
Acta Sci. Math., 48 (1985), 4 8 3 - ^ 9 8 

Representation of functional via summability methods. I 
V. T O T I K 

Dedicated to Professor K. Tandori on his 60th birthday 

§ 1. Introduction 

Summability theory has benefited from functional analysis: several of its funda-
mental results have source at the main principles of the latter. In this paper and in the 
continuation of it we show that conversely, some problems concerning func t iona l 
and measures can be solved by the aid of summability methods. 

Let C(K) be the sup-normed Banach space of real valued continuous functions 
defined on the compact Hausdorff space K. The representation problem of the bound-
ed linear functionals on C(K) has a long history. It was shown by H A D A M A R D [3] in 
1903 that every L£C*(K), where A>[0 ,1 ] , has the form 

I 

Lf= lim f f(x)p„(x)dx 
n~*oo «/ 0 

where {p„(x}} is a suitable sequence of continuous functions. The so called Riesz 
representation theorem, which asserts that every L£C*(K) has the form . .; 

(1.1) Lf = j f dp. '' ' 
k 

with a suitable signed Borel measure p, was proved for X = [ 0 , 1 ] by F. RIESZ [5] 
in 1 9 0 9 , for metrizable K by B A N A C H and SAKS [1 , 6 ] in 1 9 3 7 — 3 8 and for every K by 
KAKUTANI [4 ] i n 1 9 4 1 . 

Here we present another way for representing every bounded linear functional 
which, as it seems, have been overlooked so far. This is the form 

(1.2) Lf= Hm<1/fa) + - + < n / ( * n ) 
n—~ n 

Received December 1, 1982. 

31« 



484 V. Totik 

with appropriate cks and xks. Naturally, (1.1) is a more convenient form than (1.2), 
nevertheless, (1.2) has some advantages: (1.2) may be exact up to the domain of L, 
(cf. Theorem 1 below), the ck's and xks can be obtained, at least for positive L, in a 
constructive way, the representation (1.2) can be extended to larger spaces, finally a 
quite similar representation can be given for subadditive and homogeneous functio-
nals: all we have to do is to replace lim by limsup. 

The paper is organized as follows. In § 2 we give the representation (1.2) for 
A^=[0,1] and treat the analogous problem with ck = 1. In § 3 we investigate the sub-
additive functionals and quasinorms and, finally, in § 4 the generalization to metri-
zable K's is given. 

There will be a forthcoming paper with the following content: (1.2) can be ex-
tended to the space Q[0,1] of functions having discontinuities only of the first kind 
and Q[0,1] is maximal among certain "natural" spaces with this property; we shall 
determine those functionals of /?[0,1], the space of Riemann-integrable functions, 
which have the form (1.2) and give an application to density measures and, finally, we 
also characterize those summability methods by which the (C, l)-method in (1.2) 
can be replaced. 

§ 2. Functionals in CIO, 1] 

Let be a bounded sequence of real numbers and X= {x t}~=1Q[0, 1] 
a sequence from [0, 1]. For an / €C[0 , 1] we define 

(2.1) LcXf = lim + ' n—~ n 

if the limit on the right exists and let DcX be the domain of LcX. Clearly, DcX is a 
closed subspace of C [0,1] and LCt x is a bounded linear functional on DcX, 
sssup |c,|. 

Our first result states that every bounded linear functional has this form. 

T h e o r e m 1. If DQjC[0,1] is a closed subspace and L:D—R is a bounded 
linear functional on D then there are sequences c and X such that L=LcX, D=DcX. 

C o r o l l a r y 1. If L€C*[0,1] then there are sequences { c j , | c k | s | |L | | and 
{xt}g[0, 1] such that 

(2.2) Lf= lim + n 
holds for every /£C[0, 1]. 

C o r o l l a r y 2. If D £ C [ 0 , 1 ] is a closed subspace and L is a bounded linear 
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functional on D then there is a sequence of polynomials {/>„} such that 

f\P.\ = 0(l) (n = 1 ,2 , . . . ) , 
0 

Pf = lim f / p n 
IJ-»oo if 0 

exists if and only if f£D, furthermore, Pf=Lf for all f£D. 

