Varieties of algebras as a lattice with an additional operation

ta Nora da Regular da Carto

a. '.t.

. . . .

.::-

:

AWAD A. ISKANDER

1. Introduction

Let f be a non-trivial associative and commutative ring with 1. In the present paper we are concerned with varieties (equational classes) of f-algebras that are not necessarily associative and not necessarily with 1. These are classes of algebras closed under the formation of subalgebras, homomorphic images and Cartesian products; equivalently, classes of all algebras satisfying given sets of polynomial identities. Two basic properties of free groups enhanced the theory of group varieties: a subgroup of a free group is free, and a fully invariant subgroup of a fully invariant subgroup of a free group is fully invariant. Given two group varieties $\mathscr{U}, \mathscr{V}, \mathscr{U} \cdot \mathscr{V}$ is the class of all groups that are Schreier-extensions of a group in \mathscr{U} by a group in \mathscr{V} . It turns out that $\mathscr{U} \cdot \mathscr{V}$ is a variety. Under this multiplication, the groupoid of group varieties is a free monoid with zero. This was shown independently by B. H. NEUMANN, HANNA NEUMANN and P. M. NEUMANN [15] and by A. L. ŠMELKIN [21]. A similar result holds for the groupoid of Lie algebra varieties over a field of characteristic 0; this is due to V. A. PARFENOV [18]. A subalgebra of a free associative algebra need not be free, P. M. COHN [4]. A T-ideal of a T-ideal of a free associative algebra may not be a T-ideal, A. I. MAL'CEV [13], A. A. ISKANDER [11]. It turns out that the groupoid of ring varieties is not associative and certainly not relatively free. It is not even power associative. The groupoid of varieties of t-algebras contains infinite submonoids. This groupoid has some sort of decomposition. The minimal varieties are determined. If t has exactly 2 idempotent ideals, then a family of identities that is attainable on all power associative algebras is equivalent to x=x or x=y.

The author wishes to express his gratitude to the referee who made several valuable comments and gave the shorter proof of Proposition 35.

the second second

Received July 9, 1982.

.

1*

The word "algebra" will mean "f-algebra". The word "variety" will mean "variety of f-algebras". An algebra is called power-associative if every subalgebra generated by one element is associative. By a theorem of A. A. ALBERT [1], [2], if f is a field of characteristic not 2, 3 or 5, then an algebra is power associative if it satisfies (xx)x=x(xx) and ((xx)x)x=(xx)(xx). Let \mathscr{A} if, i=0, 1, 2, 3, denote, respectively, the varieties of all algebras, all power-associative algebras, all associative algebras and all associative and commutative algebras. If \mathscr{V} is a variety, we denote by $L\mathscr{V}$ the set of all subvarieties of \mathscr{V} . Under class inclusion $L\mathscr{V}$ is a complete modular lattice. Under an additional operation $L\mathscr{V}$ is a partially ordered groupoid with zero (\mathscr{V}) and 1 (\mathscr{E}); where \mathscr{E} is the trivial variety of one-element algebras.

 $\frac{1}{2}$, For an account of the variety theory, the reader may consult [3], [5], [10], [14], [16], [17].

Definition 1. Let $\mathfrak{A}, \mathfrak{B}, \mathfrak{C} \in \mathfrak{O}\mathfrak{k}$. Then \mathfrak{C} is an extension of \mathfrak{A} by \mathfrak{B} if \mathfrak{C} possesses an ideal isomorphic to \mathfrak{A} whose factor is isomorphic to \mathfrak{B} . If $\mathfrak{A}, \mathscr{V}, \mathscr{K}$ are classes of algebras, then $\mathfrak{A} \cdot_{\mathscr{K}} \mathscr{V}$ is the class of all algebras of \mathscr{K} that are extensions of an algebra of \mathscr{A} by an algebra of \mathscr{V} .

We will write $\mathscr{U}_{i}\mathscr{V}$ for $\mathscr{U}_{dil}\mathscr{V}$, i=0, 1, 2, 3.

Ring extensions were introduced by C. J. EVERETT [8]. It is the analogue of O. SCHREIER'S group extensions [20]. The concept of class multiplication for groups may be found in HANNA NEUMANN [16]. A. I. MAL'CEV [13] generalized class multiplication and proved the following theorem for algebraic systems.

Theorem 1. If \mathcal{U} , \mathcal{V} , \mathcal{K} are varieties, then $\mathcal{U} \cdot_{\mathbf{x}} \mathcal{V}$ is a subvariety of \mathcal{K} . $\langle L\mathcal{K}; \cdot_{\mathbf{x}} \rangle$ is a partially ordered groupoid with zero and 1; \mathcal{K} is the zero-element and the trivial variety \mathcal{B} is 1. If $\mathcal{A}, \mathcal{B}, \mathcal{C} \in L\mathcal{K}$, then $\mathbf{1} \cdot_{\mathbf{x}} (\mathcal{B} \cdot_{\mathbf{x}} \mathcal{C}) \subseteq (\mathcal{A} \cdot_{\mathbf{x}} \mathcal{B}) \cdot_{\mathbf{x}} \mathcal{C}$. If $\mathcal{A} \subseteq \mathcal{B}$, then $\mathcal{C} \cdot_{\mathbf{x}} \mathcal{A} \subseteq \mathcal{C} \cdot_{\mathbf{x}} \mathcal{B}$ and $\mathcal{A} \cdot_{\mathbf{x}} \mathcal{C} \subseteq \mathcal{B} \cdot_{\mathbf{x}} \mathcal{C}$.

Although the lattice of group varieties has a complicated structure, the groupoid of group varieties has a very simple structure: a free monoid with zero. However, from A. A. ISKANDER [11], $\langle L \mathscr{A} 2 \mathbb{Z}; \cdot \rangle$ (Z is the ring of integers) contains a denumerable set of idempotents. Thus, it is far from being free. We will show that $\langle L \mathscr{A} i \mathfrak{k}; \cdot_i \rangle$ are not power-associative and, under some restrictions on \mathfrak{k} , a decomposition is valid in $\langle L \mathscr{A} i \mathfrak{k}; \cdot_i \rangle$.

Theorem 2. Let i=0, 1, 2. Then $\langle L \mathscr{Ait}; \cdot_i \rangle$ is not power-associative; in fact, $(\mathscr{C} \cdot_i \mathscr{C}) \cdot_i \mathscr{C} \neq \mathscr{C} \cdot_i (\mathscr{C} \cdot_i \mathscr{C})$, where $\mathscr{C} = \mathscr{A3t}$. If \mathfrak{t} is a field of characteristic 0, then $\langle L \mathscr{A3t}; \cdot_i \rangle$ is isomorphic to the multiplicative monoid of natural numbers.

However, we will show that $\langle L \mathscr{A}it; \cdot_i \rangle$ contains infinite associative subgroupoids. Definition 2. Let $\mathscr{V} \in \mathcal{LA}$ if, $\mathscr{V} \neq \mathscr{E}$, $\mathscr{V} \neq \mathscr{A}$ if. \mathscr{V} is *i*-indecomposable if $\mathscr{V} = \mathscr{U} \cdot_i \mathscr{W}, \mathscr{U}, \mathscr{W} \in \mathcal{LA}$ if implies $\mathscr{U} = \mathscr{E}$ or $\mathscr{V} = \mathscr{E}$. \mathscr{V} is *i*-pseudo-indecomposable if \mathscr{V} contains a non-trivial algebra satisfying xy = 0 and $\mathscr{V} = \mathscr{U} \cdot_i \mathscr{W}, \mathscr{U}, \mathscr{W} \in \mathcal{LA}$ if implies \mathscr{U} or \mathscr{W} does not contain any non-trivial algebras satisfying xy = 0, i = 0, 1, 2, 3.

Theorem 3. Let \mathfrak{k} be a Dedekind domain, i=0, 1, 2, 3. If $\mathscr{V} \in L\mathscr{A}$ if, $\mathscr{V} \neq \mathscr{A}$ if, then either \mathscr{V} does not contain any non-trivial algebras satisfying xy=0 or \mathscr{V} is a product of a finite number of i-pseudo-indecomposable varieties; if \mathfrak{k} is a field of characteristic 0, then $\mathscr{V} = \mathscr{E}$ or \mathscr{V} is a product of a finite number of i-indecomposable varieties.

An equationally complete variety is a variety whose lattice of subvarieties contains exactly 2 elements; i.e., it is a minimal non-trivial variety. A. TARSKI [24] determined the equationally complete associative ring varieties: they are those determined by px=0, xy=0 for some prime p or by px=0, $x-x^p=0$ for some prime p. The following theorem determines the minimal varieties in $L \mathscr{A}$ if, i=1, 2, 3:

Theorem 4. The equationally complete varieties of $L \mathscr{A}$ if, i=1, 2, 3, are exactly the equationally complete varieties of $L \mathscr{A}$ 3f. They are the varieties determined by one of the following sets of identities:

(1) for some maximal ideal \mathfrak{m} of \mathfrak{k} , ax=0 for all $a \in \mathfrak{m}$, xy=0;

(2) for some maximal ideal in of finite index in \mathfrak{k} , ax=0 for all $a\in\mathfrak{m}$ and $x-x^n=0$ where $n=|\mathfrak{k}/\mathfrak{m}|$.

Thus the minimal varieties of $L \mathscr{A}i\mathfrak{k}$, i=1, 2, 3, are those generated by $\mathfrak{k}/\mathfrak{m}$ for some maximal ideal of \mathfrak{k} of finite index in \mathfrak{k} or by the zero algebra on $\mathfrak{k}/\mathfrak{m}$ where \mathfrak{m} is a maximal ideal of \mathfrak{k} .

Definition 3. Let *I* be a set of polynomial identities. An algebra \mathfrak{R} is *I*-indecomposable if *A* is an ideal of \mathfrak{R} such that \mathfrak{R}/A satisfies *I* implies $A = \mathfrak{R}$. *I* is attainable on $\mathscr{K} \subseteq \mathscr{A} 0\mathfrak{k}$ if for every $\mathfrak{R} \in \mathscr{K}$, the least ideal of \mathfrak{R} whose factor satisfies *I* is *I*-indecomposable.

This concept is due to T. TAMURA [22] where he determined the sets of identities attainable on the class of all semigroups. As shown by T. TAMURA and F. M. YAQUB [23], the sets $\{xy-yx\}$, $\{px=0, x=x^p\}$, p is prime, are not attainable on the class of all associative rings. It was shown by A. A. ISKANDER [11] that a family of identities that is attainable on the variety of all associative rings or on the variety of all commutative and associative rings is equivalent to x=x or x=y. In general

Theorem 5. Let \mathfrak{t} contain no idempotent ideals other than \mathfrak{o} , \mathfrak{t} , and suppose i=1, 2, 3. If I is a set of polynomial identities that is attainable on \mathfrak{Ait} , then I is equivalent on \mathfrak{Ait} to x=x or x=y.

M. V. VOLKOV [25] introduced and successfully used the concept of "S-joined varieties", where S is a submonoid of the multiplicative monoid of t containing no zero-divisors, to gain information about the lattice of subvarieties of a variety \mathscr{V} by studying the corresponding lattice of varieties of t'-algebras, where t' is the ring of fractions of t relative to S. In the present paper, we study a slightly more general case and show that the S-joined subvarieties of a variety \mathscr{V} form a subgroupoid of $\langle L\mathscr{V}; \cdot_{\mathscr{V}} \rangle$.

2. Relatively free algebras and T-ideals

Before we prove Theorems 2, 3, 4 and 5, we will need some preliminaries and prove some other results.

For every cardinal number n>0, X(n) is a set of cardinality n and $F(n, \mathscr{V})$ is the free algebra of $\mathscr{V} \in L\mathscr{A}0\mathfrak{f}$ whose free generating set is X(n). Let $X = \{x_0, x_1, ...\}$ be a denumerable set. $F\mathscr{V}$ will denote the free algebra of \mathscr{V} whose free generating set is X; $Fi = F\mathscr{A}i\mathfrak{f}$, i=0, 1, 2, 3. Let G0, G1, G2 and G3 be, respectively, the free groupoid, the free power-associative groupoid, the free semigroup and the free commutative semigroup whose set of free generators is X. The following lemma is in the literature:

Lemma 6. The t-module structure of Fi is the free unital t-module with basis Gi. The multiplication in Fi is defined by (au)(bv)=(ab)(uv), a(bv)=(ab)v and distributivity, where $a, b \in I$, $u, v \in Gi$, i=0, 2, 3.

For i=0, cf. J. M. OSBORN [17], p. 167. For i=2, cf. P. M. COHN [6], p. 30 and [7], p. 63. i=3 is similar.

If $f \neq 0$, $f \in F0$, d(f) denotes the degree of f, i.e., the highest among the lengths of elements of G0 with non-zero coefficients in f. o(f) denotes the order of f, i.e., the least among the lengths of elements of G0 with non-zero coefficients in f. $f(x_1, ..., x_n)$ will mean that the elements of X occurring at least once in f are among $x_1, ..., x_n$. f is called homogeneous of degree r in x_i if every element of G0 with non-zero coefficient in f has exactly r entries of x_i ; f is called homogeneous if it is homogeneous in every $x_i \in X$. f is called multilinear if f is homogeneous of degree at most 1 in every x_i . Every variety of algebras is determined by a set of identities. If $\mathscr{V} \in L \mathscr{A} 0\mathfrak{k}$, then the set of all $f \in F0$, such that f=0 is an identity in \mathscr{V} , is a T-ideal of F0; that is an ideal of F0 closed under all endomorphisms of F0, cf. [6], [17]. In fact, if $\mathscr{W} \in L \mathscr{V}$, then the identities f=0 of \mathscr{W} relative to \mathscr{V} form a T-ideal of, $F\mathscr{V}$. The correspondence between $L\mathscr{V}$ and the T-ideals of $F\mathscr{V}$ is an antiisomorphism of the lattice $\langle L\mathscr{V}; \wedge, \vee \rangle$ onto the lattice of T-ideals of $F\mathscr{V}$. Script capital letters will denote classes or varieties of algebras; the corresponding Latin capitals will denote the T-ideals of F0 determined by them. Algebras will be denoted by German capitals and ideals of f will be denoted by lower case German letters. Homomorphisms will be denoted by lower case Greek letters and will be applied to the right.

If $\Re \in \mathscr{A}$ Of, $A \subseteq F0$, $B \subseteq \mathfrak{k}$, then $B\mathfrak{R}$ is the set of all finite sums of elements of \mathfrak{R} of the type bx, $b \in B$, $x \in \mathfrak{R}$ and $A(\mathfrak{R})$ is the set of all elements of \mathfrak{R} that are equal to $f(r_1, ..., r_n)$ where $r_1, ..., r_n \in \mathfrak{R}$ and $f \in A$.

Lemma 7. If $\Re \in \mathcal{A}Ot$, a is an ideal of t, V is a T-ideal of FO, then a \Re is an ideal of \Re and $V(\Re)$ is a T-ideal of \Re . $V(\Re)$ is the least ideal of \Re whose factor belongs to \mathscr{V} . $F\mathscr{V} \cong FO/V$.

Cf. [5], [10], [14], [17].

