On *E*-disjunctive inverse semigroups

REIKICHI YOSHIDA

Throughout the paper, we have the following notations. Let $\Omega = \{\xi, \eta, \zeta, ...\}$ and S be inverse semigroups. Let $E(\Omega) = \{\alpha, \beta, \gamma, \delta, ...\}$ be the set of all idempotents of Ω . A congruence ϱ on S is said to be *idempotent-determined* or I. D. if $e \varrho b$ and $e \in E(S)$ imply $b \in E(S)$. Let $\mu [\tau]$ be the greatest idempotent-separating [I. D.] congruence on S. Let $N = \bigcup \{G_{\gamma}: \gamma \in Y\}$ be a Clifford semigroup, that is, a semilattice of groups. S is said to be *E-disjunctive* if $\tau = \iota$. All other definitions and notations follow the conventions of [1].

GREEN [2] proved that if S is inverse, then $\mu \cap \tau = \iota$. It is easily shown that S/τ is E-disjunctive. Hence every inverse semigroup is isomorphic with a subdirect product of a fundamental inverse semigroup S/μ and an E-disjunctive inverse semigroup S/τ . We shall discuss E-disjunctive inverse semigroups by using [2, 4]. We have immediately

Lemma 1. Let Ω be a full inverse subsemigroup of an inverse semigroup U. If Ω is E-disjunctive, then U is E-disjunctive.

An inverse semigroup $S = S[N, \Omega]$ is called a *regular extension* of N by Ω if $N \subseteq S$ and there exists a homomorphism \varkappa of S onto Ω such that $\bigcup \{(\gamma \varkappa^{-1}): \gamma \in E(\Omega)\}$ is the decomposition of N induced by the finest semilattice congruence on N [4].

Let End (N) be the set of all endomorphisms of N. Fix c in N. Define $\bar{c}: N \to N$ by $u \to cuc^{-1}$. Then \bar{c} is the inner endomorphism induced by c. Let $\Omega, Y = E(\Omega)$ and N be the same as above and let 1_{γ} be the identity element of the group G_{γ} . For each ξ in Ω , define $\xi \in End(N)$ such that (i) ξ is the inner endomorphism $\bar{1}_{\gamma}$ if $\xi = \gamma \in Y$, and (ii) ξ maps G_{γ} into $G_{\xi\gamma\xi^{-1}}(\gamma \in Y)$, in particular, it maps $G_{\xi^{-1}\xi}$ onto $G_{\xi\xi^{-1}}$.

Received February 10, 1983, and in revised form September 5, 1983.

For each pair ξ , η in Ω , define $C(\xi, \eta) \in G_{\xi_{\eta}(\xi_{\eta})^{-1}}$ satisfying

(1)
$$C(\xi\xi^{-1},\xi) = 1_{\xi\xi^{-1}} = C(\xi,\xi^{-1}\xi)$$
 for all ξ in Ω , and $C(\gamma,\delta) = 1_{\gamma\delta}$
for all γ, δ in Y ,

(2)
$$C(\eta, \zeta)^{\xi} C(\xi, \eta\zeta) = C(\xi, \eta) C(\xi\eta, \zeta), \text{ where } u^{\xi} = u^{\xi}_{\xi},$$

(3)
$$\overline{\zeta \eta} = \overline{\eta \zeta C(\eta, \zeta)}.$$

Then $\{\bar{\xi}, C(\xi, \eta): \xi, \eta \in \Omega\}$ is called a *factor set of N belonging to* Ω . Define a product in $N * \Omega = \{(a, \xi): a \in G_{\xi\xi^{-1}}, \xi \in \Omega\}$ by $(a, \xi)(b, \eta) = (ab^{\xi}C(\xi, \eta), \xi\eta)$. Then $N * \Omega$ is a regular extension of N by Ω . And the converse is valid [4]. We identify $S[N, \Omega]$ with $N * \Omega$. We obtain the following theorem immediately.