Let us call a functional of the form (2.1) partial weighted (C, 1 ̂ functional, and 
a one with domain C[0, 1] a weighted (C, l)-functional. If for all k we have ck=1 
then we call LC>X=LX a partial (C, 1 ̂ functional or (C, 1 ̂ functional according as 
Dom Lx ^ C[0,1] or Dom Lx=C[0, 1], respectively. Thus, the (partial) (C, 1)-
functionals have the form 

(2.3) Lxf= ( j i V o m L x ) It—oo 11 

with a sequence X= 1]. It is clear that every such Lx is a positive linear 
(partial) functional of norm 1 (Lx 1 = 1) which shall be abbreviated in the following 
as: Lx is a PL1 (partial) functional. 

By Theorem 1 every bounded partial linear functional (i.e. a functional with 
domain Q C[0, 1]) is a partial weighted (C, l)-functional. Now what about PL1 
func t iona l? Does every partial PL1 functional have the form (2.3)? The answer is 
given in 

T h e o r e m 2. Let D g C[0, 1] be a closed subspace and L a PL1 functional 
on D. The following assertions are equivalent to each other: 

(i) L has the form (2.3), i.e. there exists a sequence X with L=LX, D=DomLx, 
(ii) to every / £ C[0, 1 ] \ D there are two PL1 extensions, say Lf and I f f , of 

L to C[0,1] for which L f f ^ L f f 
(iii) D contains the constants, and if for an / £ C [ 0 , 1] we have 

(2.4) inf L g = sup Lg 
tíD.gmf gíD.gSf 

then f£D. 

E.g. if D = { / | / ( 0 ) = / ( l ) } and ¿ / = / ( 1 / 2 ) for / i n D, then there is no X with 
(L, D)=(LX, Dom Lx). Indeed, for f(x)=x (2.4) is satisfied, but f$D. In other 
words, the partial PL1 functionals of the form (2.3) are the ones which have n o 
unique extension to any larger subspace of C[0,1]. 

C o r o l l a r y 3. If L is an arbitrary PL1 functional on C[0,1] then there exists 
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a sequence {x*}§j[0, 1] with 

(2.5) Lf = 1 im>frJ + -+/CxJ n 
/ o r every /<EC[0, 1]. 

C o r o l l a r y 4. Let T=(t„k)™k^1 be a non-negative summation matrix, 
DQC[0, 1] a closed subspace containing the constants and L. D —j? a partial PL1 
functional. If there is a sequence Q [0, 1] such that 

Lf = T-Xvmf{xk) = Jim 2 tnkf(xk) (f£B) 
k - n~°°k=1 

and the limit on the right does not exist for any f$D, then L is a partial (C, 1 f u n c -
tional. 

This corollary tells us that the (C, l)-method is the strongest one f rom the point 
of view of the representation of PL1 functionals. 

In connection with the representation (2.3) the following very natural questions 
arise: when do we have D o m Lx=C[0,1], and in this case for which other sequences 
F,= {;>>*} g [0; 1] do we have Lx=Lr? The answers are given by 

P r o p o s i t i o n , (i) The limit 

(2.6) l i m i ( / ( x 1 ) + . . .+ / (x n ) ) -

exists for every f£C[ 0 ,1] if and only if there is a sequence {zm}g[0,1] dense in[ 0 ,1] 
such that { x j has density in every interval [0, z j . 

(ii) Two sequences X and Y determine the same PL1 functional (via (2.3)) if 
and only if there is a dense sequence {zm} in [0,1] such that X and Y have the same den-
sity in every interval [0, zm]. 

R e m a r k . If we allow the sequence { c j in (2.1) to beunbounded then (2.1) still 
defines a (possibly unbounded) linear functional L .on some linear subspace of 
C[0,1]. However, if the domain of L is C[0,1] (or any closed subspace of it) then, by 
the uniform boundedness principle, the obtained L is bounded, so we have lost very 
little in assuming {ct} to be bounded. 

P r o o f s . In the proofs of the above statements the following lemma, will be 
useful. 

