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Submaximal clones with a prime order automorphism 
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Let £ denote the lattice of clones over a finite set A, Ml = 3. A clone C g £ 
is called submaximal if it is covered by a maximal clone. Although the full list of 
maximal clones has been known for more than twenty years [14], [15], so far the 
submaximal clones have not been intensively studied, except for \A\=3. In that 
case all submaximal clones are known. The description was completed by D. LAU 
[8], making use of some earlier results [10], [3], [21] (also [1]) for the first three types 
of maximal clones (cf. Theorem 2.1 below). For arbitrary finite A, the first author 
started to investigate the maximal subclones of Poli? where Q^BczA [17]. 
D. LAU [9] found all maximal subclones of Poll? when | =1 . Recently the 
second author determined the maximal subclones of Pol s' when \A\ is prime 
and s is a cyclic permutation of A [23]. The aim of this paper is to solve the cor-
responding problem in the general case, i.e., to determine all maximal subclones of 
Pol s' where s is a fixed point free permutation of A with i " = i d (p prime). 

In general, the submaximal clones seem to be interesting for the following 
reasons. The largely unknown lattice £ has intervals with antichains of cardinality 
2N° situated far down from the top. It is not unreasonable to assume that £ is 
nicer near the top, and therefore the submaximal clones are good candidates. The 
problem of determining certain submaximal clones also came up in the second 
author's study of shortest maximal chains in fl [24]. Given a maximal clone M 
one can ask for a primality or completeness criterion for M : under what conditions 
does the clone F generated by some FQM coincide with Ml In case M is finitely 
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generated, a full list of clones maximal in M would provide a general criterion, 
because then F=M if and only if F is contained in no clone maximal in M. An 
application could be a characterization of Sheffer operations for M (i.e., f^M 
such that { / } = M ) . V. B. KUDRJAVCEV [7] and P. SCHOFIELD [22] proved that 
they exist exactly for maximal clones determined by permutations, equivalences, 
or unary relations (equivalently, these clones form a unique irredundant cover of 
the clone of all operations), but the examples provided have many variables. It 
would be interesting to have simple criteria of the type G. ROUSSEAU [20] gave for 
0, which, in its turn, could lead to the question: what is the minimum number of 
functional values whose knowledge can guarantee that an operation is Sheffer 
(fc+2 for 0 [18])? Finally, the submaximal clones may be of interest on their own, 
e.g., as a source of examples and counter-examples. 

2. Preliminaries and main result 

Let A be a finite set, \A\ s 2 . Denote by 6 the set of (finitary) operations on A. 
A clone over A is the set of polynomials [5] of some algebra with base set A, i.e., 
a subset of 0 containing the projections and closed with respect to superposition. 
It is well known that an operation is a polynomial of some algebra (A; F) if and 
only if it preserves all subalgebras of finite powers of (A; F). This permits one 
to describe clones by means of "invariant relations" in the following sense: Rela-
tions are simply subsets of finite powers of A; the subsets of A1' (0</ i<K o ) are 
called /i-ary relations. The set of relations is denoted by 01. An operation / is said 
to preserve an h-ary relation Q if Q is a subalgebra of (A;f)h. For a set of relations 
RQ&, let Pol R consist of all operations preserving every relation from R, and 
for FQG let Inv F consist of all relations preserved by every operation from F. 
It is well known and easy to check that Pol and Inv determine a Galois connec-
tion between the subsets of <3 and 01, with closure operators Fi—Pol Inv F on 
<9 and /?>-•[/?]=Inv Pol R on 01. In view of the above remark the closed sets of 
operations are exactly the clones. The closed sets of relations are called relational 
algebras [11, 1.1.8]. The set of relational algebras, ordered by inclusion, is a lattice 
£*, which is dually isomorphic to the lattice £ of clones on A (the mutually inverse 
dual isomorphisms are /?>-«-Pol R and F>->-Inv F). 

The relational algebras [/?] can be described in various ways [2], [4], [11], but 
for our purposes we shall use the following [11, 2.1]: an /j-ary relation Q belongs 
to [/?] if and only if there exists a first order formula <£(x0, ..., xh_1) (with free 
variables x0, ..., xh-j) built up from 3, A and relation symbols from /?U {=} 
such that 

Q = {(fl0, ${a0, ..., a^J holds true}. 
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Simple but useful special cases are, for example, the direct product of relations, 
the relational product ( o ) of two binary relations, the intersection of relations 
of the same arity, the permutation of the components of a relation, in particular, 
taking the inverse ( - 1 ) of a binary relation, or the projection of a relation onto some 
of its components, e.g., taking the domain (i.e., first projection) or range (second 
projection) of a binary relation. 

It is well known [11, 4.1.3] that the lattice of clones over A is dually atomic 
and has a finite number of dual atoms, which are termed maximal clones. We shall 
need their explicit description found in [14], [15] (see also [11, 5.2.2], [12]), therefore 
we recall some definitions. 

To every, say n-ary, operation / we can associate the (n+ l)-ary relation / " 
consisting of all (n+ l)-tuples (a0, ..., an-l, f(a0, ..., a„_!)) with aa, ..., a„-1£A. 
For FQG we set /*" = { / ' : f£F}. If (A; + ) is an abelian group, the quaternary 
relation (A'0 —X1 + A*2)* is referred to as the affine relation determined by (A; + ) . 
An h-ary relation O is called central if Q A'\ g is totally reflexive (i.e., contains 
all /i-tuples having repeated components), totally symmetric (i.e., invariant under 
all permutations of components), and the center {a£A : {a}XAh~1Q £>} of g is 
nonempty. A family T= {90, ..., of equivalence relations on A is said to 
be h-regular, if each (OS/<»i ) has /i( = 3) blocks, and H{B t\ O S / < m ) is 
nonempty for arbitrary blocks B-, of $ t ( 0 ^ / < m ) . The relation ).T determined by T 
consists of all /¡-tuples whose components meet at most li— 1 blocks of each 
(Og;'<m). The relations of the form ).T will be called regular (or h-regular, where 
h is the arity). The equality relation, denoted co, and the full relation A- on A are 
termed trivial equivalence relations. 

