X^{(\alpha)}, x\right)\right|=\infty \quad \text { a.e. on }[0, \infty)
$$

2.3. Dealing with infinite intervals the main problem may be formulated in the following way. The functions $F(x)$ serving as counter-example generally have the form $\sum_{k=1}^{\infty} c_{k} \varphi_{k}(x)$. Here $\sum\left|c_{k}\right|<\infty$ and $\varphi_{k}(x)$ are uniformly bounded polynomials, say, in $[-1,1]$.

On the other hand, if $x \rightarrow \infty$, even the continuity of $F(x)$ is questionable. Of course, one can "cut" somehow $\varphi_{k}(x)$ but then we could not use the very useful property $L_{N}\left(\varphi_{k}, x\right) \equiv \varphi_{k}(x)$ if $N>\operatorname{deg} \varphi_{k}$.

In this paper we were able to overcome these problems and to generalize Theorem 1.1 to infinite intervals.

3. Results

3.1. First let $C(R):=\{f(x) ; f(x)$ is continuous for any $x \in \boldsymbol{R}\}$. Our main statement is the following.

Theorem 3.1. For any interpolatory matrix $X \subset \boldsymbol{R}$ one can find a function $F(x) \in C(R)$ such that

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}(F, x)\right|=\infty \quad \text { for almost all } \quad x \in \boldsymbol{R} \tag{3.1}
\end{equation*}
$$

3.2. To prove this, first we use a special lemma which may deserve a separate formulation.

Lemma 3.2. Let $\varepsilon>0$ be given. Then for any interpolatory matrix $X \subset \boldsymbol{R}$ and for any fixed $[a, b] \subset \boldsymbol{R}$ one can find a function $F_{\varepsilon}(x)=F(a, b, X, \varepsilon, x) \in C(\boldsymbol{R})$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|L_{n}\left(F_{\varepsilon}, x\right)\right|=\infty \quad \text { on } \quad S_{\varepsilon} \tag{3.2}
\end{equation*}
$$

where $S_{\varepsilon} \subset[a, b]$ and $\left|S_{\varepsilon}\right| \geqq b-a-\varepsilon$.
3.3. Let us remark that the set of divergence in (3.1) is dense and of second category on R. ${ }^{1)}$

4. Proof of Lemma 3.2

We shall use many ideas of [3], even our notations will be similar, too.
First a simple remark. If

$$
\begin{equation*}
\lambda_{n}(x):=\sum_{k=1}^{n}\left|l_{k}(x)\right|, \quad \lambda_{n}:=\max _{x \in\left[x_{n n}, x_{1 n}\right]} \lambda_{n}(x), \quad n=1,2, \ldots, \tag{4.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\lambda_{n}>\frac{\ln n}{8 \sqrt{\pi}}, \quad n=1,2, \ldots \tag{4.2}
\end{equation*}
$$

[^0]This relation was proved by S. Bernstein and G. Faber (see e.g. Natanson [5], Volume III, Ch. II, § 1). Actually, they supposed that the matrix X is contained in a finite interval but their proof does not use this fact.
4.1. First let us suppose that there exists a finite interval $[A, B]$ which contains X. It is enough to prove the lemma for $[a, b] \supseteqq[A, B]$. Indeed, applying Theorem 1.1, we obtain an $F(x)$ which is continuous on $[a, b]$ and for which $\lim _{n \rightarrow \infty}\left|L_{n}(F, x)\right|=\infty$ a.e. in $[a, b]$. If

$$
F_{\varepsilon}(x):=\left\{\begin{array}{lll}
F(a) & \text { if } & x \leqq a \tag{4.3}\\
F(x) M & \text { if } & a \leqq x \leqq b \\
F(b) & \text { if } & x \geqq b
\end{array},\right.
$$

we obtain the lemma. (Remark that now $\left|S_{s}\right|=b-a$, moreover F_{ε} and S_{ε} do not depend on $\dot{\varepsilon}$.)
4.2. Now let us suppose that $\prod_{n \rightarrow \infty}\left[\max \left(\left|x_{1 n}\right|,\left|x_{n n}\right|\right)\right]=\infty$. For sake of simplicity we may assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{1 n}=\infty \quad \text { and } \quad x_{11}<x_{12}<\ldots \tag{4.4}
\end{equation*}
$$