: L e m m a 1. Let gt, g2,... be arbitrary functions ffom C[0, 1] and L a partial 
linear functioned with gyGDom L for j= 1 ,2 , . . . . If there ewe partial (C, l)-functionals 
Lx, ¿2, ... with gj£DomLn for « , / = 1 , 2 , . . . such that - ..... . , 

lim L&j = Lgj. .(j = 1, 2 , . , . ) : . . -j 
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then there exists a partial (C, \)-functional L' with 

L'gj = Lgj 0 = 1 , 2 , . . . ) . 

P r o o f . For the sake of brevity we introduce the notation 

Let Ln be represented in the form (2.3) by the sequence {xjt°}n=i i-e- let 

lim = LJ ( / € D o m L„). m-* « > 

We define the increasing sequence {w,}, { M j and {7VJ in succession so that the fol-
lowing conditions be/satisfied: 

\L„gj-Lgj\^lli for l^j^i and B £ B „ \an({x^},gj)-Lgj\^lJi for 

1 and imMi, Mi+1/Ni~=\li, ( 2 1 // for / = 1 , 2 , . . . , and finally we 
< ; = 1 

put Ao=0 and K i = 2 n j f o r ' = 1 , 2 , . . . . Let x „ = x ^ J K for A ^ c / i S A : , - . 
1 1 

We claim that the partial (C, l)-functional L' represented by the sequence 
is suitable for us. 

Indeed, let j be an arbitrary but fixed natural number. For / > / , Ki<n^Ki+1 

we distinguish two cases according as n—Kt is less than Mi+1 or not. 
1) n — K i < M i + i . By the definitions 

\*,X{xk),gj)-Lgj\ =S \an({xk}, gj)-an({4m,)l g,)| + 

+ k ( { 4 m < ) } , gj)~Lgj\ ^ ± ( 2 max| g j . | + 2 m a x l g j l + 
» r = 1 r = K£ + l 

+ 2 max !gj-|) + 4- = ^ -max \ g j \ + ( n - / Q + „ - ty) + 1 ^ 
n = W. + l I II I . 

: ^ y ( 1 + 4 max |gy|). 

2) n — K ; ^ M i + 1 . We obtain similarly 

k ( K } > gj)~Lgj\ = ±-K2(gj(Xr)-Lgj) + n r=1 

^ ^ l ( | L g , | + m a x |g,|) + ^ ^\(\Lgj\+max | g , | + l) 

and the proof is over. 
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We shall prove our theorems and their corollaries in the following order: 
Corollary 3, Theorem 2, Corollary 1, Theorem 1, Corollaries 2, 4, Proposition. 

P r o o f o f C o r o l l a r y 3. For a natural number n let ^ = 1 and for 
i = l , 2 , . . . , 2" 

0 if 1)/2" 
1 if i/2" S x e l 
linear on [ ( i - l ) / 2 n , i/2n]. 

(2.7) gin)(*) = 

Since L is positive with unit norm we have L\ = 1 and 

0 S Lgg> S . . . s Zg<"> s LgM = i . 

To every e > 0 there are integers 0 < m 2 , < . . . < m 1 < m 0 such that 

(2.8) ah. 
m0 

be satisfied. Let x 1 = x 2 = . . . = x „ , 2 „ = l , x m a n +i= . . .=x n i 2 „_ 1 =l—(1 /2" ) , ..., x m t + 1 = . . . 
... = xm =1/2", xm +1=...=xm = 0 . Clearly for every 0 s i s 2 " we have 

i.e., by (2.8), 

Zg¡n)(xJ) = mi j=i 

0 7 = 1 
e ( O s i s 2"). 

The sequence x2 , ..., . . . ,xm o , x l 5 ... represents a (C, 1 ̂ functional ££n) 

with 
|L<n>gin>-Lgp>|<e (0 S i S 2"). 

Putting here £=1 , 1/2, ..., Lemma 1 yields a partial (C, l)-functional L„ with 

L„g["> = Z,g<"> (0 s i s 2"). 