T h e o r e m 2.1 ([14], [15]). Let A be a finite set, | ^ | = 2 . The maximal clones 
on A are the clones Pol Q where O is one of the following relations: 

(O) a bounded order, 
(P) a relation g' where g is a fixed point free permutation with gp=id (p prime), 
(A) an affine relation determined by an elementary abelian p-group (p prime), 
(E) a nontrivial equivalence relation, 
(C) a central relation, 
(R) a regular relation. 

These relations will be called atomic. In view of the dual isomorphism between 
the lattices of clones and relational algebras, it is clear that the atomic relations 
are the generators of the atoms in the lattice of relational algebras. 

The aim of this paper is to describe the maximal subclones of Pol .v' where 
is an atomic relation of type (P), i p = i d . For the formulation of the main theorem 
we introduce some notation and definitions. Denote by 0 the equivalence relation 
consisting of all pairs (a,b)£A2 with a=s'(b) for some An/i-ary rela-
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tion Q will be termed 0-closed if (b0, ..., bA_i)6О whenever (a0,.-.,a»-i)€(? and 
(ait bi)£0 for all 0~2i</i. In other words, q 0-closed means that g is the full 
inverse image of a relation on the quotient set A/0 (consisting of the blocks of 
0) under the natural mapping A—A/0 sending every ad A into the block con-
taining it. In particular, 

(a) an equivalence relation Q is 0-closed if and only if 0QQ, 
(b) a regular relation >.Y with Г = { 9 0 , ..., 9m_x} is 0-closed if and only if 

© д Э о П . - . П ^ - ! , and 
(c) a central relation is 0-closed if and only if it is the inverse image of a central 

relation on A / 0 . 
An equivalence relation e will be called transversal to s if s£ Pol г and е П 0 = ш , 

i.e., s maps each block of e onto another block of e. A unary relation p. is transversal 
to s if (nXti)C[0Qu>, i.e., s'(x)$p whenever x£fi, 1 S.i<p. 

In order to determine one type of maximal subclones of Pol s' we need a result 
from group theory. For two primes q, r such that cf= 1 (mod r) and n is the least 
positive integer with this property, we denote by ©(¡у, r ) the group of linear func-
tions ax+b on GF(q") with a,bdGF(q") and d= 1. Clearly, \®(q, r)\ = q"r. 

Responding to our inquiry, P. P. P&lfy proved the following fact: 

P r o p o s i t i o n 2.2. A finite group has a maximal subgroup of order p (p prime) 
if and only if it is isomorphic to one of the groups listed below: 

(i) an abelian group of order pq (q prime), 
(ii) ©(/?, q) for a prime q with p= 1 (mod q), 

(iii) © (q, p) for a prime q^p. 

P r o o f . The sufficiency being obvious, take a finite group © which has a maximal 
subgroup § with |§|=/>. To show that © is isomorphic to one of the groups (i)— 
(iii) the only nontrivial case to consider is | © | = p n with n composite and 
n ^ O (modp). Then § is not normal, implying by the maximality of § that § 
coincides with its normalizer. Hence © is a Frobenius group to § [6, V.8.1], More-
over, again by the maximality of the usual permutation representation of © 
[6, V.8.2] is primitive, yielding that the Frobenius kernel of © is elementary abelian 
[6, V.8.19]. Now it is easy to see that every proper subgroup of © is abelian, and 
hence our statement follows from [13, Satz 4]. 

Now we define permutation groups on A as follows. For a group © whose 
order divides \A\, consider a partition of A into |©|-element blocks A0, ..., Al__l 

(/ |©| = |y4|), and select arbitrary bijections (pt: At-~© ( 0 s / < / ) . Clearly, the 
permutations жд (gd&) of A defined by xg(x)=<pf1(g(x)) for every 
and x£A; form a group, which will be called a semiregular representation of © 
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on A. (Note that a semiregular representation of © on A exists only if |©| 
divides \A\.) 

After these preparations we are in a position to state our main result: 

T h e o r e m 2.3. Let A be a finite set, \A\^2, and let s be a fixed point free 
permutation of A with i p = i d (p prime). Then the maximal subclones of Pols' are 
the clones Pol {s\ g} where g is one of the following relations: 

(Ps) a relation g' such that g is a permutation of A and {s, g} generates a semi-
regular representation of a group from Proposition 2.2, 

(As) an affine relation determined by an elementary abelian p-group (A; +) 
such that there exists an element c£A with i ( x ) = x + c for every x£A, 

(Es) a nontrivial equivalence relation that is either ©-closed or transversal to s, 
(Cs) a ©-closed central relation or a nonempty unary relation transversal to s, 
(Rs) a ©-closed regular relation. 

C o r o l l a r y 2.4. An algebra (A; F) admitting s as an automorphism is poly-
nomially equivalent to (A; Pol s') if and only if none of the relations (P5)—(Rs) 
occurs among the subalgebras of finite powers of (A; F). 

The proof of Theorem 2.3 naturally splits into two parts: one has to verify 
on the one hand that the clones listed in the theorem are indeed maximal in Pol s', 
and on the other hand, that the list is complete, i.e., all maximal subclones are 
found. Since Pol s' is finitely generated [11, 4.3.26] and hence the lattice of its 
subclones is dually atomic, the latter is equivalent to showing that every proper 
subclone of Pol s' is contained in Pol {s', £>} for some relation q listed in The-
orem 2.3. In terms of relational algebras this statement can be formulated as follows: 

T h e o r e m 2.5. Let A be a finite set, M | s 2 , and let s be a fixed point free 
permutation of A with j p = i d (p prime). Then every relational algebra properly 
including [i*] contains a relation of one of the types (Ps)—(Rs). 

The detailed (and rather lengthy) proof of Theorem 2.5 will be presented in 
the next section. Here we sketch only the main idea. The first step is to observe 
that any relational algebra properly including [s'] contains either an atomic relation 
outside [J"], or a relation g' of type (Ps) such that gp=s (see Proposition 3.3), which 
explains also the surprising similarity between Theorems 2.1 and 2.3. Therefore in 
the rest of the proof it suffices to show for each type of atomic relation Q $ [/], 
that [.s'", £?] contains a relation listed in Theorem 2.3. The proof will be construc-
tive, the steps being illustrated by the arrows in the diagram below, except for one 
case (dotted arrow) when we use an argument for the operations preserving the 
relations in question (see Lemma 3.13 and Remark 2 after it). 