Theorem 2. Let $S = S[N, \Omega]$ be a regular extension. Then S is E-disjunctive if and only if there exists no pair γ , δ in $E(\Omega)$ with $\delta < \gamma$ satisfying

$$\{(y,\eta): \ \xi\gamma\eta\in E(\Omega), \ y^{\overline{\xi\gamma}} = [C(\xi\gamma,\eta)xC(\xi,\gamma)]^{-1}\} = \\ = \{(y,\eta): \ \xi\delta\eta\in E(\Omega), \ y^{\overline{\xi\delta}} = [C(\xi\delta,\eta)xC(\xi,\delta)]^{-1}\} \quad for \ all \quad (x,\xi)\in S.$$

Let $S = S[N, \Omega]$. S is called an *I-regular extension* if $C(\xi, \eta) = 1_{\xi\eta(\xi\eta)^{-1}}$ for all $\xi, \eta \in \Omega$. Let N be a Clifford semigroup with linking homomorphisms $\{\psi_{\gamma,\delta} : \delta < \gamma\}$. Then N is called a *D-Clifford semigroup* if there is no pair $\delta, \gamma, \delta < \gamma$, in Y such that $\psi_{\gamma\beta,\delta\beta}$ is 1-1 for all β in Y, and N is called a *W-Clifford semigroup* if $\psi_{\gamma,\delta}$ is 1-1for all $\delta < \gamma$ in Y. KRGOVIĆ and ALIMPIĆ [3] state the following theorem.

Theorem 3. Let N be a Clifford semigroup. Then N is E-disjunctive if and only if N is a D-Clifford semigroup.

Every E-disjunctive inverse semigroup S is found by constructing a regular extension of N by Ω . If N is a D-Clifford semigroup, then N is E-disjunctive by Theorem 3, and thus $S[N, \Omega]$ is E-disjunctive by Lemma 1. We need to describe the case N is not E-disjunctive. Now we get Corollary 4 for the E-disjunctivity of $S[N, \Omega]$ and Ω .

Corollary 4. Let $S = S[N, \Omega]$ and let $Y = E(\Omega)$. Suppose that $(\bar{\xi}|G_{\beta})$ maps G_{β} onto $G_{\xi\beta\xi^{-1}}$ for all $\xi \in \Omega$, $\beta \in Y$. If Ω is E-disjunctive, then S is E-disjunctive.

Let N be a W-Clifford semigroup and let S be an I-regular extension. If S is E-disjunctive, then Ω is E-disjunctive.

In what follows let Y be a semilattice and let T_Y be the Munn semigroup. Finally we discuss the E-disjunctivity of T_Y where Y is discrete. $\mathbf{1}_A$ denotes the identity mapping on the set A. $\Delta(\xi)$ [$\nabla(\xi)$] means the domain [range] of ξ .

We give the preliminary lemmas without proof.

50

Lemma 5. Let Ω be a full inverse subsemigroup of T_Y . Let $\xi, \eta \in \Omega$, $e, f \in Y$ and $\nabla(\xi) = Yl, \Delta(\eta) = Ym$. Then

 $\xi \mathbf{1}_{(Ye)}\eta$ is idempotent if and only if $(\eta|Ylem) = (\xi^{-1}|Ylem);$

 $\mathbf{1}_{(Ye)} \tau_{\Omega} \mathbf{1}_{(Yf)}$ if and only if

$$\{\eta \in \Omega: (\eta | Ylem) = (\xi^{-1} | Ylem)\} =$$

(4)

$$= \{\eta \in \Omega: (\eta | Ylfm) = (\xi^{-1} | Ylfm)\} \text{ for all } \xi \text{ in } \Omega^1.$$

Theorem 6. Let Y be a semilattice and Ω a full inverse subsemigroup of T_{Y} . Then Ω is E-disjunctive if and only if there is no pair e, f in Y, e < f, such that

(5)
$$(\eta|Yev) = (\zeta|Yev), \quad \Delta(\eta) = Yv = \Delta(\zeta), \quad \eta, \zeta \in \Omega, \quad v \in Y,$$

implies $(\eta|Yfv) = (\zeta|Yfv).$

Proof. Ω is not *E*-disjunctive $\Leftrightarrow (\exists e, f \text{ in } Y: e < f \text{ and } \mathbf{1}_{(Ye)}, \tau_{\Omega}, \mathbf{1}_{(Yf)}), \Leftrightarrow (\exists e, f \text{ in } Y: e < f \text{ and } \mathbf{1}_{(Ye)}, \forall f \in \mathcal{F})$

(6)
$$\begin{pmatrix} (\eta_1|Yelm) = (\zeta_1|Yelm), \\ \Delta(\eta_1) = Ym, \quad \Delta(\zeta_1) = Yl, \quad \eta_1, \zeta_1 \in \Omega \end{pmatrix} \Rightarrow (\eta_1|Yflm) = (\zeta_1|Yflm)).$$

Sufficiency. Suppose Ω is not *E*-disjunctive. Then there is a pair *e*, *f*, *e*<*f*, satisfying (6). We shall prove that (5) holds for such pair *e*, *f*. Assume that the set $\{\eta, \zeta, v\}$ satisfies the hypothesis in (5). Putting $\eta_1 = \eta$ and $\zeta_1 = \zeta$ in (6), we have m = v = l. Since $(\eta_1 | Yelm) = (\eta | Yev) = (\zeta | Yev) = (\zeta_1 | Yelm)$, we obtain $(\eta | Yfv) = (\zeta | Yfv)$. Hence (5) holds.