But then the same equality holds for the linear combinations of the gf° 's and among 
them there is any with m ^ n . Thus, 

lim L„g\m) = Lgf"> 
n-»co 

for all m and 0 S i S 2 m and another application of Lemma 1 yields a partial (C, 1)-
functional L' with 

(2.9) Z/gím) = Lg\m) (in = 1, 2, ..., 0 S i S 2m). 

Since the linear combinations of the gfm) 's are dense in C[0,1] and both L and L' 
have norm one, the equality L=L' readily follows from (2.9). 
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P r o o f of T h e o r e m 2. (i) =>• (ii). If f $ D then, by assumption, there are two 
subsequences and {M®} of the natural numbers such that 

(2.10) lim <r„m(X,f) * lim an^(X,f) k — oo fc fc 

and both of these limits exist. Let us define the partial functional L' and L" by 

L'g = lim o„m(X, g), L"g = lim e„m(X, g). 
k — CO k k—OO fc 

Since 
L'g == sup g(g€ Dom L'), L"g si sup g (g£ Dom L"), 

L' and L" can be extended by the Hahn—Banach theorem to C(0,1) so that the pre-
vious inequalities remain valid for all g€C[0,1]. The obtained functionals Lf 
and Lf are clearly PL1 functionals and, by (2.10), L f f = L ' f ^ L " f = L f f . 

(ii)=>(i). By assumption to every f$D there are two PL1 extensions Lf and 
Lf of L with L f f ^ L f f , say L f f ^ L f f . Then there is a neighbourhood Uf of 
/ and an 0 such that 

L } » g ^ L ™ g - e f for all g e t / , . 

Since C[0, 1 ] \ D is a separable metric space it satisfies the Lindelof property, so 
that 

C[0,1]\D = U Ufm 
m = 1 

for some sequence {/m}~ £=C[0, 1 ] \ D . Let {L„} be a sequence of the functionals 
{Lfm , L f J ~ = 1 which contains every and L « . 

By the above proved Corollary 3 there are sequences {.x^KLi representing L„ 
in the sense (2.5). Now let {.*„} be any sequence guaranteed by the following lemma: 

Lemma 2. If {xü.n)}£L 15 « = 1,2,... are the just introduced sequences then there is a 

union {a„}"=1= (J {xW)r=1 of these sequences such that 
n = l 

(i) every {4°}r=i15 a subsequence, say {;f;<">}k, of {xn} and it has upper density 
1 in {*„}, i.e. 

lim sup /c/j£n) = 1, 

(ii) for every m there are four indices nL(m), n2(rri), k^m) and k2(m) such that 
(a) m — (k1(m)+k2(m))=o(m) 
(P) the finite sequences {iW«»}',W and form two disjoint subse-

quences of and 
ii) for a dense countable subset D'cD and for every f^D' we have 

W № l ( m ) ) } , / ) - Lni(m)f+o(l) (k^m) 
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(ii) (a) and (/?) say that for every m the sequence {x*}™ is essentially formed f rom 
two initial segments {^>l(m))}k

kil) and { x ^ ^ i f . The proof of this lemma is 
straightforward, we omit it. 

Returning to the proof of (ii)=>(i) we claim that the partial (C, ^-funct ional L' 
respresented by the sequence {x„} satisfies L'=L, D o m L'=D. Indeed, for f£D' 
(cf. (ii) y, in the preceding lemma) we have Lnf=Lf for every n, hence, by Lemma 2, 
(ii) 

*»('{*.},/> = 

f) = om{i)+^(Lf+okl(m)a))+ 

+ ̂ (£/+%(m)(l)) = Lf+om(V> 

where om( 1) denotes a quantity that tends to zero together with m. The relation above 
shows / 6 D o m L' and L'f=Lf. Since this holds for every fdD' and D' is dense in 
D we can conclude that D c D o m L' and Li agrees with L on D. On the other hand, 
if then f € U j for some n and thus, by our construction and Lemma 2, (i) 

lim inf <7m({xt}, f) S lim sup am({xk},f)-En m-»oo m— oo 

i.e. Dom L' and so L=L' has been verified. 

The equivalence of (ii) and (iii) is clear f rom any standard proof of the Hahn— 
Banach extension theorem. 

We have completed the proof of Theorem 2. 