3 
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E 5 ( © - c l o s e d ) 

E s ( t r a n s v . ) ( © - c l o s e d ) R s A 5 

Here C1 and C ' denote the unary relations of types C and C s , respectively. 
The maximality of the clones Pol {i1-, 0} in Pol i ' if g runs over the relations 

,(PJ—(Rs) will be proved in Section 4. In the language of relational algebras this 
part of Theorem 2.3 has the following reformulation: 

T h e o r e m 2.6. Let A be a finite set, \A\^2, and let s be a fixed point free 
permutation of A with j p = i d (p prime). Then for every relation g of type (Ps)—(Rs) 
the relational algebra [j", g] covers [s*]. 

3. Proof of Theorem 2.5 

First we introduce some notation. For a positive integer n, n will denote the 
set {0,...,«—1}. We can assume without loss of generality that A=k (hence p 
divides k) and the cycles of s are (tp,tp+1, ..., tp+p— 1), t^k/p. It will be 
convenient to write and xQi instead of s'(x) and s"~'(x), respectively 
(x€k, i£p). In particular, restricted to p, ffi and © are addition and subtraction 
modulo p. For an /i-ary relation Q and c=(c0, ...,ch_i)£p'1 we will denote by Q@C 
•the relation consisting of all/i-tuples (a0®c0, ..., ah_1®ch_1) with (a0, ..., ah_1)dg. 
The following is obvious: 

L e m m a 3.1. For every h-ary relation g and c£p'1 we have [«©c, i ' ]= [o , 51']. 

To check whether a relation belongs to [ / ] or not, we shall often need an explicit 
description of the members of [j'J. For later applications we formulate a slightly 
more general statement. 

. Lemma-3.2. Let G be a permutation group on k in which no nonidentity permuta-
tion has fixed points. Then,, up to a rearrangement of its components, every nonvoid 
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member of [G'] is a direct product of relations of the form 

(1) { ( f l ,g i (« ) , - ,g»- i ( f l ) ) : a^k} 

with /is 1 and gi, 

P r o o f . Let q£[G'], g^0, say g is n-ary, and consider a formula <P(x0, ..., AN_,) 
with bound variables x„, ...,Am_1 ( m ^ n ) , which defines g. Since G consists of 
permutations, the matrix of <£ is essentially a set of equations of the form xj=g(x,) 
with and g€G. Let ~ denote the least equivalence relation on 
{*„, ..., x,„-i} containing all such pairs Xj). Then ..., xm_1) can be 
split into the conjunction of its "subformulas" <J>B(A-,- : /</?, xfcB) corresponding 
to the ~ -blocks B. Clearly, up to the order of its components, g is the direct product 
of the relations determined by <PB. Moreover, each <PB defines a relation of the 
form (1), since the assumption on G and imply that for any i,j£B there is 
exactly one g£G with xj=g(xi). 

In the special case when G={id}, the relations described in Lemma 3.2 are 
the so called diagonal relations. The members of [<u] = [id'], i.e., the relations which 
are empty or diagonal are termed trivial relations. Clearly, a relation is trivial if and 
only if it is preserved by every operation. 

Now we can prove that "almost all" relational algebras properly including [s"J 
contain an atomic relation outside [j"]. 

P r o p o s i t i o n 3.3. Let R be a relational algebra such that ¿?z>[i"], and every 
atomic relation in R belongs to [5*]. Then R contains a relation g' for some permuta-
tion g with g"—s. 

P r o o f . We will need the following property of R. 
Claim. An ft-ary (/1^ 1) relation ci£R is diagonal whenever it contains an 

A-tuple (a, ..., a) for some a f k . In particular, every nontrivial binary relation 
¡}£R is irreflexive (i.e., /?flco=0). 

To prove the claim assume (a, ..., a)££ (a£k). It is easy to see that this implies 
(a,..., for all £'€[£]• Therefore [£], and hence also contains an 
atomic relation with the same property, unless £ is diagonal. This shows that c is 
diagonal, as stated. 

Now let be of minimum arity, say t. We prove that t=2. Clearly, 
/ S 2 since otherwise g would be a nontrivial unary relation, and hence would be 
atomic. Suppose / > 2 and let g' denote the projection of g onto its first t— 1 com-
ponents. By the minimality of t and g'£[g] it follows that g'£[.s']. Applying Lemma 
3.2 for the permutation group generated by s we get that either g' —k'~\ or gr 

(and hence also g) has a binary projection, say onto the z'-th and y'-th components 
(OS «'</<=/— 1), which is of the form (s1)' for some 0s /< /> . In the latter case g 

3 
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belongs to the relational algebra generated by s' and the (/— l)-ary projection of Q 
omitting the y'-th component. However, in view of the minimality of /, both of these 
relations belong to [5"], yielding This contradiction shows that e ' = k , _ 1 . 
Hence we have (0, . . . ,0,w)€e for some «£k. By the minimality of t, the binary 
relation consisting of all pairs {a, 6)6 k2 with (a, ..., a, b)£g belongs to 
[i'J. Clearly, therefore u can be chosen so that w£p. Set d=(0,..., 0, 0w), and 
form g®d. Obviously, (0 , . . . , 0 ) £ g ® d £ R and, by Lemma 3.1, q@d is not diagonal. 
This contradiction proves that t=2, i.e., g is binary. 

Now form the relation Clearly, a is reflexive (coQa), since 
the domain and range of g equal k. Hence a is diagonal. Suppose <x=k2. We prove 
by induction on 2sn^k that for each «-element subset {a0,..., a„_i} of k there 
is an element k such that b)dg for all By assumption this holds 
for n = 2 . Suppose it is true for some 2 ^ h < k , and take the relation 

r = {(a„, ..., ah): (a0, b), ..., (ah, b)£g for some i>£k}. 