The following lemma is a special case of a result of A. I. MAL'CEV [13]:

Lemma 8. Let $\mathscr{H}, \mathscr{U}, \mathscr{V}, \mathscr{W} \in L\mathscr{A}0^{\sharp}, \mathscr{W} \subseteq \mathscr{H}$. Then $(\mathscr{U} \cap \mathscr{W}) \cdot_{\mathscr{W}} (\mathscr{V} \cap \mathscr{W}) = = (\mathscr{U} \cdot_{\mathscr{H}} \mathscr{V}) \cap \mathscr{W}$. Furthermore $\Re \in \mathscr{U} \cdot_{\mathscr{H}} \mathscr{V}$ iff $\Re \in \mathscr{H}$ and $V(\mathfrak{R}) \in \mathscr{U}$.

Lemma 9. If A is a basis of identities for $\mathcal{U} \in L \mathscr{A} Ot$, $A \subseteq FO$ and $\mathscr{V} \in L \mathscr{A} Ot$, then A(V) is a basis of identities for $\mathscr{U} \circ_0 \mathscr{V}$. The T-ideal of FO determined by $\mathscr{U} \circ_0 \mathscr{V}$ is the ideal of FO generated by U(V).

The T-ideal of F0 determined by $\mathscr{U} \cdot_0 \mathscr{V}$ will be denoted by $U \circ V$.

Proof. By Lemma 8, $\Re \in \mathscr{U} \circ_0 \mathscr{V}$ iff $V(R) \in \mathscr{U}$, i.e., iff $A(V(\Re)) = 0$. Thus A(V) is a basis of identities for $\mathscr{U} \circ_0 \mathscr{V}$. Hence U(V) is a basis for $\mathscr{U} \circ_0 \mathscr{V}$. However, the ideal of F0 generated by U(V) is a T-ideal of F0 since it is the set of all finite sums of $w, fw, wg, (fw)g, f(wg), (f(gw))h, \ldots$ where $w \in U(V), f, g, h, \ldots \in F0$.

Proposition 10. If $\mathcal{U}, \mathcal{V} \in L\mathcal{A}$ are defined by multilinear identities, then $\mathcal{U} \cdot_0 \mathcal{V}$ is definable by multilinear identities. If \mathcal{U} is defined by a finite set of multilinear identities, \mathcal{V} is finitely based, $\mathcal{U}, \mathcal{V} \in L\mathcal{A}$?, then $\mathcal{U} \cdot_2 \mathcal{V}$ is finitely based.

Proof. Suppose $0 \neq g \in F0$ and the number of elements of X occurring in g is r. Let $\tilde{g} = g(x_1, ..., x_r)$. Let D(g) be the set of all elements of F0 obtained from \tilde{g} by a finite number of applications of the following: If $h(x_1, ..., x_m) \in D(g)$ and every x_i , $1 \leq i \leq m$, occurs in h, then $x_{m+1}h, hx_{m+1} \in D(g)$. Suppose $h_1, ..., h_r$ are non-zero elements of F0. $g * (h_1, ..., h_r)$ is the set of all $h(x_1, ..., x_n) = g(h'_1, ..., h'_r)$ such that h'_i is obtained from an element of $D(h_i)$ by renaming the elements of X so that h'_i and h'_j have no elements of X in common if $i \neq j$, and n is the number of elements of X occurring in $h'_1, ..., h'_r$. If $A \subseteq U$ is a basis for $\mathcal{U}, B \subseteq V$ is a basis for \mathscr{V} and every element in A is multilinear, then $D = \bigcup \{g*(h_1, ..., h_r): g \in A, h_1, ..., h_r \in B\}$ is a basis for $\mathscr{U} \cdot_0 \mathscr{V}$. This is true since every element of \mathscr{V} is a finite sum of $h(f_1, ..., f_l), h \in D(g), g \in B, f_1, ..., f_l \in F0$. If g is multilinear, then $g(v_1, ..., v_r)$, where $v_1, ..., v_r \in V$, is a finite sum of elements of the form $g(h_1(f_1, ..., f_l), ..., h_r(f_s, ..., f_l))$, where $h_1, ..., h_r \in \bigcup \{D(g): g \in B\}$, $f_1, ..., f_r \in F0$, i.e., every element in A(V) is a finite sum of $h(f_1, ..., f_l)$, where $h \in D, f_1, ..., f_r \in F0$. Since A(V) is a basis for $\mathscr{U} \cdot_0 \mathscr{V}$ (by Lemma 9), $D \subseteq A(V)$, D is a basis for $\mathscr{U} \cdot_0 \mathscr{V}$. If every element in B is multilinear, then D(g) contains only multilinear elements for every $g \in B$ and D is composed of multilinear elements. If $\mathscr{U}, \mathscr{V} \in L \mathscr{A} 2^{\sharp}$, then in F2, $D'(g) = \{\bar{g}, x_{r+1}\bar{g}, \bar{g}x_{r+1}, x_{r+1}\bar{g}x_{r+2}\}$. Thus D' can be chosen finite in case A is finite and B is finite. Thus $\mathscr{U} \cdot_2 \mathscr{V}$ is finitely based; $D' = \bigcup \{g * (h_1, ..., h_r):$ $h_1, ..., h_r \in B, g \in A\}$, where *' is similar to *, using $D'(h_i)$ instead of $D(h_i)$.

For example, $\mathscr{C} \cdot_2 \mathscr{C}$ has the following basis:

 $[[x_1, x_2], [x_3, x_4]],$

 $[[x_1, x_2], [x_3, x_4]x_5], [[x_1, x_2], x_5[x_3, x_4]], [[x_1, x_2], x_5([x_3, x_4]x_6)],$

 $[[x_1, x_2]x_3, [x_4, x_5]x_6], [[x_1, x_2]x_3, x_6[x_4, x_5]], [[x_1, x_2]x_3, x_6([x_4, x_5]x_7)],$

 $[x_3[x_1, x_2], x_6[x_4, x_5]], [x_3[x_1, x_2], x_6([x_4, x_5]x_7)], [x_3([x_1, x_2]x_4), x_5([x_6, x_7]x_8)],$

 $x_1(x_2x_3) - (x_1x_2)x_3,$

where $\mathscr{C} = \mathscr{A}3\mathfrak{k}, [x_1, x_2] = x_1x_2 - x_2x_1$.

1,641.4

3. Proof of Theorem 2, first part

By Lemma 8, $\langle L\mathscr{A}2\mathfrak{k}; \cdot_2 \rangle$ is a homomorphic image of $\langle L\mathscr{A}i\mathfrak{k}; \cdot_i \rangle$, i=0, 1. Thus, it is sufficient to show that $(\mathscr{C} \cdot_2 \mathscr{C}) \cdot_2 \mathscr{C} \neq \mathscr{C} \cdot_2 (\mathscr{C} \cdot_2 \mathscr{C})$. This will be done by showing that $((C \circ C) \circ C)(F) \neq (C \circ (C \circ C))(F)$, where F is the free associative algebra on 2 generators a, b. We will show that

 $p = [a[[a, b], [a, b]a], [[a, b], [a, b]a]] \in (C \circ (C \circ C))(F)$

but $p \notin ((C \circ C) \circ C)(F)$. Let T be the free semigroup on $\{a, b\}$. By Lemma 6, the f-module structure of F is a free unital module over f with basis T. Thus, every element of F is a unique f-linear combination of elements of T. Let $N = ((C \circ C) \circ C)(F)$, L = C(F) = [F, F] and M = C(L). L is the ideal of F generated by [f, g] = fg - gf, $f, g \in F$. M is the ideal of L generated by all $[u, v], u, v \in L$. By Lemma 9, N is the ideal of F generated by $(C \circ C)(C(F))$; i.e., N is the ideal of F generated by C(C(C(F))). Thus N is the ideal of F generated by [M, M], i.e., N is the ideal of F generated by $[u, v], u, v \in M$. Let c = ab - ba = [a, b]. Elements of L are f-linear combinations of $[u, v], s[u, v], [u, v]t, s[u, v]t; s, t, u, v \in T$. By induction on the length of uv, [u, v] is a f-linear combination of c, sc, ct, sct; s, $t \in T$; i.e., every element in L is a f-linear combination of sct, where $s, t \in T \cup \{1\}, 1c = c = c1$. Elements of M are f-linear combinations of w[sct, ucv]z, where $s, t, u, v \in T \cup \{1\}, w, z \in L \cup \{1\}$. The elements of M of least degree are of degree 5 and they are t-linear combinations of

(i) [c, ac], [c, ca], [c, bc], [c, cb].

Elements of M of order 6 and degree 6 are f-linear combinations of

(ii)

(iii)

[c, a²c], [c, aca], [c, ca²], [ac, ca],
[c, b²c], [c, bcb], [c, cb²], [bc, cb],
[c, abc], [c, bac], [c, acb], [c, bca],
[c, cab], [c, cba], [ac, bc], [ac, cb],
[ca, bc], [ca, cb].

The ideal N of F generated by [M, M] is generated by all [u, v], $u, v \in M$. The elements of least degree in N are of degree 10. The elements of N of degree 10 are f-linear combinations of

[[c, ac], [c, ca]], [[c, ac], [c, cb]], [[c, ac], [c, bc]],[[c, ca], [c, bc]], [[c, ca], [c, cb]], [[c, bc], [c, cb]].

The elements of N of order 11 and degree 11 are t-linear combinations of ad, da, bd, db and [g, h] where d belongs to the set (iii), i.e., d is of degree 10, g belongs to the set (i), i.e., g is of degree 5, and h belongs to the set (ii), i.e., h is of degree 6.

 $F(2, \mathscr{C}_{2}(\mathscr{C}_{2}(\mathscr{C})) \cong F/K$, where $K = (C \circ (C \circ C))(F)$. Thus K is the ideal of F generated by $C((C \circ C)(F))$. That is K is the ideal of F generated by $[(C \circ C)(F), (C \circ C)(F)] = [\overline{M}, \overline{M}]$, where \overline{M} is the ideal of F generated by M. Now $a[c, ca] \in \overline{M}, [c, ca] \in M \subseteq \overline{M}$. Hence $p = [a[c, ca], [c, ca]] \in K$. We will be through if we show that $p \notin N$. Since p is homogeneous of degree 7 in a and 4 in b, and by Lemma 6, F is a free f-module whose basis is T, $p \in N$ iff p is a f-linear combination of

$u1 = [[c, ac], [c, a^2c]],$	$u2 = [[c, ac], [c, ca^2]],$
u3 = [[c, ac], [c, aca]],	u4 = [[c, ac], [ac, ca]],
$u5 = \big[[c, ca], [c, a^2 c] \big],$	$u6 = [[c, ca], [c, ca^2]],$
u7 = [[c, ca], [c, aca]],	u8 = [[c, ca], [ac, ca]],
u9 = a[[c, ac], [c, ca]],	u10 = [[c, ac], [c, ca]]a.

The homogeneous elements of F of degree 7 in a and 4 in b with 0 form a free t-submodule P of rank $\binom{11}{4} = 330$. The basis of P is the set of all words of T of length 11 in which exactly 7 entries are a. Let R be the submodule of P spanned by $\{ui: 1 \le i \le 10\}$, and let S be the submodule of P spanned by $R \cup \{p\}$. $p \in N$ iff $p \in R$, i.e., iff S = R. Let B be a subset of the basis of P, then if $p \in N$, the images of R and S under the module homomorphism $\sum \{a_i s_i : s_i \in \text{basis of } P\} \rightarrow \sum \{a_i s_i : s_i \in B\}$ coincide. Table I below gives the coefficients of p, u1, ..., u10 as f-linear combinations of elements of T in

 $x1 = ba^{2}ba^{3}ba^{2}b, \qquad x2 = ba^{4}ba^{2}bab,$ $x3 = ba^{3}baba^{3}b, \qquad x4 = baba^{3}ba^{3}b,$ $x5 = baba^{5}bab, \qquad x6 = a^{2}b^{2}a^{4}bab,$ $x7 = ababa^{3}ba^{2}b, \qquad x8 = a^{3}b^{2}aba^{3}b,$ $x9 = ba^{2}ba^{3}b^{2}a^{2}, \qquad x10 = a^{2}bababa^{3}b.$

Table I											
	x1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	x 5	<i>x</i> 6	<i>x</i> 7	<i>x</i> 8	<i>x</i> 9	<i>x</i> 1()
p	-2	0	-1	-1	0	0	1	0	2	2	
ul	1	-1	0	0	0	-1	-2	1	0	-2	
u 2	2	1	0	1	1	0	$^{-2}$	0	0	1	
u3	-3	0	-2	0	0	0	4	0	0	0	
<i>u</i> 4	0	1	0	0	0.	-1	-2	0	-1	2	
u 5	-2	0	0	1	-1	0	2	-1	0	1	
и6	-1	0	0	-2	0	0	1	0	1	0	
u7	3	0	2	1	0	0	-3	0	· 1	-1	
u8	0	0	0	-1	0	0	1	0	2	-1	
u9	0	0	0	0	0	-1	$^{-2}$	1	0	0	
<i>u</i> 10	0	0	0	0	0	0	0	0	2	0	
Table II											
			<u> </u> .	x1 x2	<i>x</i> 3	<i>x</i> 4 <i>x</i> 5	<i>x</i> 6	x7	x8	<i>x</i> 9	<i>x</i> 10
<i> u</i> 6				1 0	0	2 0	0	-1	0	1	0
u4				0 1	0	0 0	-1	-2	0	-1	2
-u3+	-3 <i>u</i> 6			0 0		-6 0	0	-1	0	-3	0
<i>— u</i> 8			7	0 0	0	1 0	0	-1	0	-2	1

0 1

0 0

0

0

0

0 0

0 0

 $\mathbf{0}$ $\mathbf{0}$

0

0 0

1

1

0

0

0

0

0.

0

-1

2

1

0

0

0

0

0

0

-1

-1

2

0

0

0

0

-7

-3

9

2

1

0

0

0

2

0

0

-2

0

2

4

0

0 0 0

0 0

0

0 0 0

0

0

0 0 0

0

0 0

0 0

· 0

0

0

0

0

u2 - u4 + 2u6 - 3u8

-u8 - 2u9

-2u1-u3-2u4-2u6-u7+3u8+4u9

4p+u3-2u6+3u7++ 3u8-u10

8p+2u3-4u6+6u7++6u8-3u10

 $u^2 - u^3 - u^4 + u^5 - u^7 + u^8 + u^9 - u^{10}$

-u9

· u10

10

The image of R into the submodule tx3 is (2t)x3; the image of S is tx3. If 2 is not invertible in t, then $2t \neq t$ and $R \neq S$. If 2 is invertible in t, from Table II we get bases for the images of R and S in the free t-module $\sum {txi: 1 \leq i \leq 10}$.

The image of S into $\sum \{ txi: 1 \le i \le 10 \}$ is the whole submodule, i.e., it is a free t-module of rank 10. The image of R is a submodule generated by 9 elements. If R=S, we get a free t-module of two distinct ranks: 9 and 10. This is impossible since t is a nontrivial commutative and associative ring with 1 and by reduction to t/m for any maximal ideal m of t, we get a vector space with two dimensions: 9 and 10, cf. P. M. COHN [6], p. 6. This concludes the proof of the first part of Theorem 2.

4. Multinilpotent varieties

In this section we prove the second part of Theorem 2 and some results of interest in their own right.

Let $\mathscr{V} \in L\mathscr{A}$ of. If $\mathscr{V} \supseteq \mathscr{A}$ if, then $d(i, \mathscr{V}) = \infty$, otherwise $d(i, \mathscr{V})$ is the least degree of elements of V(Fi), $c(i, n, \mathscr{V})$ is the ideal of f generated by the coefficients of elements of V(Fi) of degree n, $c(i, \mathscr{V}) = c(i, d(i, \mathscr{V}), \mathscr{V})$, i = 0, 1, 2, 3. Since V contains with every element of F0 all its linearizations, i.e.,

Since V contains with every clement of V o an its incanzations, i.e.,

 $f(x_1, ..., x_j + x_{n+1}, ..., x_n) - f(x_1, ..., x_j, ..., x_n) - f(x_1, ..., x_{n+1}, ..., x_n),$

 $1 \le j \le n$, cf. J. GOLDMAN and S. KASS [9] and J. M. OSBORN [17], $d(i, \mathscr{V})$ is achieved by multilinear identities.