. P r o o f of C o r o l l a r y 1. By Riesz' decomposition theorem L—«Z^—/?Z,2 

where a ^ O , a+f¡=\\L\\ and JLJ and L2 are PL1 functionals. If Lx and L2 are 
represented by the sequences {x¡?°} and {x£2)} via (2.5) and and aré 
disjoint subsequences of the natural numbers N with density a / ( a + f i ) and f)j(a+f}), 
respectively, furthermore iV={«[1)}U{n®} then the sequences 

_ ix i x ) if n = _ ( || if « = < > 
lx<2> if n = C" — 1 — ||L|| if n = n<2> 

clearly satisfy the requirements of Corollary 1. 

T h e P r o o f of T h e o r e m 1 is similar to that of Theorem 2 if we notice that 
to every there are two extensions of L, say L{p and iJ-p, for which J j f f ^ I ^ f f , 
HL^II, ||Z,f||=s||£|| + l and if we apply Corollary 1 instead of Corollary 3. 

C o r o l l a r y 2 follows easily from Theorem 1 since the Dirac measures 5X¡ can be 



491 V. Totik: Representation of functionals via summability methods. I 

. , 1 
approximated by polynomialsp* satisfying SO, f p* = 1 and P jnax^ . p*(x) < 1//' 

in the sense / / p ? = / ( * , ) + o ( l ) ( /£C[0,1]) . 
0 

In t h e P r o o f of C o r o l l a r y 4 the fact that to every f $ D there are two PL1 
extensions L(p and i J f of L with l i f f j i l i f f can be proved exactly as in the case of 
the (C, l)-method in Theorem 2 (use that by l£Z>, LI = 1), and we have to apply 
only Theorem 2. 

P r o o f of t h e P r o p o s i t i o n , (i). Let 

T (z) = lim inf xio, 2]) 

and 
/<(z) = lim sup a„({xk}, xl0tZl), 

^ - Í 1 i f 0 
/ [ 0 ' - - ] W ~ 1,0 if z 

S x S z 
< X S 1 

be the lower and upper density of {xk} in [0, z]. x and pi are increasing functions, so 
they are continuous everywhere but a denumerable set. If e > 0 and 

gz.Ax) = 

then 

1 if x S z 
0 if x £ z + s 
linear on [z, z + e ] 

T(Z) S / i (z ) § lim an({xk}, g:ie) S x(Z+E) 
OO 

and so x ( z )=n (z) at every point z where x is continuous, and this proves the necessity 
of the condition. 

Conversely, if x(z„)=jt(z„) for every z„ in a dense set then the limit (2.3) exists 
for e v e r y / which is the linear combination of the characteristic funtions of the inter-
vals [0, z„] and every continuous function can be approximated uniformly by such/ ' s . 

(ii) can be proved similarly. 
We have completed our proofs. 

§ 3. Subadditive functions and quasinorms 

In this paragraph we present some representation theorems for subadditive 
functionals which are very close in spirit to the results of the previous chapter. 

Recall that a functional, x: C[0,1]—R is called subadditive if 

(3.1) T ( / + g ) S T ( / ) + T(g) 
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is satisfied for all / , g £ C ( 0 , 1). It is positive homogeneous if t ( 7 / ) = / t ( / ) for all 
/ £C[0 , 1] and If T is both subadditive and positive homogenenous then we 
call it convex functional. Quasinorms are the non-negative convex even functionals, 
i.e. besides (3.1) they satisfy T ( / ) ^ 0 , x().f)=\X\x{f) for all / and A. 

If {c t }^R , \ck\=0(Y) and 1] are two sequences then each of the 
following defines a bounded convex functional on C[0, 1] 

(3.2) T ( / ) = l i m s u p C l / ( ^ ) + - + C " / ( ^ - ) 

c l / ( * l ) + ••• + C n / ( X „ ) (3.3) r ( / ) = l i m s u p n— °° 

(3.4) , ( / ) = h m s u p I c x I I / ^ l + . - . + ^ l l / f e ) ! n — r i 

Obviously the T in (3.3) and (3.4) is a quasinorm, furthermore implies 
r ( / ) ^ r ( g ) in (3.4). Now all of these statements have converses : 

T h e o r e m 3. Every bounded convex functional t on C[0, 1] has the form (3.2) 
with suitable sequences { c J ^ J ? , |c*] = 0 ( l ) and 1]. 