(otherwise we can select a subsequence having this property).
For an arbitrary sequence $A_{n}>0, A_{n} \nearrow \infty$, we can construct F_{ε} as follows. First, we cover all the points of X with an interval-system I_{ε} of total measure $\leqq \varepsilon$. We suppose that $x_{k n}$, say, is the middle point of its covering interval. Then obviously

$$
\begin{equation*}
\delta_{n}(\varepsilon):=\min _{x \in R \backslash I_{s}}\left|I_{1 n}(x)\right|>0, \quad n=1,2, \ldots \tag{4.5}
\end{equation*}
$$

I.e., if

$$
\begin{equation*}
F_{\varepsilon}(x):=\frac{A_{1}}{\delta_{1}(\varepsilon)} \quad \text { when } \quad x \in\left(-\infty, x_{11}\right] \tag{4.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|L_{1}\left(F_{\varepsilon}, x\right)\right| \geqq A_{1} \quad \text { when } \quad x \in R \backslash I_{\varepsilon} \tag{4.7}
\end{equation*}
$$

4.3. Generally, if we defined F_{ε} on $\left(-\infty, x_{1, n-1}\right](n \geqq 2)$, then we define F_{ε} on $\left(-\infty, x_{1 n}\right.$] as follows. Let

$$
\begin{equation*}
F_{\varepsilon}(x):=F_{s}\left(x_{1, n-1}\right) \quad \text { if } \quad x \in\left[x_{1, n-1}, \alpha_{n}\right] \tag{4.8}
\end{equation*}
$$

where $\alpha_{n}:=\max \left(x_{2 n}, x_{1, n-1}\right), n=2,3, \ldots$ Considering (4.4), $\alpha_{n}<x_{1 n}$. So we can define the function $F_{\varepsilon}(x)$ at $x_{1 n}$. First we remark that

$$
\begin{equation*}
\Delta_{n}(\varepsilon):=\max _{x \in R \backslash I_{e}}\left|\frac{\sum_{k=2}^{n} F_{8}\left(x_{k n}\right) l_{k n}(x)}{l_{1 n}(x)}\right|<\infty ; \tag{4.9}
\end{equation*}
$$

because $\operatorname{deg} l_{1 n} \geq \operatorname{deg}\left(\sum_{d=1}^{n} \ldots\right)$, moreover, we excluded a certain neighbourhood of the
poles of the rational function appearing in (4.9). Now let

$$
\begin{equation*}
F_{\varepsilon}\left(x_{1 n}\right):=\frac{A_{n}}{\delta_{n}(\varepsilon)}+A_{n}(\varepsilon) \tag{4.10}
\end{equation*}
$$

Finally, let F_{ε} be linear if $x \in\left[\alpha_{n}, x_{1 n}\right]$. By these we completed the definition of F_{ε} on ($-\infty, x_{1 n}$]. Using again (4.4), we can say that F_{ε} is defined for any $x \in \boldsymbol{R}$, moreover $F_{\varepsilon} \in C(-\infty, \infty)$. Then for any $x \in R \backslash I_{\varepsilon}$ we have

$$
\begin{align*}
& \left|L_{n}\left(F_{\varepsilon}, x\right)\right|=\left|\sum_{k=1}^{n} F_{\varepsilon}\left(x_{k n}\right) l_{k n}(x)\right|=\left|l_{1 n}(x) F_{\varepsilon}\left(x_{1 n}\right)+\sum_{k=2}^{n} \ldots\right| \geqq \tag{4.1.1}\\
\geqq & \left|l_{1 n}(x)\right|\left[\left|F_{\varepsilon}\left(x_{1 n}\right)\right|-\Delta_{n}(\varepsilon)\right] \geqq \delta_{n}(\varepsilon)\left[\frac{A_{n}}{\delta_{n}(\varepsilon)}+A_{n}(\varepsilon)-\Delta_{n}(\varepsilon)\right]=A_{n}
\end{align*}
$$

(see (4.5), (4.9) and (4.10)), i.e. we proved

$$
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}\left(F_{\varepsilon}, x\right)\right|=\infty \quad \text { on } \quad \mathbf{R} \backslash I_{\varepsilon}
$$

(see (4.11)) which is more than stated in Lemma 3.2.

