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On the strong nilstufe of rank two torsion free groups

A. M. AGHDAM

1. Introduction

SzeLE [7] defined the nilstufe of a group G to be n, n a positive integer, if there
exists an associative ring R with additive group G such that R">0, but for every
associative ring R with additive group G the equality R"*'=0 holds. If there
exists no such positive integer n, we will say that G has nilstufe o. FEIGELSTOCK [2]
defines the strong nilstufe in a similar manner but allows non-associative rings
on G. The nilstufe and strong nilstufe of G will be denoted by #(G) and N(G),
respectively.

Unless otherwise stated, all groups in this paper are abelian, rank two torsion-
free with addition denoting the group operation. A multiplication on a group G is
meant to be the multiplication of a ring R with additive group G.

In this note we study N(G) by classifying G according to the cardinality of the
type set, T(G), of G. Here the type set of G means the set of types 7(g) of non-zero
elements g in G. (See [3], p. 109, for a definition of type.)

By [5] if G is a rank two torsion-free non-nil group (ie. N (G)>1), then the
cardinality of T(G) is at most three. In this work we will get the following results for
non-nil rank two torsion-free groups:

(i) If the cardinality of T(G) is equal to one then the type must be idempotent
and N(G)=oo.

(i) If the cardinality of T(G) is equal to two then

(a) if G is indecomposable then N(G)=2,
(b) if G is decomposable and T(G)={t;, 1.} such that t,<t,, tyt,>1,
and £st,, £#%t, then N(G)=2,
(c) in the remaining cases N(G)= .
(iii) If the cardinality of 7(G) is equal to three then N(G)= oo.
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Let x, y be independent elements of a group G of rank two. Each element w
of G has a unique representation w=ux-vy, where u, v are rational numbers. Let

= {u€Q | ux+vy€G for some v€Q}, U, = {u€Q | uyxcGY},
V = {v€Q| ux+vy€G for some ucG}, V, = {v,€0 |v,y€G}.
-y

Clearly, U,, ¥, are subgroups of U, ¥ respectively, which are isomorphic to the
pure subgroups {x)* and {y)* of G. ((x)* defotes the pure-subgroiip of G generated
by x.) We call U, Uy, V, ¥, the groups of rank one belonging to the independent set
{x,y} of G. ' '

Proposition 1 ([1], p. 107). Let G be a torsion-free abelian group of
rank two. If U, Uy, V; V, are the groups of rank one belonging to {x, y}, then U|U,=
—V/Vo

Proposxtlon 2 ([3], p 114). Let C be a pure subgroup of the torsion-free
group A such that :
. (a) 4/C is completely decomposable and homogeneous of type t,

(b) all the elements in A but not in C are of type t,
then C is a direct summand of A.

Proposition 3. Let A be a torsion-free group of rank two, T(A)={t;, t;}
and ty<t,. Let {x,y} be an independent set of A such that t(x)=ty, t(y)=t,.
Assume. U, U,, V, V, are the rank one groups belonging to {x,y}. If t(Upy)=t(U)
then (y)* is a direct summand of A. In particular, lf kU= U(, or kV=V,: for some
-integer k#0, then A is decomposable P

Proof. We have A/(y>*~U hence t(A/(y)*)—t(U) Let a be m A but not
in {y)*; then t(a)=t,. By assumption we have r(U)=t(Uy)= tl, therefore ‘the
type of all elements in A4 but not in (y)* are equal to (U )—t(A/(y)*) By PI‘OpOSl—
tion 2, {(y)* is a direct summand of 4. In particular, if kU=U, or kVﬁV{, for
some integer k>0, then because of U/U,2V[V;, we have that t(U)—t(Uo), and

" hence 4 is decomposable

2. One-element ityp'e set )

For this case we first assume that the group is indecomposable.

" Proposition 4. If G is an indecomposable and homogeneous group then any
non-zero element of E(G), the endomorphism monoid of G, is monic.

Proof. Let ¢€E(G), 0=Ker ¢G. Then r(G/Ker ¢)=1 since r(G)=2 and
Ker¢ is a pure subgroup: of -G.. We: have G/Ker @=Im ¢p<G. Assume g=
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=g+ KerpeG/Ker¢ and g¢Ker ¢. Then
1(g) = 1(G/Ker ¢) = t(Im ¢) = ¢(G) = 1(g).