T h e o r e m 4. Every bounded quasinorm on C[0, 1] has the form (3.3). 

T h e o r e m 5. Every bounded quasinorm x on C[0, 1] with the property 

r ( / ) S x(g) whenever | / | ^ |g| 
has the form (3.4). 

E.g. every Lp-norm (1 

rP(f) = { f \ f \ f 
0 

has the form (3.4) with suitable {ck} and {;*:*}. 
From our results one can deduce other representation theorems, e.g. Theorem 4 

implies that every bounded quasinorm t on C[0, 1] has the form 

T ( / ) = hm sup C i / f a H - . - . + ^ / f a ) _ l i m m clf(xl) + ...+cnf(xn) _ 
n — co fj n—<*> U 

We mention also that, as can be seen easily from the proofs, the sequences {c,} 
in Theorems 3—5 can be chosen so that they also satisfy [cjj ̂  |jx||. 

We also give the characterization of those convex functionals which can be 
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obtained from (3.2)—(3.4) with ck=1 i.e. which lrave the forms 

(3.5) x(f)=lim sup n-»oo 

(3.6) t ( / ) = l imsup 

n 

/(*!) + ...+/(*„) 
n 

(3.7) t ( / ) = l i m sup + - + 
Tl 

respectively. 
Clearly, we have |jt|| = 1 in these cases. 

T h e o r e m 6. For a convex functional x with norm 1 the following assertions are 
equivalent: 

(i) x has the form (3.5), 
( i i ) T ( L ) = - T ( - L ) = L , 

(hi) X(f+c) = x(f)+c for / € C [ 0 , 1 ] , c£R, 
(iv) i ( / ) s m a x / for f£Cto, 1], 
(v) if L s t is a linear functional then L is positive and has norm 1 (i.e. L is PL1 

functional). 

T h e o r e m 7. For a quasinorm x with norm 1 the following assertions are equiva-
lent: 

(i) x has the form (3.6), 
(ii) (a) max (x(f+c), x(f— c))=x(J)+c for all f and c ê 0 and 

(3) \f\^g implies T ( / ) S = T ( G ) for all f and g, 
(iii) t ( / ) = m a x (n(f), / i (—/)) ( /£C[0 ,1] ) with a n satisfying any of the con-

ditions of Theorem 6. 

T h e o r e m 8. For a quasinorm x with norm 1 the following assertions are 
equivalent: 

(i) x has the form (3.7), 
(ii) (a) x(f)^x(g) whenever \f\^\g\ and 

(P) x(f+c)=x(J)+c for all fszO and c^O, 
(iii) X(f)=p(\f\) with a p satisfying any of the conditions of Theorem 6. 

R e m a r k s . (1) Most of our results have analogues for superadditive func-
t i o n a l i.e. for functionals satisfying 

x(f+g) S T( / )+T(g) , 

naturally we have to use lim inf instead of lim sup. We do not go into the details. 
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(2) Here, again, we might restrict ourselves to bounded sequences' {ct} because 
of the uniform boundedness principle. 

P r o o f s . First we verify Theorem 6. 
(i)=>(ii) is obvious. 

(ii)=>(iii). By the subadditivity we have 

T ( f ) + c = T ( / ) - T ( - C ) S T ( / + C ) == T ( / ) + T(C) = T ( f ) + c . 

(iii)=>(iv). Since T has norm 1 we obtain 

* ( / ) = r ( / - m i n / ) + m i n / s | |T | | | | / -m in / | | + m i n / = 

= max ( / - min f)+min / = m a x / . 