5. A lemma

5.1. Later we need the next

Lemma 5.1. If $g_{1}, g_{2}, \ldots \in C(\boldsymbol{R})$ and

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} g_{n}(x)=\infty \quad(x \in B,|B|<\infty) \tag{5.1}
\end{equation*}
$$

then for arbitrary fixed A, ε and $M(A, \varepsilon>0, M \geqq 1$, integer) there exist a set $H \subseteq B$ and an index $N \geqq M$ such that $|H| \leqq \varepsilon$ and if $x \in B \backslash H$ then for a certain $u(x)$ we have

$$
\begin{equation*}
g_{u(x)}(x) \geqq A \quad \text { where } \quad M \leqq u(x) \leqq N . \tag{5.2}
\end{equation*}
$$

(The proof of Lemma 5.1. is in [3, 4.4.13.].)

6. Proof of Theorem 3.1

6.1. For a fixed $k, k=1,2, \ldots$, applying Lemma 3.2 with the cast $\varepsilon:=2^{-k-1}$ and $[a, b]:=I_{k}$ (I_{k} will be determined later), we get $F_{k} \in C(R), \max _{x \in I_{k}} \mid F_{k}(x) j \leqq 1$, for which

$$
\overline{\lim }_{n \rightarrow \infty}\left|L_{n}\left(F_{k}, x\right)\right|=\infty \quad \text { if } \quad x \in T_{k},
$$

where $T_{k} \subset I_{k}$ and $\left|T_{k}\right| \geqq\left|I_{k}\right|-2^{-k-1} \quad\left(F_{k}(x)\right.$ and T_{k} correspond to $F_{\varepsilon}(x)\left[\max _{a \leqq x \leqq b}\left|F_{\varepsilon}(x)\right|\right]^{-1}$ and S_{ε}, respectively).

Now let $k=1$ and $I_{1}:=[-1,1]$. Using Lemma 5.1 with $g_{n}(x):=\left|L_{n}\left(F_{1}, x\right)\right|$, $A:=A_{1}:=2, \varepsilon:=\varepsilon_{1}:=2^{-2}, M:=m_{1}:=1$ and $B:=T_{1}$, we get the set $S_{1} \subset T_{1}$ with $\left|S_{1}\right| \geqq 2-2^{-1}$ and the index n_{1} such that

$$
\begin{equation*}
\left|L_{u(x)}\left(F_{1}, x\right)\right| \geqq A_{1}>1^{3} \mu_{0} \quad \text { if } \quad x \in S_{1} \tag{6.1}
\end{equation*}
$$

moreover $m_{1} \leqq u(x) \leqq n_{1}$. Here $\mu_{0}:=1 \quad\left(S_{1}, n_{1}\right.$ and $u(x)$ correspond to $B \backslash H, N$ and $u(x)$, respectively).

Now let $a_{1}:=\min \left(-1, \min _{1 \leqq n \leqq n_{1}} x_{n n}\right), \quad b_{1}:=\max \left(1, \max _{1 \leqq n \leqq n_{1}} x_{1 n}\right)$, and let $I_{2}:=$ $:=\left[a_{1}-1, b_{1}+1\right]$. Clearly $[-2,2] \subseteq I_{2}$. We can construct a polynomial $\varphi_{1}(x)$ for which $\varphi_{1}\left(x_{i n}\right):=F_{1}\left(x_{i n}\right) \quad\left(1 \leqq i \leqq n, \quad 1 \leqq n \leqq n_{1}\right) \quad$ and $\quad\left|\varphi_{1}(x)-F_{1}(x)\right| \leqq 1$ if $x \in I_{2}$ (see [10, Part 3, Chapter 2, §3, Lemma 3]). Then, by $\left|F_{1}(x)\right| \leqq 1\left(x \in I_{1}\right)$,

$$
\begin{equation*}
\left|\varphi_{1}(x)\right| \leqq 2 \quad \text { if } \quad x \in I_{1} \tag{6.2}
\end{equation*}
$$