Lemma 11. If $\mathscr{V}, \mathscr{W} \in L\mathscr{A}$ if, then $d(i, \mathscr{V} \cdot \mathscr{W}) = d(i, \mathscr{V}) d(i, \mathscr{W})$. Thus, if $\mathscr{V} \neq \mathscr{A}$ if, $\mathscr{W} \neq \mathscr{A}$ if, then $\mathscr{V} \cdot \mathscr{W} \neq \mathscr{A}$ if, i.e., $\langle L\mathscr{A}$ if; $\cdot_i \rangle$ has no zero-divisors. Furthermore, $c(i, n, \mathscr{V}) = \mathfrak{o}$ iff $d(i, \mathscr{V}) > n$. If $\mathscr{V} \subseteq \mathscr{W}$, then $d(i, \mathscr{V}) \leq d(i, \mathscr{W})$ and $c(i, n, \mathscr{V}) \supseteq c(i, n, \mathscr{W})$, $n \ge 1$, i = 0, 1, 2, 3.

Proof. By Lemma 9, $(V \circ W)(Fi)$ is the ideal of Fi generated by V(W(Fi)), in the sense of the proof of Lemma 9. Thus the elements of least degree in $(V \circ W)(Fi)$ belong to V(W(Fi)). Let $f \in V(W(Fi))$. Then $f = g(w_1, ..., w_n)$, where $g(x_1, ..., x_n) \in V$, $w_1, ..., w_n \in W$. $o(f) \ge o(g) \min \{o(w_1), ..., o(w_n)\} \ge d(i, \mathscr{V}) \cdot d(i, \mathscr{W})$. If g is multilinear of degree $d(i, \mathscr{V})$, each of $w_1, ..., w_n$ are multilinear of degree $d(i, \mathscr{W})$, $w_1, ..., w_n$ involves exactly $nd(i, \mathscr{W})$ elements of X, then $n = d(i, \mathscr{V})$, f is multilinear and $o(f) = d(f) = d(i, \mathscr{V}) d(i, \mathscr{W})$. If $\mathscr{V} \neq \mathscr{A}$ if, then $d(i, \mathscr{V})$, $d(i, \mathscr{W}) < \infty$, and $d(i, \mathscr{V} \cdot \mathscr{W}) = d(i, \mathscr{V}) d(i, \mathscr{W}) < \infty$. $\mathscr{V} \subseteq \mathscr{W}$ iff $V \supseteq W$, from which the rest of the lemma follows.

Definition 4. A variety $\forall \in L \mathscr{A}i^{\dagger}$ is *i*-multinilpotent if $V(Fi) = \sum \{a_n Fi^n : n \ge 1\}$ where $a_1, a_2, ...$ are ideals of \mathfrak{t} and Fi^n is the set of all finite sums of all possible products of *n* elements of *Fi*, *i*=0, 1, 2, 3.

A. A. Iskander

It is clear that $Fi^{n+1} \subseteq Fi^n$, $n \ge 1$. Thus we can assume a_1, a_2, \ldots an ascending chain of ideals of \mathfrak{k} .

Lemma 12. Let Mi be the set of all i-multinilpotent varieties. Then Mi is a complete sublattice of $\langle L \mathscr{A}i\mathfrak{k}; \wedge, \vee \rangle$, i=0, 1, 2, 3.

Proof. Let $\forall a, a \in I$, be *i*-multinilpotent varieties. Then there are ascending chains of ideals of $\mathfrak{k}: (\mathfrak{a}a_n), n \ge 1, a \in I$, such that $Va(Fi) = \sum \{\mathfrak{a}a_n Fi^n : n \ge 1\}, a \in I$.

$$\left(\sum \{Va: a \in I\}\right)(Fi) = \sum \{Va(Fi): a \in I\} =$$
$$= \sum \left\{\sum \{aa_n Fi^n: n \ge 1\}: a \in I\} = \sum \left\{\sum \{\{aa_n: a \in I\}Fi^n: n \ge 1\}\right\}.$$

Thus, the intersection of any family of *i*-multinilpotent varieties is *i*-multinilpotent.

$$(\cap \{Va: a \in I\})(Fi) = \cap \{Va(Fi): a \in I\} =$$
$$= \cap \{\sum \{aa_n Fi^n: n \ge 1\}: a \in I\} \supseteq \sum \{\cap \{aa_n: a \in I\} Fi^n: n \ge 1\}.$$

If $f \in Va(Fi)$ for all $a \in I$, $f = f_1 + ... + f_r$, where each f_j is of order and of degree n_j , $n_1 < n_2 < ... < n_r$, then $f_j \in Fi^{n_j}$ and $f_j \in aa_{n_j} Fi^{n_j}$ for all $a \in I$, $1 \le j \le r$. Hence $f_j \in \cap$ $\cap \{aa_{n_j}: a \in I\} Fi^{n_j}, 1 \le j \le r$, i.e., $f \in \sum \{\cap \{aa_n: a \in I\} Fi^n: n \ge 1\}$. Thus, the join of any family of *i*-multinilpotent varieties is *i*-multinilpotent.

Lemma 13. Let \mathscr{V} be *i*-multinilpotent, $\mathscr{V}, \mathscr{W} \in L\mathscr{A}$ it. Then $(V \circ W)(Fi) = V(W(Fi)), i=2, 3.$

Proof. Since $(V \circ W)(Fi)$ is the ideal of Fi generated by V(W(Fi)) (from Lemma 9), we need to show that V(W(Fi)) is an ideal of Fi. W(Fi) is an ideal of Fi. Hence $W(Fi)^n$ is an ideal of Fi and consequently $a_n W(Fi)^n$ is an ideal of Fi, where a_n is an ideal of f, $n \ge 1$. If $V(Fi) = \sum \{a_n Fi^n : n \ge 1\}$, then V(W(Fi)) = $= \sum \{a_n W(Fi)^n : n \ge 1\}$ is an ideal of Fi.

Corollary 14. If $\mathcal{U}, \mathcal{V}, \mathcal{W} \in L\mathcal{A}$ if, \mathcal{V} is *i*-multinilpotent, then $(\mathcal{U}, \mathcal{V}), \mathcal{W} = \mathcal{U} : (\mathcal{V}, \mathcal{W}), i=2, 3.$

Proof. $(U \circ (V \circ W))(Fi)$ is the ideal of Fi generated by $U((V \circ W)(Fi))$ (from Lemma 9). From Lemma 13, $(V \circ W)(Fi) = V(W(Fi))$. Thus $U((V \circ W)(Fi)) =$ = U(V(W(Fi))). $((U \circ V) \circ W)(Fi)$ is the ideal of Fi generated by $(U \circ V)(W(Fi))$. This is also the ideal of Fi generated by U(V(W(Fi))). Hence $((U \circ V) \circ W)(Fi) =$ $= (U \circ (V \circ W))(Fi)$.

Since $\mathscr{A}i\mathfrak{t}$ and \mathscr{E} are *i*-multinilpotent, Mi generates a submonoid with zero of $\langle L\mathscr{A}i\mathfrak{t}; \cdot_i \rangle$, i=2, 3.

By Lemma 12, if $\mathscr{V} \in L\mathscr{A}i\mathfrak{k}$, the join of all *i*-multinilpotent varieties contained in \mathscr{V} is *i*-multinilpotent. We will denote the largest *i*-multinilpotent variety contained in \mathscr{V} by \mathscr{V}' .

12

Lemma 15. Suppose $\mathscr{V}, \mathscr{W} \in L\mathscr{A}$ if, $V(Fi) = \sum \{a_n Fi^n : n \ge 1\}, W(Fi) = \sum \{b_n Fi^n : n \ge 1\}, (a_n), (b_n)$ are ascending chains of ideals of f. If $\mathscr{U} = (\mathscr{V} \cdot \mathscr{W}),$ then $U(Fi) = \sum \{c_n Fi^n : n \ge 1\}, where c_n = \sum \{a_r b_{r1} ... b_{rr}: t1 + ... + tr = n\},$ i = 0, 1, 2, 3.

Proof. $(V \circ W)(Fi)$ is the ideal of Fi generated by V(W(Fi)).

$$V(W(Fi)) = V(\sum \{\mathfrak{a}_n W(Fi)^n \colon n \ge 1\}) =$$

$$=\mathfrak{a}_1 \sum \{\mathfrak{b}_n Fi^n \colon n \ge 1\} + \mathfrak{a}_2 \sum \{\mathfrak{b}_n Fi^n \colon n \ge 1\}^2 + \dots$$

 $= \sum \left\{ \sum \left\{ a_r b_{i1} \dots b_{ir} Fi^{i1} \dots Fi^{ir} \colon t1 + \dots + tr = n \right\} \colon n \ge 1 \right\} \subseteq \sum \left\{ c_n Fi^n \colon n \ge 1 \right\}.$

If $\sum \{ \mathfrak{d}_n Fi^n : n \ge 1 \} \supseteq (V \circ W)(Fi)$, then $\sum \{ \mathfrak{a}_r \mathfrak{b}_{t1} \dots \mathfrak{b}_{tr} : t1 + \dots + tr = n \} \subseteq \mathfrak{d}_n, n \ge 1$.

Proposition 16. Let i=2, 3. Then Mi is a submonoid with zero of $\langle L \mathscr{A}i\mathfrak{k}; \cdot \rangle$, and $\langle Mi; \wedge, \vee, \cdot \rangle$ is isomorphic to the partially ordered monoid of ascending chains of ideals of \mathfrak{k} , where $(\mathfrak{a}_n) \leq (\mathfrak{b}_n)$ iff $\mathfrak{a}_n \supseteq \mathfrak{b}_n$ for all $n \geq 1$ and $(\mathfrak{a}_n) \cdot (\mathfrak{b}_n) = (\mathfrak{c}_n)$, where $\mathfrak{c}_n = \sum \{\mathfrak{a}_r \mathfrak{b}_{r1} \dots \mathfrak{b}_{tr}: t1 + \dots + tr = n\}$.

Proof. For i=2, 3, Fi is associative. Thus $Fi^m Fi^n = Fi^{m+n}$. From the proof of Lemma 15, the product of *i*-multinilpotent varieties is *i*-multinilpotent. Proposition 16 then follows from Lemmas 12 and 15.

Proof of Theorem 2, second part. If \mathfrak{t} is a field of characteristic 0, every identity is equivalent to multilinear identities, cf. J. M. OSBORN [17], p. 181. Hence, in $\mathscr{A}3\mathfrak{t}$ every variety is 3-multinilpotent. In fact every variety in $\mathscr{A}3\mathfrak{t}$ is either $\mathscr{A}3\mathfrak{t}$ or defined by $x_1...x_n=0$ for some $n\geq 1$. By Proposition 16, $\langle L\mathscr{A}3\mathfrak{t}; \cdot \rangle$ is isomorphic to the monoid of ascending chains of ideals of \mathfrak{t} ; this is isomorphic to the multiplicative monoid of natural numbers.

5. Subgroupoids of varieties and minimal varieties

Lemma 17. If $\mathscr{V} \in L\mathscr{A}i\mathfrak{k}$, $\mathscr{V}' \neq \mathscr{E}$, then $V \subseteq \mathfrak{m}F0 + F0^2$ for some maximal ideal \mathfrak{m} of \mathfrak{k} , i=0, 1, 2, 3.

Proof. Since $V(Fi) \subseteq V'(Fi) = \mathfrak{a}_1 Fi + \mathfrak{a}_2 Fi^2 + ...$ and $\mathscr{V}' \neq \mathscr{E}$, then $\mathfrak{a}_1 \neq \mathfrak{k}$. Thus $V(Fi) \subseteq \mathfrak{a}_1 Fi + Fi^2 \subseteq \mathfrak{m} Fi + Fi^2$ for any maximal ideal \mathfrak{m} of \mathfrak{k} containing \mathfrak{a}_1 . Since $F0/\mathfrak{m}F0 + F0^2 \cong Fi/\mathfrak{m}Fi + Fi^2$, $V \subseteq \mathfrak{m}F0 + F0^2$.

Definition 5. A set P of non-trivial algebras is verbally closed if for every $\mathscr{V} \in L\mathscr{A}$ if, $\mathfrak{R} \in P$, $V(\mathfrak{R}) \in P$ or $\mathfrak{R}/V(\mathfrak{R}) \in P$. N(i, P) is the set of all subvarieties of \mathscr{A} if containing no members of P.

Any family of algebras with precisely 2 *T*-ideals (i.e., *T*-simple) is verbally closed. Any family of simple algebras is verbally closed.

Lemma 18. Let $M \subseteq LAit$. Then M is a subgroupoid of $\langle LAit; \cdot_i \rangle$ and a lattice ideal of $\langle LAit; \wedge, \vee \rangle$ iff M = N(i, P) for some verbally closed set of non-trivial algebras P, i=0, 1, 2, 3.

Proof. Let P be verbally closed, $\mathscr{V}, \mathscr{W} \in N(i, P), \mathscr{U} \in L\mathscr{A}$ if, $\mathscr{U} \subseteq \mathscr{V}$. Then $\mathscr{U} \in N(i, P)$. Since $\mathscr{V} \lor \mathscr{W} \subseteq \mathscr{V} \cdot \mathscr{W}$, N(i, P) is a lattice ideal of $\langle L\mathscr{A}$ if; $\wedge, \vee \rangle$ if $\mathscr{V} \cdot \mathscr{W} \in N(i, P)$. $\Re \in \mathscr{V} \cdot \mathscr{W}$ iff $W(\mathfrak{R}) \in \mathscr{V}, \Re/W(\mathfrak{R}) \in \mathscr{W}$ and $\Re \in \mathscr{A}$ if. Thus $\mathscr{V} \cdot \mathscr{W}$ does not contain any member \Re of P, otherwise $W(\mathfrak{R}) \in P$ or $\Re/W(\mathfrak{R}) \in P$ contradicting $\mathscr{V} \in N(i, P), \mathfrak{W} \in N(i, P)$. Conversely, let M be a subgroupoid of $\langle L\mathscr{A}$ if; $\cdot_i \rangle$ and a lattice ideal of $\langle L\mathscr{A}$ if; $\wedge, \vee \rangle$. Let K be the set of all non-trivial algebras obtained from $\{F\mathscr{V}: \mathscr{V} \in L\mathscr{A}$ if} by a finite number of applications of: If $\Re \in K, \mathscr{V} \in L\mathscr{A}$ if, $V(\mathfrak{R}) \neq 0$, then $V(\mathfrak{R}) \in K$ and if $\mathfrak{R} \neq V(\mathfrak{R}), \mathfrak{R}/V(\mathfrak{R}) \in K$. Let P be the set of all algebras \Re of K such that var \Re , i.e., the variety generated by \Re , does not belong to M. We claim that M = N(i, P). Let $\mathscr{V} \in M$. If $\Re \in \mathscr{V}$, then var $\mathfrak{R} \subseteq \mathscr{V}$. Hence, var $\Re \in M$ as M is a lattice ideal of $\langle L\mathscr{A}$ if; $\wedge, \vee \rangle$. Thus, $\Re \notin P$, i.e., $M \subseteq N(i, P)$. Let $\mathscr{V} \in N(i, P)$. Then $F\mathscr{V} \notin P$. Since $\mathscr{V} = \text{var } F\mathscr{V}, \mathscr{V} \in M$. It remains to check that P is verbally closed. Let $\Re \in \mathscr{A}$ if, $\mathscr{V} \in L\mathscr{A}$ if. If neither $V(\mathfrak{R})$ nor $\Re/V(\mathfrak{R})$ belongs to P, then var $V(\mathfrak{R}), \text{var } \mathfrak{R}/V(\mathfrak{R}) \in M$. But

 $\mathfrak{R} \in \operatorname{var} V(\mathfrak{R}) \cdot \operatorname{var} \mathfrak{R}/V(\mathfrak{R}).$

Hence var $\mathfrak{R} \subseteq$ var $V(\mathfrak{R}) \cdot var \mathfrak{R}/V(\mathfrak{R})$. Since *M* is a subgroupoid and a lattice ideal, var $\mathfrak{R} \in M$, i.e., $\mathfrak{R} \notin P$.