(iv)=s-(v). If / S O theii we have 

Lf= —L(—f) ^ —T(—/) £ —max (—/) = 0, 

i.e. L is positive, furthermore 

1 = ||T|| S T ( 1 ) £ ¿ 1 = - L { - 1 ) S - T ( - 1 ) ^ - m a x ( - 1 ) = 1 

i.e. LI = 1 which, together with the positivity of L prove that ||L|| = 1. 
(v)=>(i). By the Hahn—Banach theorem and (v) 

T ( / ) = sup Lf ( /€C[0,1]) . 
¿St 

Ili. II =1, L positive 

Since C[0, 1] is separable and any convex functional T with norm 1 satisfies 

! ( / ) - £ Sg T ( / ) - T ( / - g ) S T(g) S T(/) + T(g-/) =£ T(/) + £ 

provided || g - / | | S e , we obtain at once that there is a sequence L„ of PL1 functionals 
for which Ln~x and 

T ( / ) = s u p L J ( / £ C [ 0 , 1]). 
n 

If L„ is represented by the sequence { x ^ K U the sense of Corollary 3 and if {x„} 
the sequence associated with { ^ ¡ l n = 1,2, ... by Lemma 2 (i) then an easy 
calculation gives (3.5). 

We have completed our proof. 

T h e P r o o f of T h e o r e m 3 is much the same as that of (v)=-(i) above if 
we use Corollary 1, the formula 

r ( / ) = s u p L / ( /£C[0 ,1 ] ) 
LSt 

and the fact that L^z implies - | | t | | \ \ f \ \ ^ - t ( - / ) S - L ( - / ) = L / S t ( / ) ^ | | t | | \\f\\, 
i.e. | |L| |^IM|. 
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P r o o f of T h e o r e m 7. (i)=*(ii) is obvious because T ( / + C ) = T ( / ) + C or 
T ( /— c)=z(f)+c according as 

x ( f ) = limsup<7,,({xk},/) •«OS 
or 

T ( / ) = lim sup <7„({xJ, - / ) 
IL —. CO 

respectively. 
(ii)=>(iii). First of all we notice that for / ^ 0 and c S O we have 

(3.8) r(f+c) = m a x ( r ( / + c ) , t ( f - c ) ) = r(f)+c 

because \f— c | s / + c implies x(f—c) ST (f+c). 
Now let us define/i by /i(f)=r(f+c)—c where / € C [ 0 , 1 ] and c is a constant 

with f + c ^ 0 . By (3.8) fi is uniquely defined and an easy consideration yields that 
ju is a convex functional with /¿(1) = — n( —1) = 1. Since for large c > 0 

- * ( / ) = - < - / ) ^ - T ( - / ) + T ( / + C ) + T ( - / ) - C = 

= A I ( / ) ^ T ( / ) + T ( C ) - C = T C / ) , 

H also has norm 1. Thus, /i satisfies the condition of Theorem 6. Applying the previous 
inequality also to —/ we obtain 

max(n(f), n(—f)) S t ( / ) 

and here the equality sign holds for all / because of (ii), a, which proves (ii)=>(iii). 
(iii)=>-(i). If fi is represented by {xt} in the sense of (3.5) (see Theorem 6), then we 

have (3.6) for this {x t} because 

lim sup |s„| = max (lim sup s„, lim sup (— s„)) 
fl-*oo It '*'» ll-^oo I 

for every sequence {sn}. 
The proof is complete. 

T h e p r o o f of T h e o r e m 4 is easy on the ground of Theorem 3. By Theorem 
3 there are sequences {ct}, {xt} for which 

x ( f ) = t ( ± f ) = lim s u p ± C l / ( X l ) + - + C " / ( x " ) 

n - » ~ n 

and this immediately gives (3.3). 

P r o o f o f T h e o r e m 8. Again, (i)=>(ii) is obvious. 
(ii)=>(iii). Arguing as in the proof of (ii)=>(iii) in Theorem 7 we obtain that 

t ( f ) = n ( f ) for all non-negative / with a ju satisfying the conditions of Theorem 6. 
This also proves our assertion because for every / £ C [ 0 , 1 ] 

* 0 9 = T(| / 1 ) = H(\f\). 
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(iii)=>(i). It is clear, that if n has the form (3.5) then i(f)=n(\f\) has the form 
(3.7) with the same sequence {xt}. 