By construction i^lg], and by the inductive assumption T is totally reflexive. Thus 
T is diagonal. Hence, in view of h ̂ 2, r=kh+1. This concludes the proof by 
induction. In particular, for n=k we obtain that there is an element e such that 
(a,e)£g for each a£k. Then (e, e)€ g, contradicting the irreflexivity of g. 

Thus (T=goQ~1—A>. A similar argument for g~x yields Q~1OQ=G>, whence 
we get that g=f for a permuta t ion/of k. Let m be the least positive integer with 
fm=id. It is easy to see that R contains all powers ( / ' ) ' = / ' 0 ••• ° / ' ( 0 s / < m ) 
o f / ' . Thus from the assumptions that and every atomic relation in R belongs 
to [ J ] , we get that the nonidentity powers o f / a r e fixed point free, m > p is a power 
of p, and (/m/p)"£|V]- Therefore some power g of / m / p has the required prop-
erty gp=s. 

From now on we can assume that / ? \ (Y] contains an atomic relation g. 
Clearly, it suffices to prove the assertion of Theorem 2.5 for the relational algebra 
]Y, <?]. The various types of atomic relations will be considered separately. 

P r o p o s i t i o n 3.4. For a nontrivial unary relation y the relational algebra 
[ j \ y] contains a nontrivial ©-closed unary relation, or a nonempty unary relation 
transversal to s. 

P r o o f . Consider a nontrivial unary relation fi£[s', y] of least possible size, 
and set pt=n®i for 0 < / < p . Clearly, for each 0 < 1 < p the relation /zO^-belongs 
t o [s*,y], and therefore, by the minimality, it is either fi or 0. Since p is prime, p. 
is ©-closed whenever p O f i ^ p . for some 0-=/</;. If / i f i ^ 1 = . . . = / i n ^ p _ 1 = 0 , 
then p is transversal to s. 
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P r o p o s i t i o n 3.5. For a bounded order ~ the relational algebra [V, con-
tains a nontrivial unary relation. 

P r o o f . Let o and e be the least and greatest elements of = . Set y— 
= {a£k: aS (a©l )} . Obviously, o£y and e^y, showing that = ] is non-
trivial. 

P r o p o s i t i o n 3.6. Let fbe a fixed point free permutation with f— id (q prime) 
such that [Y]. Then the relational algebra [5 ' , / ' ] contains either a nontrivial 
unary relation, or a binary relation g' for some permutation g which together with s 
generates a semiregular representation of a group from Proposition 2.2. 

P r o o f . Denote by G the permutation group generated by s and f and by S 
its subgroup generated by s. It is easy to see that the set of fixed points of each 
g£G belongs to [•?',/']• Thus [•?",/'] contains a nontrivial unary relation unless 
every nonidentity permutation from G is fixed point free. In that case consider a 
subgroup H of G properly containing S, and minimal with respect to this property. 
Clearly, S is a maximal subgroup of H. Thus H is a semiregular representation of 
a group § which has a maximal subgroup of order p, i.e., § is one of the groups 
listed in Proposition 2.2. It is easy to see that all relations g'€H'\S'(Q[s',f']) 
meet the requirements. 

When considering central relations and regular relations we will often use the 
following general result on ©-closed relations: 

L e m m a 3.7. Let f be a set of ©-closed relations and let ff€[r]. If the full 
relation is the single diagonal relation containing a, then a is ©-closed. 

P r o o f . Consider a formula <P(x0, ..., xh_j) with bound variables xh,...,xm_1 

defining a. Since there is no forcible repetition among the coordinates of <7, we may 
assume that the matrix of $ contains no condition of the form x — x j (such con-
ditions with at least one bound variable can be easily eliminated). Thus the matrix 
of $ consists of conditions (xit ..., xtt _,)€(? with QZT. All QZT being 0-closed, 
this implies that a is also 0-closed. 

P r o p o s i t i o n 3.8: For an at least binary central relation y the relational algebra 
[$', y] contains one of the following relations: a nontrivial unary relation, a nontrivial 
©-closed equivalence relation, a ©-closed central relation, or«a ©-closed regular 
relation. 

P r o o f . Let a be a central relation from [j", y] of least possible arity, say h. If 
h=l, we are done. Now assume / tS2, and define an (h— l)-ary relation < 7 * y ] 
to consist of all (a0, such that (a0, ..., a,, a,(Bi, al+1>..., ah-¿)€<r 
for all 0 S i < / ? and 0 ^ / < h — 1 . It is easy to see that a* inherits total reflexivity 
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and total symmetry from a. Moreover, a* contains every (h— l)-tiiple with one 
component in the center of a. Since a* is not a central relation (by the choice of a), 
we get that ff* = k* - 1 . 

Denote by T the /i-ary relation consisting of all (a0,..., alt_1)£bh with 
(a0©'o> •••» ah-i®ih-i)€ff f ° r a l l 0—'o= •••> h-x^P- The construction of x and 
the total symmetry of c guarantee that x is also totally symmetric. Using j ^ - 1 

it is easy to show that r is totally reflexive. Finally, x is a subrelation of a , and is 
clearly 0-closed. Consequently x is nontrivial, so [T] contains an atomic relation. 
By Lemma 3.7 this atomic relation is 0-closed, hence it is either an equivalence 
relation, or a central relation, or a regular relation. 

We now turn to the most sophisticated case, when g is a regular relation. Our 
departure point is 

L e m m a 3.9. For an It-regular relation g the relational algebra [ s \ £>] contains 
either a central relation or a regular relation a such that .yÇPol a. 

P r o o f . Form the relation T£|Y, g] consisting of all (a0, . . . ,a / ,_1)6k / l with 
(a0©', for every 0 ^ i < p . Clearly, t Q q is totally reflexive and 
symmetric. Thus, in view of / iS3 , the relation x is nontrivial. Furthermore, obvi-
ously, Î Ç P O I T . N O W we can make use of the following fact which is implicit in 
[15], [12]. ; 

Claim. Let 1=2, and let ç be an /-ary nontrivial, totally reflexive, totally sym-
metric relation. Then all less than /-ary relations f rom [£] are trivial, and [é] con-
tains a totally reflexive, totally symmetric atomic relation (types (E), (C), or (R)). 