On the other hand, #(§)=1t(g), therefore t(g)=1(g). Henég by Proposition 2
Ker ¢ is a summand of G. But G is indecomposable, so Ker ¢=0, and ¢ is monic.

Lemma 1. If G is an indecomposable and homogeneous group then any non-
trivial ring over G is without zero divisors.

Proof. Let (G, %) be a ring over G and let xy=0 for some x, y€G, ‘x50,
y50. By Proposition 4 any non-trivial element of E(G) is monic. For the left multl-
plication L, we have L, (y)=xy=0, which 1mp11es that L,=0, so

(1) x?=L,(x)=0.
Let {x,z} be an independent set of G. Then we have
2 xz=L,(2) =

Furthermore, since the right multiplication R, is 0 or monic, and R,(x)=xz =0,
therefore R,=0. Hence

3 ' ' 22 =R.(2) =
Taking now the left multiplication L,, by (3) we get that L, is 0, so
@ zx=L,(x)=0

By assumption {x,z} is an independent set of G, consequently by (1), (2), (3) ‘and
(4) (G, %) is a trivial ring. This shows that any non-trivial ring over G is without
zero divisors,

We conclude from this lemma that, if G is an indecomposable and homogeneous
group, then N(G)=1 or N(G)=eoo.

Now we assume G is decomposable.

Proposition 5 (REDEI—SZELE [4]). A ring R with rank one torsion-free addi-
tive group G is either an associative domain, or R®*=0. R is an integral domain if
and only if t(G) is idempotent. :

Proposition 6. Ler G= HeK and r(H)=r(K)=1. If t(H) is zdempotent
then N(G)= .

Proof. If t(H) is idempotent then by Proposition 5, H is an associative integral
domain, whence N(H )-—~ . We define a ring (G, %) by putting

“(h,k)*(h', k") = (hH'; 0).
This proves that N(G)=o-. | :
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Proposition 7. Let A; B be torsion-free, homogeneous groups of finite ranks.
If 1(A4)=1t(B) then Hom (4, B)=0.

Proof. The fact that homomorphisms are type increasing (i.e. type non-
decreasing) yields the proposition.

Lemma 2. Let G=K&H andlet v(K)=r(H)=1, t(H)=1t1(K). Then N(G)>1
implies that t(G) is idempotent and N(G)=-eo.

Proof. If t(H) is idempotent then by Proposition 6, N(G)=e. If
1(H) is not idempotent then ((G®G)=t*G)>1(G), and by Proposition 7,
Hom (G®G, G)=0. We have

mult (G) = Hom (G®G, G),
therefore G is a nil group and so N(G)=1.

3. Two-element type set

Proposition 8. If R is a finite rank, torsion-free ring without zero divisors,
then R* is homogeneous.

Proof. Let {x,, ..., x,} be an independent subset of R*. Let x be in R, x0.
First we prove that xx,, ..., xx, are independent. Suppose not. Then there exist
integers a,; ..., a, suchthat a;xx,+...+a,xx,=0, ie. x(a;x;+...+a,x,)=0; but
‘R has no zero divisors, therefore a;x,+...+a,x,=0, which is a contradiction,
since {x, ..., x,} is an independent set.

Hence if x>0y belong to R, then

my = myxx+...+mxx, = x(nyx;+...+m,x,)

implies that #(y)=t(x), and similarly nx=nyx;+...+nyx,=y(mx,+...+nx,)
implies that 7(x)=1(y). Thus t(x)=t(y), consequently R is homogeneous.

Lemma 3. Let G be a torsion-free indecomposable abelian group of rank two.
Let T(G)={t;, t;} be such that ty<t,. If {x,y} is an independent set such that
1(x)=t,, t(y)=ty, then all non-trivial rings on G satisfy the following multiplication
table:
x*= by, xy=yx=y>=0, b isa rational number.

Proof. Let (G, =) be a non-trivial ring over G. Since t<t,, in general
we have
x?=ax+by, xy=cy, yx=dy, y2=-ey.