Lemma 19. The following conditions on a variety $\mathscr{V} \in L\mathscr{A}$ if, i=0, 1, 2, 3, are equivalent:

(1) $x_1 + f(x_1) \in V$ for some $f \in F_0^2$.

(2) $\mathscr{V}' = \mathscr{E}$, i.e., \mathscr{V} does not contain any nontrivial i-multinilpotent varieties.

(3) $\mathscr{V} \in N(i, \{O(\mathfrak{m}): \mathfrak{m} \text{ is a maximal ideal of } \mathfrak{k}\})$, where $O(\mathfrak{m})$ is the algebra with zero multiplication on $\mathfrak{k}/\mathfrak{m}$ as a \mathfrak{k} -module.

Proof. Let $x_1+f(x_1) \in V$, $f \in F0^2$. If $\mathscr{V}' \neq \mathscr{C}$, then $V \subseteq \mathfrak{m}F0+F0^2$ (by Lemma 17), for some maximal ideal \mathfrak{m} of \mathfrak{k} . Thus $x_1+f(x_1)\in\mathfrak{m}F0+F0^2$, i.e., $x_1\in\mathfrak{m}F0$ —a contradiction. If $\mathscr{V}'=\mathscr{C}$, then $O(\mathfrak{m})\notin\mathscr{V}$. In fact, if $\mathscr{W}=\operatorname{var} O(\mathfrak{m})=$ = the variety generated by $O(\mathfrak{m})$, then $W=\mathfrak{m}F0+F0^2$, $\mathscr{W}\subseteq\mathscr{V}$. Hence $V\subseteq\mathfrak{m}F0+$ $+F0^2$ and $V'\subseteq\mathfrak{m}F0+F0^2$, i.e., $\mathscr{V}'\neq\mathscr{C}$. Finally, if $O(\mathfrak{m})\notin\mathscr{V}$ for any maximal ideal \mathfrak{m} of \mathfrak{k} , then $V+F0^2=F0$. Otherwise, $V+F0^2$ is *i*-multinilpotent, $V+F0^2\neq$ $\neq F0$. Hence $V\subseteq V+F0^2\subseteq\mathfrak{m}F0+F0^2$ for some maximal ideal \mathfrak{m} of \mathfrak{k} . Thus $F0/\mathfrak{m}F0+F0^2\in\mathscr{V}$. This implies $O(\mathfrak{m})\in\mathscr{V}$ since the subalgebra of $F0/\mathfrak{m}F0+F0^2$ generated by $x_1+\mathfrak{m}F0+F0^2$ is isomorphic to $O(\mathfrak{m})$. Now $x_1\in F0=V+F0^2$. Hence, there are $v \in V$, $f \in F0^2$ such that $x_1 = v - f$. By substituting 0 for all $x_i \neq x_1$, we can assume $f = f(x_1)$. Thus $x_1 + f(x_1) \in V$, $f \in F0^2$.

Corollary 20. The set of varieties $\mathscr{V} \in L\mathscr{A}$ if, $\mathscr{V}' = \mathscr{E}$ is a subgroupoid of $\langle L\mathscr{A}$ if; $\cdot_i \rangle$ and a lattice ideal of $\langle L\mathscr{A}$ if; $\wedge, \vee \rangle$, i=0, 1, 2, 3.

This follows from Lemmas 18 and 19.

Corollary 21. Let $\mathcal{U}, \mathcal{V} \in L \mathscr{A}$ if. Then $(\mathcal{U}_{i}, \mathcal{V})' = \mathscr{E}$ iff $\mathcal{U}' = \mathcal{V}' = \mathscr{E}, i = 0, 1, 2, 3$.

This follows from Corollary 20 and Lemma 19 since $\mathscr{U}' \lor V' \subseteq (\mathscr{U} \lor \mathscr{V})' \subseteq \subseteq (\mathscr{U} \lor_{i} \mathscr{V})'$.

Let G be a commutative non-trivial ring with 1 and let α be a homomorphism of \mathfrak{k} into G preserving 1. Then G has a natural \mathfrak{k} -algebra structure: $ag = (a\alpha)g$, $a \in \mathfrak{k}$, $g \in G$. This \mathfrak{k} -algebra structure on G will be denoted by $\mathfrak{G}\alpha$.

Lemma 22. Let G, H be commutative non-trivial rings with 1 and α , β homomorphisms of t into G, H, respectively, preserving 1. Then $\Im \alpha$ is isomorphic to a subalgebra of $\Im \beta$ iff there is an injective ring homomorphism γ of G into H such that $\alpha \gamma = \beta$, γ preserves 1.

Proof. If γ is an injective ring homomorphism of G into H and $\alpha \gamma = \beta$, then γ is an injective homomorphism of f-algebras. Conversely, if there is an injective homomorphism γ of $\mathfrak{G}\alpha$ into $\mathfrak{H}\beta$ and γ preserves 1, then γ is a ring homomorphism and $a\alpha\gamma = (a\alpha)\gamma = ((a1)\alpha)\gamma = (a\alpha \cdot 1\alpha)\gamma = a((1\alpha)\gamma) = a(1\beta) = a\beta$ for every $a \in \mathfrak{f}$.

Lemma 23. Let $\mathcal{V} \in L\mathscr{A}2\mathfrak{l}$, $\mathcal{V}' = \mathscr{E}$, $\mathcal{V} \neq \mathscr{E}$. Then \mathcal{V} satisfies $x - x^m = 0$ for some m > 1. There are a finite number of non-isomorphic finite fields G_j , $1 \leq j \leq n$, and sets Ij of homomorphisms of \mathfrak{k} into G_j preserving 1, $1 \leq j \leq n$, such that \mathcal{V} is generated by $\{\mathfrak{G}_j \alpha : \alpha \in Ij, 1 \leq j \leq n\}$.

Proof. Let $\Re = F(1, \mathscr{V})$. \Re is associative and commutative. Since $\mathscr{V}' = \mathscr{E}$, by Lemma 19, \mathscr{V} satisfies x + f(x) = 0 where f(x) is of order ≥ 2 . Thus \mathscr{V} satisfies $x = x^2h(x)$ where $h(x) \in \mathfrak{t}[x]$, the ring of polynomials in x over \mathfrak{t} . Thus \Re is a commutative and associative von Neumann regular ring. Hence \Re is a ring subdirect product of fields. If G is one of these fields, there is a ring homomorphism γ of R onto G. G inherits a \mathfrak{t} -algebra structure: $ag = (ag_1)\gamma$, $a \in \mathfrak{t}$, $g_1 \in \Re$, $g_1 \gamma = g \in G$. There is a homomorphism α of \mathfrak{t} into G preserving 1: $a\alpha = ae$ where e is the identity of G. $\Im \alpha$ is a homomorphic image of \Re as \mathfrak{t} -algebras. Thus $\Im \alpha$ satisfies $x = x^2h(x)$. Thus G is finite since all its elements are roots of $x^2h(x) - x = 0$, $|G| \le \text{degree } x^2h(x) =$ = degree f. There is only a finite number of non-isomorphic fields satisfying $x = x^2h(x)$. Let G1, ..., Gn be all the finite fields such that if G is a field and G is a homomorphic image of \Re , then G is an isomorphic copy of G1, ..., or Gn and $Gi \ge Gj$ if $i \neq j$, $1 \le i, j \le n$, and let Ij be the set of all homomorphisms α of \mathfrak{t} into Gj such that $\mathfrak{G}_{j\alpha}$ is a homomorphic image of \mathfrak{R} , $1 \leq j \leq n$. Then there is m > 1such that $x = x^m$ in $G1 \times ... \times Gn$. Thus \mathscr{V} satisfies $x - x^m = 0$. Thus, by Jacobson's Theorem \mathscr{V} is commutative and FV is a ring subdirect sum of fields satisfying $x - x^m = 0$, i.e., finite fields. If H is one of these fields, then as above, there is a homomorphism α of t into H such that \mathfrak{H}_{α} is a homomorphic image of $F\mathscr{V}$. Thus $\mathfrak{H}_{\alpha} \in \mathscr{V}$. But \mathfrak{H}_{α} is generated by one element. Hence, \mathfrak{H}_{α} is a homomorphic image of $F(1, \mathscr{V}) = \mathfrak{N}$. Thus $H \cong Gj$ for some $1 \leq j \leq n$, and $\mathfrak{H}_{\alpha} \cong \mathfrak{G}_{j\beta}$ for some $\beta \in Ij$. Thus \mathscr{V} is generated by $\{\mathfrak{G}_{j\alpha} : \alpha \in Ij, 1 \leq j \leq n\}$. That $\mathfrak{H}_{\alpha} \cong \mathfrak{G}_{j\beta}$ follows from Lemma 22.

It may be noted that although the non-isomorphic fields in Lemma 23 are finitely many, the non-isomorphic algebras $\mathfrak{G}_{j\alpha}$, $\alpha \in Ij$, $1 \leq j \leq n$, can be infinitely many. For instance, if \mathfrak{k} is an infinite Boolean ring, \mathscr{V} is the variety of associative \mathfrak{k} -algebras satisfying $x + x^2 = 0$, then $F(1, \mathscr{V})$ is ring isomorphic to an infinite subdirect power of \mathbb{Z}_2 , the prime field of 2 elements; $F(1, \mathscr{V}) \cong \mathfrak{k}$. However, \mathfrak{k} is a subdirect product of $\{\mathfrak{k}/\mathfrak{m} : \mathfrak{m} \text{ is a maximal ideal of } \mathfrak{k}\}$. $\mathfrak{k}/\mathfrak{m}$ is ring isomorphic to \mathbb{Z}_2 , but $\mathfrak{k}/\mathfrak{m} \cong \mathfrak{k}/\mathfrak{m}'$ as \mathfrak{k} -algebras iff $\mathfrak{m} = \mathfrak{m}'$.

Corollary 24. Let $\mathcal{V} \in L\mathscr{A}1\mathfrak{k}$, $\mathcal{V}' = \mathscr{E}$, $\mathcal{V} \neq \mathscr{E}$. Then \mathcal{V} satisfies $x - x^m = 0$ for some m > 1. There are a finite number of non-isomorphic finite fields G1, ..., Gnand sets Ij of homomorphisms of \mathfrak{k} into Gj preserving $1, 1 \leq j \leq n$, such that $F(1, \mathcal{V})$ is a subdirect product of $\{\mathfrak{G}j\alpha \colon \alpha \in Ij, 1 \leq j \leq n\}$.

This follows from Lemma 23 since var $F(1, \mathscr{V}) \in L\mathscr{A}2\mathfrak{k}$ and var $F(1, \mathscr{V})' \subseteq \mathfrak{L}'=\mathscr{E}$.

Lemma 25. Let $\Re \in \mathscr{A}$ 2^{\ddagger}, I an ideal of \Re and J an ideal of I. If J or I/J satisfies x+f(x)=0 for some $f \in F0^2$, then J is an ideal of \Re .

Proof. Let J satisfy x+f(x)=0. Hence by Lemma 23, J satisfies $x=x^m$ for some m>1. Let $a\in\mathfrak{R}$, $b\in J$. Then $ab=ab^m=(ab^{m-1})b$. But $ab^{m-1}\in I$. Hence $ab\in J$. Similarly $ba\in J$. Let I/J satisfy x+f(x)=0. Hence I/J satisfies $x-x^m=0$ for some m>1. If $a\in\mathfrak{R}$, $b\in J$, $c\in I$, then $c-c^m\in J$, ac, $ca\in I$. Thus $ab\in I$, and $ab-(ab)^m\in J$. $(ab)^m=((ab)^{m-1}a)b$. But $(ab)^{m-1}a\in I$. Hence $(ab)^m\in J$ and $ab\in J$. Similarly, $ba\in J$.

Corollary 26. Let $\mathcal{U}, \mathcal{V}, \mathcal{W} \in L\mathcal{A}$ it. If $\mathcal{U}' = \mathcal{E}$ or $\mathcal{V}' = \mathcal{E}$, then $(\mathcal{U}_i, \mathcal{V})_i, \mathcal{W} = \mathcal{U}_i(\mathcal{V}_i, \mathcal{W}), i = 2, 3$.

Proof. By Theorem 1, $\mathscr{U} \cdot_i (\mathscr{V} \cdot_i \mathscr{W}) \subseteq (\mathscr{U} \cdot_i \mathscr{V}) \cdot_i \mathscr{W}$. Let $\mathfrak{R} \in (\mathscr{U} \cdot_i \mathscr{V}) \cdot_i \mathscr{W}$. Then $\mathfrak{R} \in \mathscr{A}2\mathfrak{k}$, there is an ideal *I* of \mathfrak{R} and an ideal *J* of *I* such that $\mathfrak{R}/I \in \mathscr{W}, I \in \mathscr{U} \cdot_i \mathscr{V}, J \in \mathscr{U}, I/J \in \mathscr{V}$. Since $\mathfrak{U}' = \mathscr{E}$ or $\mathscr{V}' = \mathscr{E}$, by Lemma 19, I/J or *J* satisfies x + f(x) = 0 for some $f \in F0^3$. Hence, by Lemma 25, *J* is an ideal of \mathfrak{R} . Thus $I/J \in \mathscr{V}$ and $\mathfrak{R}/J \in \mathscr{V} \cdot \mathscr{W}$, i.e., $\mathfrak{R} \in \mathfrak{U} \cdot_i (\mathscr{V} \cdot_i \mathscr{W})$. Lemma 27. Let $\Re \in \mathscr{A}2$ and S an ideal of \Re satisfying x+f(x)=0 for some $f \in F0^2$. Then \Re is isomorphic to a subdirect product of \Re/S and an algebra satisfying all the identities of S. If \Re is finitely generated, then S is a direct summand of \Re .