By this claim, [T] contains a central or regular relation a of arity at least h. 
Clearly, s£ Pol x Q Pol o. 

In what follows, we need to consider only the regular relations g for which 
j Ç P o l e . Let q—).T where T= {90 , . . . , is an /j-regular family of equivalence 
relations. Denote 9 0 f l . . . H S ^ i by sT. It is not hard to see (cf. [19]) that sÇPol er, 
i.e., s maps each block of e r onto a block of eT. 

Lemma 3.10. Let T be an h-regular family of equivalence relations such that 
J£PO1A t . If Ii9^p or eTN0?i(o, then the relational algebra [s", Ar] contains a 
nontrivial 0-closed¿equivalence relation, a ©-closed central relation, or a ©-closed 
regular relation. 

P r o o f . First we show that h<p and E T I ) 0 = Œ cannot hold simultaneously. 
Indeed, since T is /i-regular, eT has exactly hm blocks. '< Furthermore, taking into 
account .eTO0=coi we obtain. that for each block B of . ¿T

 ; the blocks B, 
s(B), ..., sp~\B) are pairwise.distinct. Thus the prime /? divides hm, implying h^p. 
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Let a consist of all /i-tuples (a0, ..., such that (a0®i0, ..., 
for arbitrary O s / 0 , . . . , i h - ^ p - Clearly, a is totally symmetric and ©-closed. We 
prove that First let h^p. For each block B of 0 , every/i-tuple (b0, ..., bh_1)^Bh 

belongs to a because each (b0®iQ, ...,bh^1®ih_1) is in Bh and, in view of |B| = 
—p<h, contains a repetition. Now let £ r f l0?#co. Since Pol {e r , 0}, there 
exists a blockB of 0 which is contained in a block of eT. Again every (b0, ..., b h B h 

belongs to a because (b0®i0, b1@i1)^B2QeT for all OSi'0, h<p- Taking into 
account that a is 0-closed, totally symmetric, and we get that a is 
nontrivial. By Lemma 3.7 the set [a] contains a 0-closed atomic relation, which 
must be either an equivalence relation, or a central relation, or a regular relation. 

In the remaining case of h=p and sTC\0=co we have: 

L e m m a 3.11. Let T be a p-regular set of equivalence relations such that 
j£PolAr and eTf)0 = (o. Then the elements 30, ..., of T and the blocks 
Blj of (OSi'cwj, 0^j<p) can be indexed in such a way that for some integers 

mjp and O^qSm—lp the following holds: 

(2) s(B)) = 
Bj@1 if Orsi^lp and 0 £ j < p, 
B) if Ip S i < m — q and 0 ^ j < p, 
Bje 1 if m — qSi-^m and 0 ^ j < p. 

P r o o f . For the time being, denote by Dl
} (0^j<p) the blocks of (0^i-<m): 

By the regularity of T, the blocks of sT are the sets Dc=D"CaC\ ...C\D™~1
i with 

c=(c 0 , ..., cm_i)6pm. Since Pol £ r , s induces a selfmap s of pm by the equality 
s(Da)=D^a), for every a£pm. The fact j £Po lA r implies that s is a wreath func-
tion, i.e., there are a permutation p of m and permutations v, of p (0Si<m) 
such that 

s(c0, ..., <:,„_]) = (v 0 ( c^ ) , ..., vm_1(cfI(m_1))) 

for every (c0, ..., cm_a)€pm (see [20], [19]). Clearly, j p = i d implies s p =id , and 
hence np—id. Therefore we can assume without loss of generality that 

ti-i = (0...p-l)...{(l-l)p...lp-l) 

for some Q ^ l ^ m j p : Thus, for every 0 ^ i < l p and p, we have 

(3) s(£>}) = s(U (£>„: a€pm, a ( = j)) = U(D-sM: a£pm, a;=j) = D^y), 

and, similarly, for every l p ^ i < m and 0 s j < p , 

(4) s(Z>}) = D\iU). 
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s"(D)) = 

Consequently, for n=0, 1, ... we get 

D^y) if Ip s i < m, 0 ^ j p. 

The condition s"= id obviously implies that 

(5) v^+p.^.-vp, = id for every 0 ^ t < /, 

and v f= id for every In the latter case, obviously, v,- is either a p-cycle, 
or the identity. Suppose the-cyc les are exactly vm_ 9 , . . . , vm_1 (O^qSm—lp). Now 
set £ f e n = ^ ; f ; n . . . V e i a ) for every O^n^p, O s j ^ p , B^D'. for every 
l p ^ i < m — q , and for every m — q S i < m , 0 ^ j < p . Using (3)— 
(5) it is not hard to check that (2) holds. 

L e m m a 3.12. Let T be a p-regular set of equivalence relations such that j£PolA T , 
£rH0 = co, and (2) is satisfied. Then the equivalence relation f l : m—q^i^m) 
is transversal to 0 , and belongs to [$", XT]. 

P r o o f . Observe first that q^l. Indeed, q=0 would imply by (2) that s(B)=B 
holds for the block B=B%C\... flB™ -1 of eT, which is impossible, because 
s r f l 0 = f f l and s has no fixed point. Setting 9= 0(3,-: m—qS.i<m) we get from 
(2) that J£PO19, and for every block D of 9, s(D)f]D=&. Thus 9 is transversal 
to 0 . 

Let a denote the binary relation consisting of all (a, k2 such that 

(6) (a, aff i l , ..., a © ( i - l ) , b, a©(i + l), ..., a©(/?-1))£AT 

for every 0</</? . Clearly, AT]. We show that o~1oo=9. First consider 
(a,b)£k2\9, say, a£B'u, b£B'v for some m—q-^t-^m and 0 ^ u < v - < p . Then 
for i—v—u the components of the /»-tuple (6) belong to the blocks B'u,B'uS)l, ... 
...,B'u@(p_1), respectively, hence (6) does not hold, so (a,b)$a. Thus and 
hence c r ^ o e r g S . Conversely, let ¿ C B ^ D . . . D a n d 
n / Jy - « n . . . f l B J ~ \ for some 0 s / „ , Then, by (2), a © / € 5 S n . . . n J tn • q «M - 1 •» 

OB™-"'1 for every 0 s / < / ? . In view of p ^ 3 this shows that (6) holds for 0 < i < p , 
i.e., (a, ¿)6<r. Hence <7_1o<7=9, completing the proof. 