By $\varphi_{1}\left(x_{i n}\right)=F_{1}\left(x_{i n}\right),(6.1)$ holds for φ_{1}, too. Finally, let deg $\varphi_{1} \leqq N_{1}$.
Now by induction, for any fixed $k \geqq 2$, using similar arguments and the notations

$$
\left\{\begin{array}{l}
\mu_{k-1}:=\max _{1 \leqq i \leq n_{k-1}} \max _{x \in I_{k}} \lambda_{i}(x) \tag{6.3}\\
A_{k}:=k^{3} \mu_{k-1}+1, \quad \varepsilon_{k}:=2^{-k-1}, \quad m_{k}:=N_{k-1}+1
\end{array}\right.
$$

we get the set $S_{k} \subset I_{k},\left|S_{k}\right| \geqq 2 k-2^{-k}$, the index n_{k} and a polynomial $\varphi_{k}(x)$ of degree $\leqq N_{k}$ for which

$$
\begin{equation*}
\left|\varphi_{k}(x)\right| \leqq 2 \quad \text { if } \quad x \in I_{k} \tag{6.4}
\end{equation*}
$$

moreover for a certain $u(x), m_{k} \leqq u(x) \leqq n_{k}$,

$$
\begin{equation*}
\left|L_{u(x)}\left(\varphi_{k}, x\right)\right| \geqq A_{k}>k^{3} \mu_{k-1} \quad \text { if } \quad x \in S_{k} \tag{6.5}
\end{equation*}
$$

Let $\quad a_{k}:=\min \left(-k, \min _{1 \leqq n \leqq n_{k}} x_{n n}\right), \quad b_{k}:=\max \left(k, \max _{1 \leqq n \leqq n_{k}} x_{1 n}\right)$ and let $I_{k+1}:=\left[a_{k}-1\right.$, $\left.b_{k}+1\right]$. Clearly $[-(k+1), k+1] \subseteq I_{k+1}$ and $I_{k} \subseteq I_{k+1} \quad(k=2,3, \ldots)$.

By construction we may suppose that

$$
\begin{equation*}
m_{1}<n_{1}<N_{1}<m_{2}<n_{2}<N_{2}<\ldots, \tag{6.6}
\end{equation*}
$$

while by (6.3)

$$
\begin{equation*}
\mu_{0} \leqq \mu_{1} \leqq \mu_{2} \leqq \ldots \tag{6.7}
\end{equation*}
$$

6.2. Now let

$$
\begin{equation*}
F(x):=\sum_{k=1}^{\infty} \frac{\varphi_{k}(x)}{k^{2} \mu_{k-1}} \tag{6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
S:=\bigcap_{k=1}^{\infty}\left(\bigcup_{i=k}^{\infty} S_{i}\right) \tag{6.9}
\end{equation*}
$$

${ }^{-}$First we state that $F \in C(R)$. To this end, let $x \in R$ be arbitrary. By $[-s, s] \subseteq I_{s}$,
one can find a fixed s for which $x \in I_{s}$. If we prove that F is bounded on (the closed) I_{s}, then, by the continuity of φ_{k}, F will be continuous on I_{s}, especially at x.