Proof. By Lemma 23, S satisfies $x-x^m=0$ for some m>1 and S is commutative. In fact S is central in \mathfrak{R} . Let $a\in\mathfrak{R}$, $b\in S$. Then $ab=ab^m=(ab)b^{m-1}==b^{m-1}(ab)=(b^{m-1}a)b=b(b^{m-1}a)=b^ma=ba$. Let $A=\operatorname{Ann} S$, i.e.,

$$A = \{x: x \in \mathfrak{R}, xS = 0\}.$$

A is an ideal of \mathfrak{R} , $A = \bigcap \{\operatorname{Ann} b: b \in S\}$, Ann b is an ideal of \mathfrak{R} . $A \cap S = 0$, since $b \in A \cap S$ implies $b = b^m = bb^{m-1} = 0$. Thus \mathfrak{R} is isomorphic to a subdirect product of \mathfrak{R}/S and \mathfrak{R}/A . If $b \in S$, b^{m-1} is a central idempotent and $b^{m-1}\mathfrak{R} = b\mathfrak{R}$. Thus $\mathfrak{R} \cong b\mathfrak{R} \oplus \operatorname{Ann} b$. Hence $\mathfrak{R}/\operatorname{Ann} b \cong b\mathfrak{R} \subseteq S$. But \mathfrak{R}/A is a subdirect product of $\mathfrak{R}/\operatorname{Ann} b \cong b\mathfrak{R}$. Thus \mathfrak{R}/A satisfies all the identities of S. If \mathfrak{R} is finitely generated, then \mathfrak{R}/A is finitely generated. As $A = \operatorname{Ann} S$, there are $b1, \ldots, bm \in S$ such that $b1 + A, \ldots, bm + A$ generate \mathfrak{R}/A . Hence $b1, \ldots, bm$ generate S. If $ei = (bi)^{m-1}$, then $e1, \ldots, em$ are central idempotents, $S = e1R + \ldots + emR$. There is an orthogonal set of idempotents $f1, \ldots, fr$ such that $S = f1R \oplus \ldots \oplus frR$. Thus S has an identity element $e = f1 + f2 + \ldots + fr$, e is a central idempotent $\mathfrak{R} = e\mathfrak{R} \oplus \operatorname{Ann} e = S \oplus \operatorname{Ann} e = S \oplus A$.

Corollary 28. Let $\mathcal{U}, \mathcal{V} \in L\mathcal{A}$ if, $\mathcal{U}' = \mathscr{E}$. Then $\mathcal{U} \lor \mathcal{V} = \mathcal{U}_i \mathscr{V}, i = 2, 3$.

If $\mathfrak{R} \in \mathfrak{U} \cdot \mathfrak{V}$, there is an ideal *I* of \mathfrak{R} such that $\mathfrak{R}/I \in \mathfrak{V}$ and $I \in \mathfrak{U}$. The corollary follows from Lemmas 19 and 27.

Corollary 29. If $\mathcal{U} \in L \mathscr{A}$ if, $\mathcal{U}' = \mathscr{E}$, then $\mathcal{U} : \mathscr{U} = \mathcal{U}$, i = 2, 3.

This follows from Corollary 28.

2

Corollary 30. Let $\mathscr{V} \in L\mathscr{A}1\mathfrak{k}$, $\mathscr{V}' = \mathscr{E}$ and let $\mathscr{V}^{(1)}$ be the variety defined by all one-variable identities of \mathscr{V} . Then $\mathscr{V}^{(1)} \cdot \mathscr{V}^{(1)} = \mathscr{V}^{(1)}$.

Proof. $\mathscr{V}^{(1)} \in L\mathscr{A}1\mathfrak{l}$ since every member of $\mathscr{V}^{(1)}$ generated by one element belongs to \mathscr{V} . $\mathscr{V}^{(1)'} = \mathscr{E}$ since \mathscr{V} and also $\mathscr{V}^{(1)}$ satisfy x + f(x) = 0 for some $f \in F0^2$ (by Lemma 19). Let $\mathfrak{R} = F(1, \mathscr{V}^{(1)} \cdot \mathscr{V}^{(1)})$. By Corollary 24, \mathfrak{R} is a subdirect product of $\mathfrak{G}_{j\alpha}$, $\alpha \in Ij$, $1 \leq j \leq n$, G1, ..., Gn are finite fields. Since $\mathfrak{G}_{j\alpha} \in \mathscr{V}^{(1)} \cdot \mathscr{V}^{(1)}$ and $\mathfrak{G}_{j\alpha}$ is simple $\mathfrak{G}_{j\alpha} \in \mathscr{V}^{(1)}$, i.e., $\mathfrak{G}_{j\alpha} \in \mathscr{V}$. Thus $\mathfrak{R} \in \mathscr{V}$. Hence, $\mathscr{V}^{(1)} \cdot \mathscr{V}^{(1)}$ satisfies all the one-variable identities of \mathscr{V} . Thus $\mathscr{V}^{(1)} \subseteq \mathscr{V}^{(1)} \cdot \mathscr{V}^{(1)} \subseteq \mathscr{V}^{(1)}$.

Lemma 31. Let G, H be finite fields, α , β homomorphisms of \mathfrak{t} into G, H, respectively, preserving 1. Then $\mathfrak{H}\beta\in \mathrm{var} \mathfrak{G}\alpha$ iff ker $\alpha = \ker \beta$ and H is isomorphic to a subfield of G.

Proof. If ker $\alpha = \ker \beta$ and *H* is isomorphic to a subfield of *G*, then $\beta\beta$ is isomorphic to a subalgebra of $\Im \alpha$ since *H* contains $\beta \cong \alpha$. Conversely, if $\beta\beta \in \operatorname{var} \Im \alpha$, $|G| = p^n$, then *H* satisfies $x - x^{p^n} = 0$ and ax = 0 for all $a \in \ker \alpha$. Thus *H* is of order p^m , m|n. As ker α and ker β are maximal ideals of \mathfrak{t} , $\beta\beta$ satisfies ax = 0 for all $a \in \ker \alpha + \ker \beta$, *H* is non-trivial, ker $\alpha = \ker \beta$ and *H* is isomorphic to a subfield of *G*.

Proposition 32. The set Ti of all varieties $\mathscr{V} \in L\mathscr{A}$ if, $\mathscr{V}' = \mathscr{E}$ is a submonoid of $\langle L\mathscr{A}$ if; $\cdot_i \rangle$ and a lattice ideal of $\langle L\mathscr{A}$ if; $\wedge, \lor \rangle$. On Ti, the lattice join \lor and the variety multiplication \cdot_i coincide. The lattice $\langle Ti, \wedge, \lor \rangle$ is isomorphic to the lattice of left ideals with a finite number of right components of $\langle \{(m, p^n): m \text{ is a maximal} ideal such that <math>\mathfrak{k}/\mathfrak{m}$ is a subfield of a finite field of order $p^n \}$; $\leq \rangle$, $(m, p^n) \leq (\mathfrak{m}', q^n')$ iff $\mathfrak{m} = \mathfrak{m}'$ and p = q, n|n', i = 2, 3.

Proof. That $\langle Ti, \cdot \rangle$ is a submonoid of $\langle L\mathscr{A}i\mathfrak{k}; \cdot_i \rangle$ follows from Corollaries 20 and 26. Also from Corollary 20, Ti is a lattice ideal. By Corollary 28, $\mathscr{U}: \mathscr{V} = \mathscr{U} \lor \mathscr{V}$. By Lemma 23, if $\mathscr{V} \in Ti, \mathscr{V} \neq \mathscr{E}$, then $\mathscr{V} = \operatorname{var} \{\mathfrak{G}j\alpha: \alpha \in Ij, 1 \leq j \leq n\}$. By Lemma 31, $\mathfrak{H} \in \mathscr{V}$ iff $\mathfrak{H} \mathfrak{H}$ is isomorphic to a subalgebra of $\mathfrak{G}j\alpha$ for some $\alpha \in Ij$, $1 \leq j \leq n$. Thus $\mathscr{V} \in Ti$ is determined by the set of all pairs (\mathfrak{m}, p^n) such that G is a field of p^n elements and $\mathfrak{k}/\mathfrak{m} \leq G$. The set of all such pairs for a given \mathscr{V} satisfies $(\mathfrak{m}, p^n) \leq (\mathfrak{m}', q^{n'}), (\mathfrak{m}', q^{n'})$ is in the set implies (\mathfrak{m}, p^n) is in the set. Thus it is a left ideal. Since every \mathscr{V} involves only a finite number of non-isomorphic fields, the set of right components in the set of pairs is finite.

Proof of Theorem 4. Let $\mathscr{V} \in L\mathscr{A}0\mathfrak{k}$ be equationally complete and $\mathscr{V}' \neq \mathscr{E}$. Then $\mathscr{V} = \mathscr{V}'$. By Lemma 17, $V \subseteq \mathfrak{m}F_0 + F_0^2$ for some maximal ideal \mathfrak{m} of \mathfrak{k} . Hence, $V = \mathfrak{m}F_0 + F_0^2$. V is a maximal T-ideal of F_0 , \mathscr{V} satisfies ax = 0 for all $a \in \mathfrak{m}$, and xy = 0. This is the type of equationally complete varieties $\mathscr{V} \in L\mathscr{A}0\mathfrak{k}, \ \mathscr{V}' \neq \mathscr{E}$. If $\mathscr{V} \in L\mathscr{A}1\mathfrak{k}, \ \mathscr{V}' = \mathscr{E}, \ \mathscr{V}$ is equationally complete, then $\mathscr{V} = \operatorname{var} F(1, \mathscr{V})$, var $F(1, \mathscr{V}) \in L\mathscr{A}3\mathfrak{k}$. By Lemma 23, $\mathscr{V} = \operatorname{var} \{\mathfrak{G}j\alpha : \alpha \in Ij, 1 \leq j \leq n\}$. Hence $\mathscr{V} = \operatorname{var} \mathfrak{G}\alpha$, for some finite field G and a homomorphism α of \mathfrak{k} into G preserving 1. Thus $\mathscr{V} = \operatorname{var} \mathfrak{k}/\mathfrak{m}$ for some maximal ideal of finite index in \mathfrak{k} , since $\mathfrak{G}\alpha$ contains a subalgebra isomorphic to $\mathfrak{k}/\ker \alpha$. By Lemma 31, $\operatorname{var} \mathfrak{k}/\mathfrak{m}$ does not contain any nontrivial proper subvarieties. Thus \mathscr{V} is determined by the identities ax = 0 for all $a \in \mathfrak{m}, x - x^{p^r} = 0$ where $p^r = |\mathfrak{k}/\mathfrak{m}|$.

Varieties of algebras

19

6. Varieties of algebras over rings with exactly 2 idempotent ideals

Throughout Section 6, we assume that if a is an ideal of \mathfrak{k} , and $\mathfrak{a}^2 = \mathfrak{a}$, then $\mathfrak{a} = \mathfrak{o}$ or $\mathfrak{a} = \mathfrak{k}$.

Lemma 33. Let $\mathscr{V} \in L\mathscr{A}i\mathfrak{k}$, $\mathscr{V} : \mathscr{V} = \mathscr{V}$. Then $\mathscr{V} = \mathscr{A}i\mathfrak{k}$ or $\mathscr{V}' = \mathscr{E}$, i=0, 1, 2, 3.

Proof. If $\mathscr{V} \neq \mathscr{A}i\mathfrak{l}$, then $d(i, \mathscr{V}) < \infty$ and $d(i, \mathscr{V}) = d(i, \mathscr{V} \cdot_i \mathscr{V}) = d(i, \mathscr{V})^2$ (by Lemma 11). Thus, d(i, V) = 1, i.e., there are non-trivial polynomials of degree 1 in V and $V(Fi) \subseteq V'(Fi) = \mathfrak{a}_1 Fi + \mathfrak{a}_2 Fi^2 + \ldots$ where $\mathfrak{a}_1 \neq \mathfrak{o}$. Hence $(V \circ V)(Fi) \subseteq \subseteq (V' \circ V')(Fi) \subseteq \mathfrak{a}_1^2 Fi + \mathfrak{a}_1 \mathfrak{a}_2 Fi^2 + \ldots$ (by Lemma 15). Thus $V(Fi) = (V \circ V)(Fi) \subseteq \subseteq \mathfrak{a}_1^2 Fi + \mathfrak{a}_1 \mathfrak{a}_2 Fi^2 + \ldots \subseteq V'(Fi)$. But $\mathfrak{a}_1^2 Fi + \mathfrak{a}_1 \mathfrak{a}_2 Fi^2 + \ldots$ is *i*-multinilpotent, whence $V'(Fi) = \mathfrak{a}_1^2 Fi + \mathfrak{a}_1 \mathfrak{a}_2 Fi^2 + \ldots = \mathfrak{a}_1 Fi + \mathfrak{a}_2 Fi^2 + \ldots$. Hence $\mathfrak{a}_1^2 = \mathfrak{a}_1$. But $\mathfrak{a}_1 \neq \mathfrak{o}$. Hence $\mathfrak{a}_1 = \mathfrak{l}$, i.e., V'(Fi) = Fi, i.e., $\mathscr{V}' = \mathscr{E}$.

Corollary 34. Let $\mathscr{V} \in L\mathscr{A}$ if, $\mathscr{V} \neq \mathscr{A}$ if. Then $\mathscr{V} \cdot \mathscr{V} = \mathscr{V}$ iff $\mathscr{V}' = \mathscr{E}$, i=2, 3.

This follows from Corollary 29 and Lemma 33.

It may be noted that if t has an ideal $a \neq 0$, $a \neq t$, $a^2 = a$, then the variety \mathscr{V} of all t-algebras satisfying ax=0 for all $a \in a$ is idempotent, i.e., $\mathscr{V} \cdot_0 \mathscr{V} = \mathscr{V}$, $\mathscr{V}' = \mathscr{V} \neq \mathscr{E}$.

Proof of Theorem 5. A set $I \subseteq F0$ is attainable on a variety \mathscr{V} iff the T-ideal of F0 generated by I is attainable on \mathscr{V} . It was shown by A. I. MAL'CEV [13], that if I is attainable on \mathscr{V} , then the variety $\mathscr{U} \in L\mathscr{V}$ determined by I satisfies $\mathscr{U} \cdot_{\mathscr{V}} \mathscr{U} = \mathscr{U}$, or equivalently $(U \circ U)(F \mathscr{V}) = U(F \mathscr{V})$. If $\mathscr{U} \cdot_{i} \mathscr{U} = \mathscr{U}$, then $\mathscr{U} = \mathscr{A}i\mathfrak{t}'$ or $\mathcal{U}' = \mathscr{E}$ by Lemma 33. Let i=1, 2, 3. Then $\mathcal{U} \cap \mathscr{A} 2\mathfrak{k}$ is generated by $\{\mathfrak{G}_{j\alpha}: \alpha \in I_j, 1 \leq j \leq n\}$, by Lemma 23, if $\mathcal{U} \neq \mathscr{E}, \mathcal{U} \neq \mathscr{A}_i$ Let m be ker α for some $\alpha \in Ij$, $1 \leq j \leq n$. Let \Re be the ideal of (f/m)[x] generated by x. $U(\Re) =$ $= \cap \{V_{j\alpha}(\mathfrak{R}): \alpha \in I_j, 1 \leq j \leq n\}, \forall j\alpha = \operatorname{var} \mathfrak{G}_{j\alpha}, V_{j\alpha}(\mathfrak{R}) \neq \mathfrak{R} \text{ iff } \mathfrak{m} = \ker \alpha. Also,$ G_1, \ldots, G_n are finitely many and each G_j is a finite field, there is only finitely many $\mathfrak{G}_{j\alpha}$ such that $V_{j\alpha}(\mathfrak{R}) \neq \mathfrak{R}$ for some $\alpha \in I_j$, $1 \leq j \leq n$. $V_{j\alpha}(\mathfrak{R}) \neq 0$ for any $\alpha \in I_j$, $1 \le j \le n$. Thus $U(\Re)$ is a proper non-trivial ideal of \Re . Hence, there is a polynomial $h(x) \in \Re$, $h(x) \neq x$, $h(x) \neq 0$, such that $U(\Re) = h(x)(\sharp/m)[x]$. By the methods of the proof of A. A. ISKANDER'S [11], Theorem 15, p. 237, replacing the prime field Z_n by f/\mathfrak{m} one can show that $U(U(\mathfrak{R})) \neq U(\mathfrak{R})$. Thus U is not attainable on \mathfrak{R} . Hence, if I is attainable on \mathscr{A} if, \mathscr{U} is the variety of $L\mathscr{A}$ if determined by I, then $\mathscr{U} = \mathscr{A}$ if, i.e., I is equivalent to x=x on \mathscr{A} if, or $\mathscr{U}=\mathscr{E}$, i.e., I is equivalent to x=y on \mathscr{A} if.