The equivalence relation f l : m—q^i^m) is trivial if and only if q=m 
and sT=(o. This case is considered below. 

L e m m a 3.13. Let T be a p-regular set of equivalence relations such that sT=co, 
.y€Pol XT, and (?) holds with q=m. Then [s', XT] contains an affine relation deter-
mined by an elementary abelian p-group (k; +) such that there exists an element 
c£k with s(x)=x+c for every 
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P r o o f . In view of Ej—co the mapping assigning to every ( j 0 , i)6pm 

the (unique) element of Bij C\ . . .C\ f f j~ \ is a bijection between pra and k. We may 
identify k and pm via this bijection. The set of equivalence relations corresponding 
to T = { 9 0 , . . . ,5m_ 1} is Z={C 0 , . . . , i„ ,_i} where is defined by (a, b)£Ci iff the 
i-th components of a and b coincide (a, i>€pm, 0 ^ i < m ) . Furthermore, since (2) 
holds with q=m, the permutation t of pm induced by s can be expressed as follows: 
/ ( x ) = x © I for every x€pm , where T = ( l , ..., 1), and ffi denotes the component-
wise addition modulo p. We want to show that the affine relation a determined by 
(pm; ©) belongs to [/', Az], or, equivalently, Pol {t\ A z } g P o l a . 

Consider an n-ary operation / £ Pol {/', Az}. To / we associate the following 
m-tuple ( /„ , . . . , / m _i) of nm-ary operations on p : for x = ( x 0 , ..., x„_1)6(pm)", 
Xj = (xy0) •••i-fj.iB-i) O" = 0j •••> n ~ 1)> and x = ( x 0 0 , .-., x0 m_ 1 , . . . ,x„_ 1 ) 0 , . . . , x n _ l m_1) 
set / ( x ) = ( / 0 ( x ) , ...,fm-i(x)). The operations ft are surjective on account of 
/ 6 Pol t'. The condition / € Pol Az translates into /¡6 P o l x for all 
where x denotes the relation on p consisting of all ^-tuples with at least one repeti-
tion. Taking into account the well-known fact [11, 2.2.4] that P o l x consists of 
all non-surjective or essentially unary operations, we infer that every ft is essentially 
unary, i.e., fi(x)=gi(xUi „) for some O ^ u ^ n , O ^ v ^ m , and some selfmap gt 

of p ( 0 I n view of / 6 P o l t' we have g i ( > ' © l ) = g I ( j ) © l for all 
and 0 S / < m , hence there exist a ^ p such that gi(y)=y®at for all j € p . Now 
it is easy to verify that / € Pol a. 

R e m a r k s . 1. The clone Pol {/', 1 2 } consists of the operations 

Q ®X0E0® ... ©X;,— 1 

where a£p'" and £•,=(£•,(/,7)) ( 0 S / < n ) are mXm matrices over p with all entries 
0 or 1 such that each column contains at most one 1, and for every there 
exists exactly one El ( 0 s / < n) whose y'-th column has a component 1. Indeed, it 
is straightforward to check that these operations do belong to Pol ( f , Az}. On 
the other hand, our argument in the proof of Lemma 3.13 shows that every 
/ £ P o l { f , Az} has the required form with a—(a0,...,am_1) and the matrices 
E0,...,E„_i defined by El(vJ,j)= 1 if Uj—l and El(i,j)=0 otherwise. For 
comparison we note that the clone Pol {/', a} consists of the operations a®x0A0® 
© . . . © x , , - ! ^ . ! where a£pm and A, n) are m X m matrices over p sat-
isfying L i o © . . . © ! ^ ^ ! . 

2. An interesting feature of the proof of Lemma 3.13 is that a.€[*', AZ] is 
shown by means of operations. There seems to be no easy way to construct a from 
/" and Xz. 

Summarizing Lemmas 3.9 through 3.13 we get: 
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P r o p o s i t i o n 3.14. For a regular relation AT the relational algebra AT] 
contains one of the following relations: a central relation, a 0-closed regular relation, 
a nontrivial equivalence relation which is either 0-closed or transversal to s, or an 
affine relation determined by an elementary abelian p-group (k; +) such that there 
exists an element c£k with 5 ( x ) = x + c for all x£k . 

P r o p o s i t i o n 3.15. For a nontrivial equivalence relation e the relational algebra 
[s', e] contains either a central relation, or a regular relation, or a nontrivial equivalence 
relation which is 0-closed or transversal to s. 

P r o o f . Let a be a maximal nontrivial equivalence relation in [ J \ e], and put 
0i={a: (a, a®i)£a} for 0 < i < p . Clearly, all <7; belong to [Y, <x]g[.s', e], there-
fore if 0 ^ t r , c k for some 0 < / < / ? , we are done. The equality <r,=k for some 
0 < / < / ? implies that a is 0-closed. Thus it remains to consider the case when <r ;=0 
for all 0<i</>, i.e., aD0 = co. Denote by T the binary relation consisting of all 
(a ,b)€k 2 such that (a, c), (c© 1, bQ 1), (a© 1, dQ 1,) (d, è)€<r for some c,d£k. 
Clearly, T£[J", <T] is symmetric, and oQx (set c=b,d—a). Furthermore, TPIJ ' ^0 , 
since (a, a® 1)£T for some a£k would imply the existence of an element cÇk 
with (a, c)£cr and (cQ 1, a)£o, yielding (cQ 1, c)€cr in contradiction to or\0 = (o. 
By the claim formulated in the proof of Lemma 3.9 the relational algebra [t] con-
tains a nontrivial equivalence relation, a nonunary central relation, or a regular 
relation. In the latter two cases, the claim of the proposition follows, so suppose 
[T] contains a nontrivial equivalence relation A. It is easy to show that every binary 
relation in [r] distinct from to contains r. Hence OQTQA. Taking into account 
0,XÇ\s',e] and the maximality of a we get that a=X=t. Thus for arbitrary (a, è)Çcr 
we have ( a © l , ¿>©1)Çt=(t (choose c=a®\,cl—b®\), which proves that jÇPol a, 
1.e., a is transversal to s. 