P r o o f of T h e o r e m 5. Let us consider the positive cone C + = {/€C[0, l ] | / s O } . 
For every f£C+ there is, by the Hahn—Banach theorem, a linear functional Lf 

with L f f = x ( f ) , \Lfg\^{g) (g£C[0, 1]). Let 

L/g= sup Lfh, g £ C + 
OS/ISG 

and 
L}g =L/g+-L/g~, g € C [ 0 , l l 

where g=g+ —g~ is the decomposition of g into its positive and negative parts. 
Then L* is a positive linear functional on C[0, 1] (the positive part of Lf) with the 
properties 

Z. /g = £ / ( g + - g - ) 3 l ¿ / g + = sup L f h ^ 
0 S A S J + 

=S sup T W ^ T Í g + ^ r f l g l ^ T Í g ) (g€C[0, 1]), 

OShSg* 

z ( f ) £ Lj>f^Lsf= t ( / ) , ¡Vil ^ | t | . 

Thus, for all /<EC+ T ( f ) = sup Lf 
l l t l l S l l i l l , ! , positive 

LSx 

and this yields again a sequence {£.„} of positive linear func t iona l such that | |LJ ^ 
S||T||, T and 

z ( f ) = sup Lnf (/¡=C+). 
n 

By Corollary 3 every Ln has the form 

L J = l i m l l W ( 4 " ) ) + - . . + l l ¿ i / ( 4 , " ) ) 
m—°O m 

with a suitable sequence {^n )}"= 1 . Now Lemma 2 (i) gives a sequence {*„} and also 
a corresponding sequence {c„} (every c„ is some | | L J ) with 

r ( f ) = T( | / | ) = s u p A , ( | / | ) = l imsup C l l / f c ) l +
 m - + C ^ ( x J I 

n m-»oo f f i 

and we are done. 
We have completed our proofs. 
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§ 4. Extension to compact metric spaces 

T h e o r e m 9. All of the results of §§2 and 3 hold if we replace in them C[0, 1] 
by C(K) where K is an arbitrary compact metric space. 

Naturally, in Corollary 2 the term "polynomial" must be replaced by "generaliz-
ed polynomial" corresponding to a system satisfying the assumptions of the Stone— 
Weierstrass approximation theorem. 

If AT is a compact Hausdorff space then the metrizability of K is equivalent to the 
separability of C{K). Now what about nonseparable spaces? Does Theorem 9 hold 
without the metrizability assumption? The answer is no : if K is a non-separable 
compact topological group with Hausdorff topology and p (p(K)=l) is the left 
invariant Haar-measure on K then 

Lf= J f d p 
k 

is not a (C, l)-functional. Indeed, if is any sequence from K then there is a 
function f £ C ( K ) , f ^ 0 , f ^ 0 such that / i s zero on the closure of {**}, but, by the 
properties of p, Lf>0. 

Now at this point one might suspect that the metrizability of K is necessary in 
Theorem 9. However, this again turns out to be false: if K is the one point (so called 
AlexandroflF) compactifications of a non-countable discrete space, i.e. 

then every continuous function is constant on A^\{a countable set} and hence for 
every complex Borel measure p. 

f f d p = 2 f(xx)n({xx})+f(w)(p(K)- 2 /*({*.})) 
" xSA a(A 

(take into account that in the sums we have p({x x })^0 for at most a countable set 
of the a 's), and it is obvious that the functional on the right hand side is a (C, 1)-
functional. 

We were not able to give necessary and sufficient conditions for a compact Haus-
dorff space K that every L€C*(K) be a weighted (C, l)-functional. 

P r o o f o f T h e o r e m 9. Since C(K) is separable, all of our considerations 
remain valid fo r C(K) if we can prove the analogue of Corollary 3. Examining the 
proof of Corollary 3 we can see that it is enough to show that every PL1 functional 
L is the weak*-limit of a sequence of functionals of the form 

xt 
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Since the extremal points of the weakly compact and convex set of all PL1 functionals 
are exactly the point evaluations ( = functionals corresponding to point masses), the 
required statement follows from the Krein—Milman theorem [2, p. 440] : if M is a 
compact closed subset of a locally convex linear topological space then M is the 
closure of the convex hull of its extremal points. We have completed our proof. 
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