Necessity. Assume that there exists a pair e, f, e < f, satisfying (5). If $\{\eta_1, \zeta_1\}$ satisfies the hypothesis in (6), we have $\Delta(\eta) = Yv = \Delta(\zeta)$ by setting v = lm, $\eta = (\eta_1 | Yv), \zeta = (\zeta_1 | Yv)$. Since $(\eta | Yev) = (\eta_1 | Yelm) = (\zeta_1 | Yelm) = (\zeta | Yev)$, we find $(\eta_1 | Yflm) = (\zeta_1 | Yflm)$ by (5).

Let $e, f \in Y$, e < f. Define $[e, f] = \{g \in Y : e \le g \le f\}$. Y is called *discrete* if e < fimplies [e, f] to be finite. Let $Sc(e) = \{f \in Y : e < f, |[e, f]| = 2\}$ for e in Y. A tree Y means a semilattice such that, for all $e, f, g \in Y$, if $e \le g$ and $f \le g$ then either $e \le f$ or $f \le e$.

Corollary 7. Let Y be a discrete tree. Then T_Y is E-disjunctive if and only if there is no element e in Y satisfying

$$|Sc(e)| = 1,$$

(8)
$$Ye \cong Yp \quad implies \quad |Sc(p)| \le 1.$$

Proof. Sufficiency. Suppose T_{γ} is not *E*-disjunctive. Then (5) holds for some e, f, e < f, in *Y*. We may assume that $f \in Sc(e)$. Now suppose that there exists $g \in Sc(e)$ such that $g \neq f$. Define η : $Yf \cong Yg$ by $x\eta = g$ if x = f, and $x\eta = x$ if

4*

)

 $x \le e$. Define $\zeta = \mathbf{1}_{(Yf)}$ and v=f. Though $\{\eta, \zeta, v\}$ satisfies the hypothesis in (5), we obtain $(\eta | Yfv) \ne (\zeta | Yfv)$, a contradiction. Hence we have |Sc(e)| = 1.

Next assume that $Ye \cong Yp$ and $q, r \in Sc(p), q \neq r$. Define v=f and $\zeta \colon Yf \cong Yq$. Define $\eta \colon Yf \cong Yr$ by $x\eta = r$ if x=f, and $x\eta = x\zeta$ if $x \le e$. $\{\eta, \zeta, v\}$ satisfies the hypothesis in (5), but we find $(\eta | Yfv) \neq (\zeta | Yfv)$. Hence $|Sc(p)| \le 1$.

Necessity. Let $Sc(e) = \{f\}$. We shall prove that $\{e, f\}$ satisfies (5). Suppose that $\{\eta, \zeta, v\}, \eta, \zeta \in T_Y$, satisfies the hypothesis in (5). From $Sc(e) = \{f\}$, we have $fv \leq e$ or fv = f. In case $fv \leq e$ we obtain ev = fv, hence $(\eta | Yfv) = (\zeta | Yfv)$. Assume fv=f. Then we find $e < f \leq v$, and thus ev = e. Since $(\eta | Ye) = (\zeta | Ye)$, we can put $p = e\eta = e\zeta$. If $(\eta | Yfv) \neq (\zeta | Yfv), f\eta = r, f\zeta = q$, then we obtain $r, q \in Sc(p), r \neq q$, contrary to (8). Hence we conclude that $(\eta | Yfv) = (\zeta | Yfv)$.

Finally, the author wishes to thank the referee for his helpful comments.

References

- A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroups. I, II, Amer. Math. Soc. (Providence, R. I., 1961, 1967).
- [2] D. G. GREEN, The lattice of congruences on an inverse semigroup, Pacific J. Math., (1) 57 (1975), 141-151.
- [3] D. KRGOVIĆ and B. ALIMPIĆ, On idempotent pure congruence on Clifford semigroups (Abstract), International Conference on Semigroups, Szeged, 1981.
- [4] M. YAMADA, H-compatible orthodox semigroups, in: Algebraic theory of semigroups, (Proc. Conf. Szeged, 1976), Coll. Math. Soc. J. Bolyai, vol. 20, North-Holland (Amsterdam, 1979); 721-748.

OSAKA COLLEGE OF PHARMACY 2-10-65 KAWAI, MATSUBARA CITY, 580 OSAKA, JAPAN