2*

7. Varieties of algebras over Dedekind domains

Throughout Section 7, unless otherwise stated, f is a Dedekind domain.

Proposition 35. The following conditions on a variety $\mathscr{V} \in L\mathscr{A}$ it are equivalent:

(1) \mathscr{V} satisfies $x^n = 0$ for some natural number n > 0.

(2) $\mathscr{V} \in N(i, \{\mathfrak{k}/\mathfrak{m}: \mathfrak{m} \text{ is a maximal ideal of } \mathfrak{k}\}), i=1, 2, 3.$

Proof. Since a field does not contain any non-zero nilpotent elements, (1) implies (2). Let $\mathscr{V} \in L\mathscr{A}$ if, $\mathfrak{f}/\mathfrak{m} \notin \mathscr{V}$ for any maximal ideal \mathfrak{m} of \mathfrak{f} . As $F(1, \mathscr{V}) \in \mathscr{A}$ 3 \mathfrak{f} , the factor algebra $F(1, \mathscr{V})/\mathfrak{N}$, where \mathfrak{N} is the nilradical, is a subdirect product of rings without zero-divisors. Thus, if $\mathfrak{N} \neq F(1, \mathscr{V})$, the algebra $F(1, \mathscr{V})$ has a non-trivial factor algebra \mathfrak{N} without zero-divisors, and it is not difficult to show that \mathfrak{N} can be chosen such that for its "characteristic" $\mathfrak{p} \triangleleft \mathfrak{f}$ one has either $\mathfrak{N} \cong x(\mathfrak{f}/\mathfrak{p})[x]$ or $\mathfrak{N} \cong x(\mathfrak{f}/\mathfrak{p})[x]/f(x)$ where f is primitive irreducible, and \mathfrak{N} obviously has in both cases field factors, which, in their turn, must have a subfield of the prescribed form.

Proposition 36. If \mathfrak{t} is a principal ideal ring or a Dedekind domain and $\mathscr{V} \in L\mathscr{A}$ if is i-multinilpotent, then $\mathscr{V} = \mathscr{U} \cdot \mathscr{W}$, where $U(Fi) = \mathfrak{a}Fi$, and \mathscr{W} is a nilpotent variety that is i-multinilpotent, i = 0, 1, 2, 3.

Proof. $V(Fi) = a_1 Fi + a_2 Fi^2 + ...$ where (a_n) is an ascending chain of ideals of t. Since t is Noetherian there is *n* such that $a = a_n = a_m$, for all m > n. If t is a principal ideal ring, $a_r = a_r t$, a = a t, $a_r \subseteq a$ implies $a_r = a b_r$, $a, b_r, a_r \in t$. Hence $a_r = a(b_r t) = a b_r$ for all $r \le n$, $b_n = 1$. If t is a Dedekind domain, $a_r = m1^{s1} ... mt^{st}$ and $a_r \subseteq a = m1^{u1} ... mt^{ut}$ implies $s1 \ge u1, ..., st \ge ut$. Thus $a_r = b_r a$ where $b_r =$ $= m1^{v1} ... mt^{vt}$, v1 = s1 - u1, ..., vt = st - ut. Hence,

$$V(Fi) = ab_1Fi + ab_2Fi^2 + \dots + aFi^n =$$

= $a(b_1Fi + b_2Fi^2 + \dots + Fi^n) = (aF0)(b_1Fi + b_2Fi^2 + \dots + Fi^n).$

Proof of Theorem 3. From Definition 2 and Lemma 17, $\mathscr{V} \in L\mathscr{A}$ if is *i*-pseudo-indecomposable iff $\mathscr{V} \neq \mathscr{A}$ if, $\mathscr{V}' \neq \mathscr{E}$ and $\mathscr{V} = \mathscr{U} \cdot \mathscr{W}$, \mathscr{U} , $\mathscr{W} \in L\mathscr{A}$ if implies $\mathscr{U}' = \mathscr{E}$ or $\mathscr{W}' = \mathscr{E}$, i = 0, 1, 2, 3. We will write $\mathscr{V}_1 \cdot \mathscr{V}_2 \cdot \mathscr{V}_3$ to mean one of the products $(\mathscr{V}_1 \cdot \mathscr{V}_2) \cdot \mathscr{V}_3, \mathscr{V}_1 \cdot \mathscr{V}_1 \cdot \mathscr{V}_2 \cdot \mathscr{V}_3)$. In general, $\mathscr{V}_1 \cdot \mathscr{V}_2 \cdot \mathscr{V}_1 \cdots \cdot \mathscr{V}_n$ will mean any of the products obtained by the introduction of suitable parentheses.

Lemma 37. Let $\mathscr{V} \in L\mathscr{A}$ if, $\mathscr{V} \neq \mathscr{A}$ if and $\mathscr{V} = \mathscr{V}_1 \cdot \mathscr{V}_2 \cdot \ldots \cdot \mathscr{V}_n$. Then the number of \mathscr{V}_j such that $d(i, \mathscr{V}_j) > 1$ is at most equal to the number of primes (including repetitions) in the prime factorization of $d(i, \mathscr{V})$; the number of \mathscr{V}_j such that $\mathscr{V}'_j \neq \mathscr{E}$ and $d(i, \mathscr{V}_j) = 1$ is at most equal to the number of maximal ideals (including repetitions) in the factorization of $c(i, \mathscr{V})$ as a product of maximal ideals, i=0, 1, 2, 3.

0

Proof. By Lemma 11, $d(i, \mathcal{U}_i, \mathcal{W}) = d(i, \mathcal{U}) d(i, \mathcal{W})$. By induction on n, $d(i, \mathscr{V}) = d(i, \mathscr{V}_1) \dots d(i, \mathscr{V}_n)$. Hence the number of \mathscr{V}_j such that $d(i, \mathscr{V}_j) > 1$ cannot exceed the number of primes in the factorization of $d(i, \mathcal{V})$. To prove the rest of the lemma, we show first that for any variety $\mathcal{W} \in L\mathcal{A}$ if, $d(i, \mathcal{W}) = d(i, \mathcal{W}')$. In fact, $d(i, \mathcal{W}) = d$ iff $W(Fi) \subseteq Fi^d$ and $W(Fi) \subseteq Fi^{d+1}$. This is true since if $d(i, \mathcal{W}) = d$, W(Fi) contains elements of degree d and no elements of degree less than d. Thus $W(Fi) \subseteq F^d$, $W(Fi) \not\subseteq Fi^{d+1}$ (due to linearization). Conversely, if $W(Fi) \subseteq Fi^{d+1}$, then W(Fi) contains elements of degree $\leq d$; if $W(Fi) \subseteq Fi^d$, then W(Fi) does not contain any elements of degree less than d (again W is closed under linearization). Thus $d(i, \mathcal{W}) = d$. Now, $W'(Fi) \supseteq W(Fi), W(Fi) \subseteq Fi^{d+1}$. So $W'(Fi) \subseteq Fi^{d+1}$. Also $Fi^d \supseteq W(Fi)$, $Fi^d = F0^d(Fi)$. If \mathscr{U} is the subvariety of \mathscr{A} it whose T-ideal in Fi is Fi^d , then \mathscr{U} is *i*-multinilpotent. Thus $\mathscr{W}' \supseteq \mathscr{U}$, i.e., $Fi^d = U(Fi) \supseteq$ $\supseteq W'(Fi). \quad \text{Hence} \quad d(i, \mathscr{W}') = d = d(i, \mathscr{W}). \quad \text{Let} \quad \mathscr{V} = \mathscr{V}_1 \cdot \mathscr{V}_2 \cdot \mathscr{V}_1 \cdots \cdot \mathscr{V}_n.$ Then $\overline{\mathscr{V}} \supseteq \mathscr{V}_1' \cdot \mathscr{V}_2' \cdot \ldots \cdot \mathscr{V}_n' \supseteq \left(\ldots \left((\mathscr{V}_1' \cdot \mathscr{V}_2') \cdot \mathscr{V}_3' \right) \cdot \ldots \right) \cdot \mathscr{V}_n', \quad \text{(by Theorem)}$ 1). $d(i, \mathscr{V}) = d(i, \mathscr{V}_1) \dots d(i, \mathscr{V}_n) = d(i, \mathscr{V}_1') \dots d(i, \mathscr{V}_n')$ and

Hence

$$\mathscr{V} \supseteq \mathscr{V}' \supseteq \bigl((\dots ((\mathscr{V}'_1 \cdot \mathscr{V}'_2)' \cdot \mathscr{V}'_3)' \cdot \dots)' \cdot \mathscr{V}'_n)' \bigr).$$

$$c(i, \mathscr{V}) = c(i, d(i, \mathscr{V}), \mathscr{V}) = c(i, d(i, \mathscr{V}'), \mathscr{V}) =$$

$$= c(i, d, \mathscr{V}) \subseteq c(i, d, \mathscr{V}') = c(i, \mathscr{V}') \subseteq \text{ (by Lemma 11)}$$

$$\subseteq c(i, ((...((\mathscr{V}'_{1} \cdot \cdot \mathscr{V}'_{2})' \cdot \cdot \mathscr{V}'_{3})' \cdot ...)' \cdot \mathscr{V}'_{n})') =$$

$$= c(i, \mathscr{V}'_{1})c(i, \mathscr{V}'_{2})^{d_{1}}c(i, \mathscr{V}'_{3})^{d_{1}d_{2}}...c(i, \mathscr{V}'_{n})^{d_{1}d_{2}...d_{n-1}},$$

by Lemma 15 and by induction on *n*, where $d_j = d(i, \mathscr{V}_j) = d(i, \mathscr{V}_j)$, $1 \le j \le r$. If $d(i, \mathscr{V}_j) = 1, \ \mathscr{V}_j' \ne \mathscr{E}$, then $c(i, \mathscr{V}_j') \ne \mathfrak{k}, \ c(i, \mathscr{V}_j') \ne \mathfrak{o}$. Since

$$\mathfrak{c}(i,\mathscr{V})\subseteq\mathfrak{c}(i,\mathscr{V}_1')\mathfrak{c}(i,\mathscr{V}_2')^{d_1}\ldots\mathfrak{c}(i,\mathscr{V}_n')^{d_1\ldots d_{n-1}}\subseteq\prod\{\mathfrak{c}(i,\mathscr{V}_j')\colon 1\leq j\leq n\}$$

and \mathfrak{t} is a Dedekind domain, each non-zero proper ideal of \mathfrak{t} is uniquely the product of maximal ideals, possibly non-distinct, of \mathfrak{t} . If $\mathfrak{c}(i, \mathscr{V}) = \mathfrak{m}1 \dots \mathfrak{m}r$, where $\mathfrak{m}1, \dots, \mathfrak{m}r$ are maximal ideals of \mathfrak{t} , possibly equal, each of the ideals $\mathfrak{c}(i, \mathscr{V}_j') \neq \mathfrak{t}$ is a product of some of $\mathfrak{m}1, \dots, \mathfrak{m}r$. Thus, the number of \mathscr{V}_j , such that $\mathscr{V}_j' \neq \mathscr{E}$, $d(i, \mathscr{V}_j) = 1$, is at most r.

We return to the proof of the theorem.

If $\mathscr{V} \in L\mathscr{A}i\mathfrak{k}$, $\mathscr{V} \neq \mathscr{A}i\mathfrak{k}$, $\mathscr{V}' = \mathscr{E}$, then either \mathscr{V} is *i*-pseudo-indecomposable or $\mathscr{V} = \mathscr{U} \cdot \mathscr{W}$ for some \mathscr{U} , $\mathscr{W} \in L\mathscr{A}i\mathfrak{k}$, $\mathscr{U} \neq \mathscr{A}i\mathfrak{k}$, $\mathscr{W} \neq \mathscr{E}$, $\mathscr{W}' \neq \mathscr{E}$. Continuing this procedure, by Lemma 37, after a finite number of steps we get $\mathscr{V} = \mathscr{V}_1 \cdot \mathscr{V}_2 \cdot \ldots \cdot \mathscr{V}_n$ where $\mathscr{V}_1, \ldots, \mathscr{V}_n$ are *i*-pseudo-indecomposable.

 rem 3 is not unique. It is an open question as to whether different factorizations are due only to this reason. Also, pseudo-indecomposables cannot be replaced by indecomposables if t contains a maximal ideal of finite index. For then, if α is a non-trivial homomorphism of t into a finite field G, var $\mathfrak{G}\alpha \subseteq \mathscr{C}$ and $\mathscr{C} \cdot_2 \mathscr{C} =$ $=(\mathscr{C} \cdot_2 \operatorname{var} \mathfrak{G}\alpha) \cdot_2 \mathscr{C} = (\ldots(\mathscr{C} \cdot_2 \operatorname{var} \mathfrak{G}\alpha) \cdot_2 \ldots \cdot_2 \operatorname{var} \mathfrak{H}\alpha) \cdot_2 \mathscr{C}$ where $G \subseteq \ldots \subseteq H$ are any ascending chain of finite fields.

If t is a field of characteristic 0, $\forall \in L \not\in I$, then $x_1 + f(x_1) \in V$ for some $f \in F0^2$ (by Lemma 19). By linearization $ax_1 \in V$ for some $a \neq 0$, $a \in I$. Hence $a^{-1}(ax_1) \in V$, i.e., V = F0. Thus, $\forall = \mathscr{E}$. Hence, over a field of characteristic 0, *i*-pseudo-indecomposables are *i*-indecomposable. This concludes the proof of Theorem 3.

Corollary 38. Suppose $\mathscr{V} \in L\mathscr{A}i\mathfrak{l}, d(i, \mathscr{V})$ is prime and $\mathfrak{c}(i, \mathscr{V}) = \mathfrak{l}$. Then \mathscr{V} is i-pseudo-indecomposable, i=0, 1, 2, 3.

This follows from Lemma 37, since $\forall \neq \mathscr{A}i\mathfrak{k}$ and $\forall' \neq \mathscr{E}$.

Corollary 39. Let $\mathscr{V} \in L\mathscr{A}$ if. Then either $\mathscr{V} : \mathscr{V} = \mathscr{V}$ or \mathscr{V} is a product of a finite number of i-pseudo-indecomposable varieties, i=2, 3.

If $\mathscr{V} = \mathscr{A}i\mathfrak{k}$, then $\mathscr{V} \cdot \mathscr{V} = \mathscr{V}$. If $\mathscr{V}' = \mathscr{E}$, then $\mathscr{V} \cdot \mathscr{V} = \mathscr{V}$ (by Corollary 29). The rest follows from Theorem 3.

Proposition 40. Suppose $\mathscr{V} \in L\mathscr{A}$ it and V contains all words of G0 of length n in x_1 for some $n \ge 1$. Then \mathscr{V} is *i*-pseudo-indecomposable iff \mathscr{V} is *i*-indecomposable, i=0, 1, 2, 3.