P r o p o s i t i o n 3.16. Let a be an affine relation determined by an elementary 
abelian p-group (k; +) (p prime). Then either there exists an element C£k such 
that s ( x ) = x + c for all .vÇk, or the relational algebra [.r\ <x] contains a nontrivial 
equivalence relation. 

P r o o f . Assume there is no c£k with i ( x ) = x + c for all xÇk, that is, the 
set £ /={(a©l)—a: a£k} contains at least two elements. Note also that 0$U as 
s is fixed point free. Hence 1. Let v denote the binary relation con-
sisting of all (a, b)£k2 such that ( a © l ) - a + 6 = ( 6 © l ) , or equivalently, (a®l)— 
— a=(b®l)—b. Then V £ [ J " , A ] and v is an equivalence relation with |£/| blocks. 
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4. Proof of Theorem 2.6 

In order to show that for every relation g listed in Theorem 2.3 the relational 
algebra [V, o] indeed covers [V], we apply a more or less standard method, the 
main point being an explicit description of the members of [.?', g]. With this at 
hand, it is already not hard to show that there is no relational algebra strictly between 
[.v-] and [s\ o]. In fact, we can accomplish a bit more than that: we determine 
all relational subalgebras of |Y, <?] (or, equivalently, all clones containing Pol Q\). 

Making use of Lemma 3.2, type (Ps) is easy to settle. 

P r o p o s i t i o n 4.1. Let g be a permutation such that { i ,g} generates a semi-
regular representation of a group © from Proposition 3.1 on k. Then the lattice of 
relational subalgebras of [.s\ g'] is isomorphic to the lattice of subgroups o / © . 

P r o o f . Let G denote the permutation group generated by {5,g}. It is clear 
that g"]=[G']. Furthermore, in view of Lemma 3.2, every relational subalgebra 
of [G'J is of the form [//"] for some subgroup H of G. It follows also that [//,"] ^ 
yi[//„'] for distinct subgroups Hlt H2 of G. 

To describe the relations in |Y, 5] for the remaining four types (As)—(Rs), 
too, we proceed, as in the proof of Lemma 3.2, according to the following scheme: 
we consider a formula 

(7) $(x0, =3x„...3xm-1r(xu, ...,*„,_;,) 

determining a nonempty relation <r€|Y, 0], and then, utilizing the special prop-
erties of g, we bring the matrix T of $ to "canonical form", yielding the required 
description. 

P r o p o s i t i o n 4.2. Let a be an affine relation determined by an elementary 
abelian p-group (k; + ) such that there exists an element c£k with i ( x ) = x + c 
for all x£k. Then the relational subalgebras of [.?', a] form a 4-element Boolean 
lattice consisting of (Y, a], |Y], [a], and [©]. 

P r o o f . Denote by L the set of operations / j 0 x u + . . . + [ll_1xl_1+frc on k 
where /?,</> ( O S / S / ) and )?0©...©j? i_1= 1, and consider a formula (7) deter-
mining a nonempty relation a(i[s', a]. Since s and x—y+z both belong to L, 
T is a solvable system of linear equations xj—f(x ig, ..., x^ ) with 1, O^y, /'„, ... 
. . . , a n d fd L. It is easy to see that every step of the usual elimination 
process yields equations of this form. Thus we can first eliminate all variables 
xh,...,xm_1, and then further elimination can express certain unknowns, say 
x,, ..., as linear functions (from L) of independent variables. Thus 

a = {(o0, ..., 0 , -1 , / ( do , flr-i). •••Jh-i(«o> «r-i)): a0> 
with ft, 
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Clearly, [a]=[f,\ . . . ^ L J . Now recall the well-known and easy fact (cf. [21], 
[1]) that L has exactly four subclones, namely, the clone of projections, the two 
clones generated by x - f c , resp., x—y+z, and L itself, which is generated by 
{x+c, x—y+z}. Thus, for every f£L we have [f']=[(o], [$"], [a], or [s", a], com-
pleting the proof. 

For the rest of the proof it will be convenient to split T into a conjunction 
R=R1L\RZ such that / \ collects all conditions involving Q and f 2 all conditions 
involving = or s'. We will denote by ~ the least equivalence relation on 
{x0, ..., xm_i} such that x f ~xy whenever x~x} or (x^x^s' appears in r „ , 
and X0, ..., Xt_! will denote the blocks of It is clear that if we fix one element 
x r j in each block Xt ( / = 0 , . . . , /— 1), then for arbitrary variable Xj (0= _/< m) with 
xj~xr there is an integer 0 s u c h that r 2 implies 

(8) (x r i, Xj)<i(scjy. 

Since <P determines a nonempty relation, and for all 0^c<d<p, 
the exponents Cj in (8) are uniquely determined. Thus T2 is equivalent to the con-
junction of the formulas (8) for all t and xj~xr , which will be denoted by 
r \ . Hence we can as well assume that $ is given in the form 

(7') <i>(x0,..., xh_i) = 3x f c . . . 3x m _ 1 ( r 1 (x 0 , ..., x m - i ) A r f (x0, ..., *„_!)). 

The ©-closed relations can be treated together. 

P r o p o s i t i o n 4.3. Let Q be a Q-closed equivalence relation, central relation, 
or regular relation. If Q is unary, then the relational subalgebras of [s", {?] are [i*, £>], 
[j"], [.?"n({?X(?)], [{?], [co], and hence they form a lattice isomorphic to Otherwise 
the relational subalgebras of [.?', £>] form a 4-element Boolean lattice consisting of 
[•?', e], [•*'], fe], and [co]. 