Let $F(x)=\left(\sum_{k=1}^{s-1}+\sum_{k=s}^{\infty}\right) c_{k} \varphi_{k}(x)$, where $c_{k}:=\left(k^{2} \mu_{k-1}\right)^{-1}$. Here the first sum can be estimated by $\sum_{k=1}^{s-1} c_{k} \max _{x \in I_{s}}\left|\varphi_{k}(x)\right|:=\alpha_{s}<\infty$, the second one, using that $\left|\varphi_{k}(x)\right| \leqq 2$ because $x \in I_{s} \subseteq I_{k} \quad\left(\right.$ see (6.4)), by $2 \sum_{k=s}^{\infty} c_{k}<2 \sum_{k=1}^{\infty} k^{-2}:=2 E_{2}<\infty$ which was to be proven.

Now we prove that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|L_{n}(F, x)\right|=\infty \quad \text { if } \quad x \in S \tag{6.10}
\end{equation*}
$$

Indeed, for any fixed $x \in S$ there exist infinitely many $S_{j}, j=r_{1}, r_{2}, \ldots$, for which $x \in S_{j} \subset I_{j}$. For each fixed j there exists an index $u_{j}=u(x)$ such that by (6.5)

$$
\begin{equation*}
\left|L_{u_{j}}\left(\varphi_{j}, x\right)\right| \geqq A_{j}, \quad x \in S_{j}, \quad m_{j} \leqq u_{j} \leqq n_{j} . \tag{6.11}
\end{equation*}
$$

For a fixed $j\left(j=r_{1}, r_{2}, \ldots\right)$ we write

$$
L_{u_{j}}(F, x)=\left(\sum_{k=1}^{j-1}+\sum_{k=j}+\sum_{k=j+1}^{\infty}\right) c_{k} L_{u_{j}}\left(\varphi_{k}, x\right):=J_{1}+J_{2}+J_{3} .
$$

In the first sum $L_{u_{j}}\left(\varphi_{k}, x\right) \equiv \varphi_{k}(x)$ because $\operatorname{deg} \varphi_{k} \leqq N_{k} \leqq N_{j-1}<m_{j} \leqq u_{j}$. I.e., $J_{1}=\left(\sum_{k=1}^{r_{1}-1}+\sum_{k=r_{1}}^{j-1}\right) c_{k} \varphi_{k}:=J_{4}+J_{5}$. Here $\left|J_{4}\right| \leqq \sum_{k=1}^{r_{1}-1} c_{k} \max _{x \in I_{r_{1}}}\left|\varphi_{k}(x)\right|=\alpha_{r_{1}}$ further $\left|J_{5}\right| \leqq$ $\leqq 2 \sum_{k=r_{1}}^{j-1} c_{k}<2 E_{2}$ by $\left|\varphi_{k}(x)\right| \leqq 2$ because $x \in I_{r_{1}} \subseteq I_{k}$ (see (6.4)). Thus $\left|J_{1}\right| \leqq \alpha_{r_{1}}+2 E_{2}$.

For J_{2}, by (6.11) and (6.5) we get that $\left|J_{2}\right| \geqq A_{j} j^{-2} \mu_{j-1}^{-1}>j$.
Finally we estimate $J_{3}=\sum_{k=j+1}^{\infty} c_{k}\left(\sum_{i=1}^{m_{j}} \varphi_{k}\left(x_{i u_{j}}\right) l_{i u_{j}}(x)\right)$. Here all the values $\left|\varphi_{k}\left(x_{i u_{j}}\right)\right| \leqq 2 \quad$ by $\quad x_{i u_{j}} \in\left[a_{j}, b_{j}\right] \subset I_{j+1} \subseteq I_{k}, \quad k \geqq j+1$. I.e., $\quad\left|J_{3}\right| \leqq 2 \sum_{k=j+1}^{\infty} c_{k} \lambda_{u_{j}}(x) \leqq$ $\leqq 2 \sum_{k=j+1}^{\infty} c_{k} \mu_{j}<2 E_{2}$ (see (6.3) and (6.7)).