Proof. If \mathscr{V} is *i*-indecomposable, then \mathscr{V} is *i*-pseudo-indecomposable. Let \mathscr{V} be *i*-pseudo-indecomposable. Then $\mathscr{V} \supseteq \mathscr{V}' \neq \mathscr{E}, \ \mathscr{V} \neq \mathscr{A}$ if. Suppose $\mathscr{V} = \mathscr{U} \cdot \mathscr{W}, \ \mathscr{U}, \ \mathscr{W} \in L \mathscr{A}$ if. Then $\mathscr{U}' = \mathscr{E}$ or $\mathscr{W}' = \mathscr{E}, \ \mathscr{U}, \ \mathscr{W} \subseteq \mathscr{V}$. By Lemma 19, $x_1 + f(x_1) \in U$ or $x_1 + f(x_1) \in W$ for some $f \in F0^2$. Thus $x_1 = -f(x_1)$ is an identity in \mathscr{U} or in \mathscr{W} . By repeated substitutions, $x_1 = -f(-f(\dots(-f(x_1))\dots))$, we can get a term of order $\cong n$ on the right hand side. Hence $x_1 = 0$ is an identity in \mathscr{U} or in \mathscr{W} ; i.e., $\mathscr{U} = \mathscr{E}$ or $\mathscr{W} = \mathscr{E}$.

Corollary 41. If $\mathscr{V} \in L\mathscr{A}$ if, V contains all words of G0 of length n in x_1 for some n>0 and $\mathscr{V} \neq \mathscr{E}$, then \mathscr{V} is a product of a finite number of *i*-indecomposable varieties, i=0, 1, 2, 3.

This follows from Theorem 3 and Proposition 40.

From Corollary 38 $\mathscr{A}_j t$ is *i*-pseudo-indecomposable for $0 \le i < j \le 3$. The variety of all commutative algebras is 0-pseudo-indecomposable. The variety of all Jordan algebras is 0-pseudo-indecomposable. The variety of all Lie algebras is 0-indecomposable and 1-indecomposable. This follows from Corollary 28 and Proposition 40.

8. Changing the domain of operators

We will consider the effect of changing the domain of operators \mathfrak{t} on $\langle L\mathscr{V}; \cdot, \wedge, \vee \rangle$, $\mathscr{V} \in L\mathscr{A}0\mathfrak{k}$. Let \mathfrak{t}' be a commutative and associative ring with 1. We assume \mathfrak{t}' is non-trivial. Let α be a ring homomorphism of \mathfrak{t} into \mathfrak{t}' preserving 1. Let $\alpha = \ker \alpha$. For every $f \in F0 = F\mathscr{A}0\mathfrak{k}$, $f\alpha \in F\mathscr{A}0\mathfrak{t}'$ is defined by replacing all the coefficients of elements of G0 in f by their images under α . Let $\mathscr{V} \in \mathscr{A}0\mathfrak{k}$. $\alpha\mathscr{V}$ is the subvariety of $\mathscr{A}0\mathfrak{t}'$ defined by $\{f\alpha: f \in V\} = V\alpha$. Θ is the equivalence relation on $L\mathscr{A}0\mathfrak{t}$ such that $\mathscr{U}\Theta\mathscr{V}$ iff $\alpha\mathscr{U} = \alpha\mathscr{V}$. Every \mathfrak{t}' -algebra \mathfrak{R} can be considered naturally as a \mathfrak{t} -algebra: $ax = (a\alpha)x$, $a \in \mathfrak{t}$, $x \in \mathfrak{R}$. With this understanding $\alpha\mathscr{V} = = \mathscr{V} \cap \mathscr{A}0\mathfrak{t}'$. For some special cases, cf. J. M. OSBORN [17], p. 187 and M. V. VOL-KOV [25], p. 62.

Lemma 42. Let $\mathscr{V} \in L\mathscr{A}0\mathfrak{k}$. Then $\mathscr{V} \to \alpha \mathscr{V}$ is a homomorphism of $\langle L\mathscr{V}; \cdot_{\mathscr{V}}, \wedge \rangle$ into $\langle L\alpha \mathscr{V}; \cdot_{\alpha \mathscr{V}}, \wedge \rangle$ preserving all intersections.

Proof. Let $\mathscr{V}_t \in L\mathscr{V}$, $t \in I$. $(\sum \{V_t : t \in I\}) \alpha = \sum \{V_t \alpha : t \in I\}$, i.e., $\alpha \cap \{\mathscr{V}_t : t \in I\} =$ = $\cap \{\alpha \mathscr{V}_t : t \in I\}$. Let $\mathscr{U}, \mathscr{W} \in L\mathscr{V}$.

 $\alpha(\mathscr{U} \cdot_{\mathscr{V}} \mathscr{W}) = (\mathscr{U} \cdot_{\mathscr{V}} \mathscr{W}) \cap \alpha \mathscr{V} = (\mathscr{U} \cap \alpha \mathscr{V}) \cdot_{\alpha \mathscr{V}} (\mathscr{W} \cap \alpha \mathscr{V}) = \alpha \mathscr{U} \cdot_{\alpha \mathscr{V}} \alpha \mathscr{W}.$

Till the end of the present paper S is a submonoid of the multiplicative monoid of f such that $s\alpha$ is not a zero-divisor in f' for any $s \in S$ and f' is the ring of fractions of f relative to $S\alpha$. Every element in f' can be written as x/s where $s \in S$, $x \in \mathfrak{k}$, x/s = y/t iff $tx - sy \in \mathfrak{a} = \ker \alpha$. If $\mathfrak{R} \in \mathscr{A} \circ \mathfrak{l}$, $T(\mathfrak{R}) = \{x: x \in \mathfrak{R}, sx \in \mathfrak{a} \mathfrak{R} \text{ for some} s \in S\}$ and $\alpha \mathfrak{R}$ is the tensor product of f' and \mathfrak{R} as f-algebras. Clearly, $\alpha \mathfrak{R} \in \mathscr{A} \circ \mathfrak{l}'$. This construction is a covariant functor from the category $\mathscr{A} \circ \mathfrak{l}$ into the category $\mathscr{A} \circ \mathfrak{l}'$. In the case under consideration, which unifies the special case where α is a homomorphism of f onto f', i.e., $S = \{1\}$, and the one where f' is the ring of fractions of f relative to S, i.e., $\mathfrak{a} = \ker \alpha = \mathfrak{o}$, respectively, $\alpha \mathfrak{R}$ has a simple construction, cf. P. M. COHN [6], p. 21. The carrier of $\alpha \mathfrak{R}$ is the set $S \times \mathfrak{R}/\sim$ where $(s, x) \sim (t, y)$ iff $sy - tx \in T(\mathfrak{R})$. The equivalence class of (s, x) will be denoted by $(x/s)^{\tilde{}}$. We have

$$(x/s)^{\sim} + (y/t)^{\sim} = ((tx+sy)/st)^{\sim}, \quad (x/s)^{\sim} (y/t)^{\sim} = (xy/st)^{\sim}, \quad (a/s)(y/t)^{\sim} = (ay/st)^{\sim}, \\ a \in \mathfrak{k}, s, t \in S, x, y \in \mathfrak{R}.$$

Put $x\alpha' = (x/1)^{-1}$.

Some of the properties of $\alpha \Re$, α' are summarized in the following:

Lemma 43. Let $\Re \in \mathscr{V} \in L \mathscr{A}$ and let \Re be generated by Y. Then (i) $\alpha \Re \in \alpha \mathscr{V}$,

(ii) α' is a homomorphism of t-algebras whose kernel is $T(\mathfrak{R})$ and the t-subalgebra of $\alpha \mathfrak{R}$ generated by $Y\alpha'$ is isomorphic to $\mathfrak{R}/T(\mathfrak{R})$,

(iii) $\alpha \Re \cong \alpha(\Re/T(\Re))$, and

(iv) if β is a homomorphism of t-algebras from \Re into $\Re_1 \in \mathcal{AOt}'$, then there is a unique homomorphism γ of t'-algebras from $\alpha \Re$ into \Re_1 such that $\beta = \alpha' \gamma$.

Conversely, let $\Re_1 \in \mathcal{AOE}'$ be generated as a \mathfrak{t}' -algebra by Y, and let \Re be the \mathfrak{t} -subalgebra of \Re_1 generated by Y. Then $y \rightarrow y\alpha'$ can be extended to an isomorphism of \Re_1 onto $\alpha \Re$. If \Re_1 satisfies g=0 ($g \in F \mathcal{AOE}'$) and $h\alpha = g$, $h \in F \mathcal{AOE}$, then \Re satisfies h=0.

Proof. That $\alpha \Re \in \mathscr{A}0\mathfrak{l}'$ is standard. By the methods of the proof of L. H. ROWEN's [19] Proposition 1.3, p. 393, $\alpha \Re$ satisfies $f\alpha = 0$ if \Re satisfies f=0. (ii), (iii), (iv) follow from the construction of $\alpha \Re$. To check the converse, let $x \in T(\mathfrak{R})$. Then $sx = \sum \{a_i y_i: 1 \le i \le n\}, a_1, ..., a_n \in \mathfrak{a}, y_1, ..., y_n \in \mathfrak{R}$. But $\Re \subseteq \Re_1, sx = (s\alpha)x = \sum \{(a_i \alpha)y_i: 1 \le i \le n\} = 0$. Thus x = (1/s)sx = 0, i.e., $T(\mathfrak{R}) = 0$. Thus α' is injective from \mathfrak{R} into $\alpha \mathfrak{R}$. If $z \in \mathfrak{R}_1$, then $z = f(y_1, ..., y_n)$ where $f \in F \mathscr{A}0\mathfrak{l}', y_1, ..., y_n \in Y$. The coefficients in f are of the form $a_1/s_1, ..., a_m/s_m, a_1, ..., a_m \in \mathfrak{t}, s_1, ..., s_m \in S$; they can be rewritten as $b1/s, ..., bm/s, b1, ..., bm \in \mathfrak{t}, s \in S$. Thus z = (1/s)u, where $u \in \mathfrak{R}$. The mapping $(1/t)v \to (v/t)^{\sim}$ is well defined from \mathfrak{R}_1 onto $\alpha \mathfrak{R}$. (1/s)u = (1/t)v iff $(u/s)^{\sim} = (v/t)^{\sim}$. This mapping is a homomorphism and it is injective, i.e., it is an isomorphism. If \mathfrak{R}_1 satisfies g=0 and $h\alpha = g$, then \mathfrak{R} satisfies h=0 since in \mathfrak{R} , $ax = (a\alpha)x$, $a \in \mathfrak{t}$, $x \in \mathfrak{R}$.

Corollary 44. If $\mathscr{V} \in L\mathscr{A}0\mathfrak{k}$, then $\alpha \mathscr{V}$ is the class of all isomorphic copies of $\alpha \mathfrak{R}$, $\mathfrak{R} \in \mathscr{V}$. α maps $L\mathscr{A}0\mathfrak{k}$ onto $L\mathscr{A}0\mathfrak{k}'$.

Proof. From Lemma 43, $\alpha \Re \in \alpha \mathscr{V}$ if $\Re \in \mathscr{V}$ and $\Re_1 \in \alpha \mathscr{V}$ iff $\Re_1 \cong \alpha \Re$, $\Re \in \mathscr{V}$. If $\mathscr{W} \in L \mathscr{A} O \mathfrak{I}'$, then $F \mathscr{W} \cong \alpha \Re$ where \Re is the \mathfrak{I} -subalgebra of $F \mathscr{W}$ generated by X. Let $\mathscr{U} = \operatorname{var} \Re$. Then $\alpha \mathscr{U} = \mathscr{W}$, since by Lemma 43, \Re satisfies h = 0 for all $h \in F \mathscr{A} O \mathfrak{I}$, $h \alpha \in \mathscr{W}$.

Corollary 45. For any cardinal number n, $F(n, \alpha \mathscr{V}) \cong \alpha F(n, \mathscr{V})$.

Proof. Let \mathscr{V} be non-trivial and $\mathfrak{R}_1 = F(n, \alpha \mathscr{V})$. By Lemma 43, $\mathfrak{R}_1 \cong \alpha \mathfrak{R}$ where \mathfrak{R} is the f-subalgebra of \mathfrak{R}_1 generated by X(n), $\mathfrak{R} \in \mathscr{V}$. Hence there is a homomorphism β of $F(n, \mathscr{V})$ onto \mathfrak{R} such that $x\beta = x$ for all $x \in X(n)$. Hence, by Lemma 43 there is a homomorphism γ of $\alpha F(n, \mathscr{V})$ onto $\alpha \mathfrak{R}$, i.e., onto \mathfrak{R}_1 such that $x\alpha'\gamma = x$ for all $x \in X(n)$. But, there is a homomorphism δ of f'-algebras from \mathfrak{R}_1 onto $\alpha F(n, \mathscr{V}) \in \alpha \mathscr{V}$ such that $x\delta = x\alpha'$ for all $x \in X(n)$. Hence $x\delta\gamma = x$ for all $x \in X$. Thus δ is injective and so δ is an isomorphism. If $\alpha \mathscr{V}$ is trivial, then $F(n, \alpha \mathscr{V})$ is trivial and $\alpha F(n, \mathscr{V}) \in \alpha \mathscr{V}$.

For any variety $\mathscr{V} \in L\mathscr{A}0\mathfrak{k}$, $T(V) = \{f: f \in FA0\mathfrak{k} = F0, sf \in V + \mathfrak{a}F0 \text{ for some } s \in S\}$. Clearly T(V) is a T-ideal of F0 containing V.

Lemma 46. Let $\mathcal{U}, \mathcal{V} \in L \mathcal{A}$ of. Then $\alpha \mathcal{U} = \alpha \mathcal{V}$ iff T(U) = T(V).

Proof. Let $f \in T(U)$. Then $sf \in U + \alpha F0$ for some $s \in S$. $\alpha \mathcal{U}$ satisfies g=0 iff $\alpha \mathcal{U}$ satisfies sg=0. But $sf=u+a_1f_1+\ldots+a_nf_n$, $a_1, \ldots, a_n \in \alpha$, $f_1, \ldots, f_n \in F0$. Thus

 $(sf)\alpha = u\alpha + (a_1f_1 + ... + a_nf_n)\alpha = u\alpha + 0$. Thus $\alpha \mathcal{U}$ satisfies $f\alpha$ for all $f \in T(U)$. Hence $\alpha T(\mathcal{U}) = \alpha \mathcal{U}$. If T(U) = T(V), then $\alpha \mathcal{U} = \alpha T(\mathcal{U}) = \alpha T(\mathcal{V}) = \alpha \mathcal{V}$. Conversely, if $\alpha \mathcal{U} = \alpha \mathcal{V}$, then $\alpha T(\mathcal{U}) = \alpha T(\mathcal{V})$. Hence $F\alpha T(\mathcal{U}) = F\alpha T(\mathcal{V})$. The f-subalgebra of $F\alpha T(\mathcal{U})$ generated by X is isomorphic to $\mathfrak{R}/T(\mathfrak{R})$ (by Lemmas 43 and Corollary 45), where $\mathfrak{R} = FT(\mathcal{U}) \cong F0/T(U)$. Let $x \in T(\mathfrak{R})$. Then $sx \in \alpha \mathfrak{R}$ for some $s \in S$, i.e., if x = g + T(U), then $sg + T(U) \subseteq T(U) + aF0 = T(U)$. Thus $T(\mathfrak{R}) = 0$, and the f-subalgebra of $F\alpha T(\mathcal{U})$ generated by X is isomorphic to F0/T(U). Hence $F0/T(U) \cong \mathfrak{L} = F0/T(V)$. Since T(U), T(V) are T-ideals of F0, T(U) = T(V).