P r o o f . Consider a formula (7') determining a nonempty relation 0]. 
Select the variables xr^Xi (i— 0, ..., t— 1) so that x,( is free whenever Xi contains 
a free variable. We can assume without loss of generality that X0, ..., Xq_x (qSt, h) 
are exactly the blocks containing free variables, and xr=xt (i—0, ...,q— 1). Since 
Q is ©-closed, every condition (x,o, ..., xf _ t)€e in can be replaced by 

w h e r e K ' - ' ^ . J a n d •••>*••, 
~ X j . Clearly, 3x r . . . 3x r t ^ ( x ^ , ..., x r _ ) determines a relation T£[{>], and 
a is of the form 

a = {(a0 , . . . , a , ,©c 9 , . . . , a ^ Q c ^ J : (a0 , ..., a , . ^ } 

with 0 S l i < q for all q ^ i < h . 
Since the relation Q is atomic, either r is trivial, or [r]=[g]. Thus an easy 

argument shows that one of the following holds provided Q is at least binary: [<r]= 
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= <?], [j 'J, [g], or [to]. If g is unary, we have one more possibility, namely [a]= 
= [s-n(QXQ)]. 

It remains to consider equivalence relations and unary relations transversal to s. 

P r o p o s i t i o n 4.4. Let e be a nontrivial equivalence relation transversal to s. 
Then the relational subalgebras of [J ' , e] are [i", e], |Y], [eoi ' ] , [e], [to], and hence 
they form a lattice isomorphic to 9l5. 

P r o o f . Take a formula (7') determining a nonempty relation <r£[s', e], and 
define a graph G on the vertices 0, ..., t— 1 as follows: (w, v) is an edge of G if 
and only if there are x£Xu and y£Xv such that (x, appears in J \ . Since 
e is symmetric, G is undirected. In view of s£ Pol e, any condition (x, in 
can be replaced by (x ' , j / )£e provided (x, x') €(.?')' and (y, y')d(^)' are in 
for some O S T h u s each vertex / of G can be labelled by a variable x r d X t 

in such a way that 

T*= A{(xr.,xrj)£e: ( i , j ) is an edge of G} 

is equivalent to . In fact, the labelling can proceed along the paths of G. Circles 
(loops, multiple edges) do not cause the procedure to fail, because e is symmetric, 
transitive, e f X j ' X ^ Q for every 0 a n d by assumption, <r^0. Clearly, 
T j (x0, ..., xm_1) determines a relation from [e], and hence a is of the form a=x®c 
with T€[E] and c£pft. 

It is well known and easy to check that, up to the order of its components, r 
is a direct product T 0 X . . . X R I _ 1 where each r( arises from a relation 

{(a„, a0sa1£...Eak_1} 

by repeating some components. Correspondingly, < T = < 7 0 X . . . X F F , - ! and every 
binary projection of each <xt is equal to some ( j c ) ' or some (s~c)' oeo(sd)' (OS c, d< p). 
However, taking into account s£Pol e we get e=(s~c)' o j o ( / ) ' for all 0Sc</> . 
Consequently, introducing the notation Sj—Eo(sJy(0^j<p) we have (s~c)'oeo 
o(sd)'=£dQC and ECOED=EC@I for all O ^ c , d < p . This implies that e€[e1]=[e2]=. . . 
... = [sp_1]. Hence a quick analysis of the various possibilities yields that [ a ]= 
= [ s \ e] (=[ j" , e j ) , [j 'J, [ e j , [e], or [to], completing the proof. 

A symmetric, transitive, binary relation will be called a partial equivalence 
•(equivalence relation on a subset of the base set). The empty set is also considered 
a partial equivalence. The lattice of partial equivalences of p will be denoted by 
& p , and will stand for the lattice arising from £}p by adding a new greatest ele-
ment, and another element which is comparable only with the least element of Q p . 
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P r o p o s i t i o n 4.5. Let p be a nontrivial unary relation transversal to s, and let 
Hi—H®i (0= / -cp) , nu=(jiiXfij)C](sj6i)' ( 0 / < / ? ) . Then the relational subalgebras 
of[s',p] are [j", fi], [j"], and [iiij: (i•])££] with t € Q p , and hence they form a 
lattice isomorphic to £5*. 

P r o o f . A similar but simpler argument than in the previous proof yields again 
that every nonempty relation &€['•?*, p] is of the form o=xffic for some T£[/Z] 
and c£p''. The well-known description of the relations in [p] (see, e.g., [ I I , 2.2.2]) 
implies that a is a direct product of relations of the form 

ff' = {(affic0 , . . . , a ® c r _ x ) : a £ v } 

where v=fi or v=k. Clearly, if v = k , then [<7']g[j']. If v=p, then [cr'] — 
= [JIc Ci: 0 0 l ~ c t ] . Taking into account that [J", 7t ; j]=[j", //] for all 0 
we get that there are the following three possibilities for a set of relations 
RQ[s\p]: 

(a) [R]=[s',n], 
(b) [ * ] = [ • ] , 
(c) [R] = [TI] for some /7 g [n^: 0 

In the last case it is easy to see that [^]=[?rm„: (m, n)€£] where £ is the least partial 
equivalence on p such that (i,j)£i provided n^^ I I . The straightforward proof 
of the fact that the relational algebras listed in the proposition are indeed pairwise 
distinct is left to the reader. 

R e m a r k s . 1. The results above show that two clones Pol {j ' , ¿?} and 
Pol { S \ Q'} where Q=^Q' are f rom the list in Theorem 2.3 coincide if and only if 
either both of q and o' are of type (Ps) such that the corresponding permutations and 
s generate the same permutation group, or both of Q and Q' are unary relations 
transversal to s such that Q'=S'(Q) for some 0 T h i s can be verified by 
comparing the sets of maximal clones containing Pol {.?', g}, resp., Pol {.v", g'}. 
(Apply Propositions 4.1—4.5 to determine the maximal clones, and make use of 
the well-known fact [16], [11, 4.3.23] that among the maximal clones, too, there are 
only some trivial coincidences.) 

2. A similar argument shows also that for an atomic relation o the clone 
Pol {s \ a} is maximal in Pol s' if and only if a falls into one of the types (P s)—(R s) 
in Theorem 2.3. 
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