Summarizing, we get that

$$
\left|L_{u_{j}}(F, x)\right| \geqq\left|J_{2}\right|-\left|J_{1}\right|-\left|J_{3}\right| \geqq j-\alpha_{r_{1}}-4 E_{2}, \quad j=r_{1}, r_{2}, \ldots,
$$

which is $\geqq j / 2$ if j is big enough.
6.3. To complete the proof of the theorem we show that

$$
\begin{equation*}
|R \backslash S|=0 \tag{6.12}
\end{equation*}
$$

Indeed, by (6.9), $R \backslash S=\bigcup_{k=1}^{\infty}\left(R \backslash Q_{k}\right)=\bigcup_{k=1}^{\infty} P_{k}$ if $Q_{k}:=\bigcup_{i=k}^{\infty} S_{i}$ and $P_{k}:=R \backslash Q_{k}$. Obviously $Q_{1} \supset Q_{2} \supset \ldots$ which means $P_{1} \subset P_{2} \subset \ldots$. Here $\left|P_{k}\right| \leqq 2^{-k+1}$. Indeed,
considering that S_{i} overlaps [$-i, i$] except a set H_{i} of measure $\leqq 2^{-i}$, we get that $Q_{k}=\bigcup_{i=k}^{\infty} S_{i}$ overlaps R except the set $P_{k} \subseteq \bigcup_{i=k}^{\infty} H_{i}$. Hence $\left|P_{k}\right| \leqq \sum_{i=k}^{\infty}\left|H_{i}\right| \leqq$ $\leqq \sum_{i=k}^{\infty} 2^{-i}=2^{-k+1}$. Using $P_{1} \subset P_{2} \subset \ldots$, we get that $|R \backslash S|=\left|\bigcup_{k=1}^{\infty} P_{k}\right|=\lim _{k \rightarrow \infty}\left|P_{k}\right|=0$ which was to be proven.

References

[1] G. Faber, Über die interpolatorische Darstellung steiger Funktionen, Jahresber. der Deutschen Mat. Ver., 23 (1914), 190-210.
[2] P. Erdős, Problems and results on the theory of interpolation. I, Acta Math. Acad. Sci. Hungar., 9 (1958), 381-388.
[3] P. Erdős and P. Vértesi, On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes, Acta Math. Acad. Sci. Hungar., 36 (1980), 71-89; 38 (1981), 263.
[4] P. Vértesi, On the almost everywhere divergence of Lagrange interpolation, Acta Math. Acad. Sci. Hungar., 39 (1982), 367-377.
[5] I. P. Natanson, Constructive Theory of Functions, GITTL (Moscow-Leningrad, 1949). (Russian)
[6] W. Orlicz, Über Folgen linearer Operationer die von einem Parameter abhängigen, Studia Math., 5 (1934), 160-170.
[7] L. P. Povchun, On the almost everywhere divergence of Lagrange interpolation on the Laguerre nodes, Izv. Vyš̌. Uc̆ebn. Zaved. Matematika, 7 (1976), 114-116. (Russian)
[8] V. A. KUTEPOV, Lagrange interpolation on unbounded sets, International Conference on the Theory of Approximation of Functions, USSR, KIEV, May 30-June 6, 1983. Abstracts, p. 109. (Russian)
[9] L. P. Povchun, Divergence of interpolation processes at a fixed point, Izv. Vyš̌. Učebn. Zaved. Matematika, 3 (1980), 56-60.

[^0]: 1) Indeed, as Orlicz [6] proved:

 If A is a topological space of second category, $D \subset A$ is a dense subset and $\left\{h_{n}\right\}, n=1,2, \ldots$, are continuous functions on A with
 then the set $S, D \subset S \subset A$,

 $$
 \varlimsup_{n \rightarrow \infty} h_{n}(x)=\infty \quad \text { whenever } \quad x \in D
 $$

 $$
 S:=\left\{x \in A ; \varlimsup_{n \rightarrow \infty} \cdot h_{n}(x)=\infty\right\}
 $$

 is dense and of second category in A.
 Now let $P \subset R$ be the set for which (3.1) holds, By $|R \backslash P|=0, P$ is dense in R. If $h_{n}(x)=$ $\Rightarrow\left|L_{n}(f, x)\right|$ and $D=P$, we obtain statement 3.3.