 $T(\mathscr{U})$ is the smallest variety among the varieties \mathscr{W} such that $\alpha \mathscr{W} = \alpha \mathscr{U}$, since if $\alpha \mathscr{W} = \alpha \mathscr{U}$, then $\mathscr{W} \subseteq T(\mathscr{W}) = T(\mathscr{U})$. In the case $\mathfrak{a} = \mathfrak{o}$, the least variety \mathscr{W} such that $\alpha \mathscr{W} = \alpha \mathscr{U}$ is called by M. V. VOLKOV [25], p. 66, the S-knotted variety associated to \mathscr{U} . Modifying slightly the terminology of M. V. VOLKOV when $\mathfrak{a} \neq \mathfrak{o}$, define a binary relation λ on $LAO\mathfrak{f}$ by $\mathscr{U} \lambda \mathscr{V}$ iff there is $s \in S$ such that $sU \subseteq V + \mathfrak{a}FO$, $sV \subseteq U + \mathfrak{a}FO$. A variety $\mathscr{V} \in L \mathscr{A}O\mathfrak{f}$ is S-joined if the restrictions of Θ and λ on $L \mathscr{V}$ coincide. M. V. VOLKOV [25], Lemma 9, p. 67, showed that λ is a congruence on $\langle L \mathscr{A}O\mathfrak{f}; \wedge, \vee \rangle$ if $\mathfrak{a} = \mathfrak{o}$. Thus λ is a lattice congruence on the lattice of varieties satisfying ax = 0 for all $a \in \mathfrak{a}$. However, λ is a congruence on the meet semi-lattice $\langle L \mathscr{A}O\mathfrak{f}; \wedge \rangle$. Let $\mathscr{U}, \mathscr{V}, \mathscr{W} \in L \mathscr{A}O\mathfrak{f}, s \in S, sU \subseteq V + \mathfrak{a}FO, sV \subseteq U + \mathfrak{a}FO$. Then $s(U+W) \subseteq V + W + \mathfrak{a}FO$ and $s(V+W) \subseteq U + W + \mathfrak{a}FO$. Also, $\lambda \subseteq \Theta$. The relation between λ and Θ is described by

Proposition 47. Let $\mathcal{U}, \mathcal{V} \in L \mathscr{A} 0^{\mathfrak{t}}$. Then $\alpha \mathcal{U} = \alpha \mathcal{V}$ iff there are $\mathcal{U}_{i}, \mathcal{V}_{i} \in L \mathscr{A} 0^{\mathfrak{t}}$, $\mathcal{U}_{i} \lambda \mathcal{V}_{i}, i \in I$, and $\mathcal{U} = \bigcap \{\mathcal{U}_{i}: i \in I\}, \mathcal{V} = \bigcap \{\mathcal{V}_{i}: i \in I\}.$

Proof. Since $\lambda \subseteq \Theta$ and α preserves all intersections, we need to show the only if part. Let $\alpha \mathscr{U} = \alpha \mathscr{V}$. By Lemma 46, T(U) = T(V). Let $I = \{(f,g): f \in U, g \in V, sf - tg \in aF0$ for some $s, t \in S\}$. If $i \in I$, i = (f,g), then \mathscr{U}_i is the variety of all algebras satisfying f = 0 and \mathscr{V}_i is the variety of algebras satisfying g = 0. Thus $\mathscr{U} \subseteq \cap {\mathscr{U}_i: i \in I}$ and $\mathscr{V} \subseteq \cap {\mathscr{V}_i: i \in I}$. Let $f \in U \subseteq T(U) = T(V)$. Then there is $s \in S$ such that $sf \in V + aF0$, i.e., there is $g \in V$ such that $sf - g \in aF0$. Thus, $\mathscr{U} \subseteq \mathscr{U}_i, i = (f,g)$. Since $\mathscr{U} = \cap {\mathscr{U}_f: f \in U}$, where \mathscr{U}_f is the variety of all algebras satisfying f = 0, $\mathscr{U} = \cap {\mathscr{U}_i: i \in I}$ and, similarly, $\mathscr{V} = \cap {\mathscr{V}_i: i \in I}$. If i = (f,g), then $sf - tg \in aF0$. Hence, $sU_i \subseteq tV_i + aF0$ and $stU_i \subseteq t^2V_i + aF0 \subseteq V_i + aF0$. Similarly $stV_i \subseteq U_i + aF0$, i.e., $\mathscr{U}_i \lambda \mathscr{V}_i$.

It is implicit in M. V. VOLKOV [25] that the join of S-knotted varieties is S-knotted (in the case a=a). This also follows once we check that $T(U \cap V) = T(U) \cap T(V)$ if $U, V \supseteq aF0$. If \mathscr{V} is a variety satisfying ax=0 for all $a \in a$, then $\alpha(\mathscr{U} \lor \mathscr{W}) =$ $= \alpha \mathscr{U} \lor \alpha \mathscr{W}$ for any $\mathscr{U}, \mathscr{W} \in L \mathscr{V}$. This follows from M. V. VOLKOV [25], p. 63. We give here another proof using T-ideals. The T-ideal αU of the variety $\alpha \mathscr{U}$ is the T-ideal of $F \mathscr{A} O \mathfrak{l}'$ generated by $U \alpha$. Thus $\alpha U = \alpha T(U)$ is generated by $T(U) \alpha$. If $U \supseteq aF0$, then $\alpha U = \alpha T(U)$ is the set of all elements of the form $(f/s)^{\tilde{}}, f \in T(U)$, $s \in S$ where $(f/s)^{\tilde{}} = (g/t)^{\tilde{}}$ iff $tf - sg \in aF0$. If $(f/s)^{\tilde{}} \in \alpha T(U \cap W)$; then $f \in T(U \cap W) = T(U) \cap T(W)$, i.e., $(f/s)^{\tilde{}} \in \alpha T(U) \cap \alpha T(W)$. If $(f/s)^{\tilde{}} \in \alpha T(U) \cap \alpha T(W)$, then f/s = g/t, where $f \in T(U), g \in T(W)$. Since $sg - tf \in aF0, sg \in T(U) + aF0 = T(U)$. Thus $g \in T(U)$, i.e., $(f/s)^{\tilde{}} \in \alpha (T(U) \cap T(W))$.

We conclude that $\mathscr{U} \to \alpha \mathscr{U}$ is a homomorphism of $\langle L\mathscr{V}; \cdot, \wedge, \vee \rangle$ onto $\langle L\alpha\mathscr{V}; \cdot, \wedge, \vee \rangle$ for any variety $\mathscr{V} \in L\mathscr{A}$ of satisfying ax=0 for all $a \in \mathfrak{a}$. This follows from Lemma 41, Corollary 44 and $\alpha(\mathscr{U} \lor \mathscr{W}) = \alpha \mathscr{U} \lor \alpha \mathscr{W}$ if $\mathscr{U}, \mathscr{W} \in L\mathscr{V}$.

A number of characterizations of S-joined varieties, in the case a=o, were given by M. V. VOLKOV [25]. The same characterizations can be modified to describe the case $a \neq o$. For instance, \mathscr{V} is S-joined iff for every subvariety \mathscr{W} of \mathscr{V} , $T(\mathscr{W})$ is finitely based relative to \mathscr{W} ; \mathscr{V} is S-joined iff for every subvariety \mathscr{W} of \mathscr{V} there is $s \in S$ such that $sT(W) \subseteq W + aF0$. This is true since if \mathscr{V} is S-joined then $\mathscr{W}\lambda T(\mathscr{W})$ since $\lambda = \Theta$ on $L\mathscr{V}$. Thus there is $s \in S$ such that $sT(W) \subseteq W + aF0$. Conversely, if for every $\mathscr{W} \in L\mathscr{V}$ there is $s \in S$ such that $sT(W) \subseteq W + aF0$, then $\mathscr{W}\lambda T(\mathscr{W})$. If $\mathscr{U}, \mathscr{W} \in L\mathscr{V}, a\mathscr{U} = a\mathscr{W}$, then $T(\mathscr{U}) = T(\mathscr{W})$ and $\mathscr{U}\lambda T(\mathscr{U}), \mathscr{W}\lambda T(\mathscr{W})$, i.e., $\mathscr{U}\lambda \mathscr{W}$. The following will show the behavior of S-joined varieties under multiplication of varieties:

Proposition 48. The S-joined subvarieties of $\mathscr{V} \in L\mathscr{A}0^{\sharp}$ form a subgroupoid with 1 of $\langle L\mathscr{V}; \cdot_{\mathscr{V}} \rangle$.

Proof. Let \mathcal{U} , \mathcal{W} be S-joined varieties, \mathcal{U} , $\mathcal{W} \in L\mathcal{V}$, and let $\mathcal{H} \subseteq \mathcal{U} \cdot_{\mathcal{T}} \mathcal{W}$, $\mathcal{H} \in L\mathcal{V}$. We need to show that there is $s \in S$ such that $sT(K) \subseteq K + aF0$. In other words, if $x \in F\mathcal{H}$ and there is $t \in S$ such that $tx \in aF\mathcal{H}$, then $sx \in aF\mathcal{H}$. Let $\mathfrak{R} = F\mathcal{H}$. Then $\mathfrak{R} \in \mathcal{U} \cdot_{\mathcal{T}} \mathcal{W}$, $\mathfrak{R}/W(\mathfrak{R}) \in \mathcal{W}$ and $\mathfrak{R}/W(\mathfrak{R}) = F\mathcal{M}$ where $\mathcal{M} \subseteq \mathcal{H}$, $W(\mathfrak{R}) \in \mathcal{U}$. $W(\mathfrak{R})$ generates a variety $\mathcal{M}_1 \subseteq \mathcal{U}$. Let $x \in \mathfrak{R}$, $t \in S$ and $tx \in a\mathfrak{R}$. Hence $t\overline{x} \in F\mathcal{M}$ where $\overline{x} = x + W(\mathfrak{R}) \in F\mathcal{M}$. Thus there is $s \in S$ not depending on x or t such that $s\overline{x} \in aF\mathcal{M}$, i.e., $sx \in W(\mathfrak{R}) + a\mathfrak{R}$ for all $x \in \mathfrak{R}$ such that there is $t \in S$ and $tx \in a\mathfrak{R}$. Thus $tsx \in a\mathfrak{R}$ and tsx = 0 in $W(\mathfrak{R}) + aR/a\mathfrak{R} \cong W(\mathfrak{R})/W(\mathfrak{R}) \cap a\mathfrak{R}$. x is a polynomial f from F0, and $tsx = tsf(x_1, ..., x_n) = 0$ is an identity in $W(\mathfrak{R})/W(\mathfrak{R}) \cap a\mathfrak{R} \cong$ $\cong W(\mathfrak{R}) + a\mathfrak{R}/a\mathfrak{R}$. But $sx \in W(\mathfrak{R}) + a\mathfrak{R}$. Hence $usx \in a\mathfrak{R}$ for any $x \in \mathfrak{R}$ such that $tx \in a\mathfrak{R}$ for some $t \in S$, i.e., $usT(K) \subseteq K + aF0$. The variety \mathscr{E} is S-joined.

Corollary 49. The S-joined varieties of $L\mathcal{V}$, $\mathcal{V} \in L\mathcal{A}0\mathfrak{k}$, form a lattice ideal of $\langle L\mathcal{V}; \wedge, \vee \rangle$.

Since a subvariety of an S-joined variety is S-joined and $\mathscr{U} \lor \mathscr{W} \subseteq \mathscr{U} \cdot_{\mathscr{V}} \mathscr{W}$ if $\mathscr{U}, \mathscr{W} \in L\mathscr{V}$, the corollary follows from Proposition 48.

That the S-joined varieties of $L \mathscr{A}$ Of $(\mathfrak{a}=\mathfrak{o})$ form a lattice ideal of $\langle L \mathscr{A}$ Of; $\wedge, \vee \rangle$ was shown by M. V. VOLKOV [25], Proposition 8, p. 72.

References

- [1] A. A. ALBERT, On the power-associativity of rings, Summa Brasil. Math., 3 (1948), 21-33.
- [2] A. A. ALBERT, Power-associative rings, Trans. Amer. Math. Soc., 64 (1948), 552-593.
- [3] G. BIRKHOFF, Lattice Theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc. (Providence, R. I., 1967).
- [4] P. M. COHN, Subalgebras of free associative algebras, Proc. London Math. Soc. (8), 14 (1964), 618-632.
- [5] P. M. COHN, Universal Algebra, Harper & Row (New York, 1965).
- [6] P. M. COHN, Free Rings and Their Relations, Academic Press (London-New York, 1971).
- [7] P. M. COHN, Algebra, vol. 2, John Wiley (London-New York-Sydney-Toronto, 1977).
- [8] C. J. EVERETT, An extension theory for rings, Amer. J. Math., 64 (1942), 363-370.
- [9] J. GOLDMAN and S. KASS, Linearization in rings and algebras, Amer. Math. Monthly, 76 (1969), 348-355.
- [10] G. GRÄTZER, Universal Algebra, 2nd ed., Springer-Verlag (New York-Heidelberg-Berlin, 1979).
- [11] A. A. ISKANDER, Product of ring varieties and attainability, Trans. Amer. Math. Soc., 193 (1974), 231-238.
- [12] A. A. ISKANDER, The radical in ring varieties, Acta Sci. Math., 39 (1977), 291-301.
- [13] A. I. MAL'CEV, Multiplication of classes of algebraic systems, Sibirsk. Math. Ž., 8 (1967), 346-365; English transl.: Siberian Math. J., 2 (1967), 245-267.
- [14] A. I. MAL'CEV, Algebraic Systems, Nauka (Moscow, 1970); English transl.: Grundlehren der math. Wissenschaften, Band 192, Springer-Verlag (Berlin-New York, 1973).
- [15] B. H. NEUMANN, HANNA NEUMANN and P. M. NEUMANN, Wreath products and varieties of groups, Math. Z., 80 (1962), 44—62.
- [16] HANNA NEUMANN, Varieties of groups, Ergebnisse der Math. und ihrer Grenzgebiete, vol. 37, Springer-Verlag (New York, 1967).
- [17] J. M. OSBORN, Varieties of algebras, Adv. in Math., 8 (1972), 163-369.
- [18] V. A. PARFENOV, Varieties of Lie algebras, Algebra i Logika, 6 (1967), no. 4, 61-73. (Russian)
- [19] L. H. ROWEN, On rings with central polynomials, J. Algebra, 31 (1974), 393-426.
- [20] O. SCHREIER, Über die Erweiterung von Gruppen. I, II, Monatsh. Math. Phys., 34 (1926), 165–180.
- [21] A. L. ŠMELKIN, The semigroup of group manifolds, Dokl. Akad. Nauk SSSR, 149 (1963), 543-545; English transl.: Soviet Math. Dokl., 4 (1963), 449-451.
- [22] T. TAMURA, Attainability of systems of identities on semigroups, J. Algebra, 3 (1966), 261-277.
- [23] T. TAMURA and F. M. YAQUB, Examples related to attainability of identities on lattices and rings, Math. Japon., 10 (1965), 35-39.
- [24] A. TARSKI, Equationally complete rings and relation algebras, Nederl. Akad. Wetensch. Proc. Ser. A, 59=Indag. Math., 18 (1956), 39-46.
- [25] M. V. VOLKOV, Lattices of varieties of algebras, Mat. Sbornik. 109 (151) (1979), 60-79. (Russian)

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTHWESTERN LOUISIANA LAFAYETTE, LOUISIANA 70504, U.S.A.