We are going to prove that a=c=d=e=0.
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Let U, U,, V, ¥, be the rank one groups belonging to {x, y}. We claim xy=yx;
If not, then c=d, and for an arbitrary element g=ux+vy of G,

gx = ux*+ovyx, xg=ux*+oxy, gx—xg=v(d—c)y,

implying that (d—c)z€V, for all »€¥V. Hence there is an integer k=0 such that
kV=V,. Now by Proposition 3, {y)* is a direct summand of G, whlch is a contra-
diction. Hence c¢=d and xy=yx=cy.

We claim that a=0. If not, take two arbitrary elements g, =ux+vy, g,=rx+ sy
of G. Then

&1 82 = urx?+(su+rv)xy+vsy® = aurx+(urb +suc +rvc +vse) y.
This implies that aU?=U=U?, whence t(U)=1t(U?. Consequently,

1) if a=0 then ¢(U) Iisidempotent.

G is not homogeneous, hence by Proposition 8, G should have two non-zero
elements X=rx+spy, Y=ax+ fy such that XY=0, ie.

XY = (rx+sy)(ax+By) = aarx+(arb +sac+rfc+pse)y = 0.
Since x, y are independent elements, aguwr=0. By assumption a3£0, hence we
should have one of the following cases:
(i) a=0, r=0, ({i) «=0, r=0, Gil) «#0, r=0.

In case (i), s and § must be non-zero, as X0, Y>0. Hence 0=XY=s 2=
=sPey, which implies that e=0.
In case (ii), {X=rx+sy,y} is an independent set of G, and

0 = XY = (rx+sp)(By) = B(rx+sy)y,
since a=0. However, Y0, therefore B0, so that
) Xy =({x+sy)y =0.

Let H, H,, F, F, be the rank one groups belonging to {X, y}, and let g=hX+fy
be an arbitrary element of G where h€é H, f€ F. By (2) and by the assumption y*=ey
we have

gy = hXy+fy* = efy,

so we conclude that ef belongs to F for all fin F. If es0 then there is an integer
k#0 such that kF=F,, so by Proposition 3, (y)* is a direct summand of G,
contradicting the indecomposability of G. Hence e=0.

Similarly, in case (iii) we also conclude that e=0. Therefore,

3) if a0 then e=0.



58 : © A. M. Aghdam

Let g=ux+wvy be an arbitrary element of G with uc U, v€V. By (3) we have
gy=uxy+vpi=cuy, so if c is not zero then cU=V,, hence

@) : 1(U) = (V).

Now, using (1) and (4) we prove that 1(U)=1t(U,). By (1), {(U) is idempotent,
therefore h”(l) 0 or oo except for finitely many prime numbers. U,=U implies
that #(Up)=t(U), so that hJ(1)=0 implies hYe(1)=0 and hJ(l)<e implies
hYs(1)< oo, It remains to prove that hJ)y(1)=oco if hJ(1)=eco. Let. 1/p"€U and
hJ(1)=co. Then by the definition of U there is K/m¢cV such that g=(1/p")x+
+ (K/m)y€G. Let m=m'p' where (m’,p)=1. Then

g =Up)x+KIm'p)y, mg=(nlp)x+(Klp)y, (m'g—Ky/p)) = ([p")x.
By (4), 1/p'eV,, so that l/p €U,. This is correct for all n< o, hence hU°(1)= oo,
so we conclude that ¢(U)=t(U,). But t(Uy)=t(U), therefore t(Uy)=1t(U). By
Proposition 3, (y)* will be a direct summand of G which is in contradiction with
indecomposability. Consequently c=0.

By assuming a#0 we got ¢=0 and e=0, that is x*=ax+by, xy= yx—
=y*=0. Thus {z=ax+by,y} is an independent set of G, and z2=a2x%+ b%%+
+2abxy=a?x*=a’z, zp=yz=y*=0. Let W, W,,.T, T, be the rank one groups-
belonging to {z,y}. Let g=wz+1y be an arbitrary element of G and weW, t€T.
Then gz=wz?=atwz.

Since we supposed a#0, we have a*W=W,=W, hence t(W)=t(W).
Again by Proposition 3, (y)* is a direct summand of G which is a contradiction.
All contradictions are due to the assumptlon a#0. Consequently a=0.

So far we proved that

=by, xy=yx=cy, y*=ey.
Let g=ux+vy be an arbitrary element of G. Then

gx = uby+vcy = (ub+cv)y, gy = cuy+evy = (cutev)y,
hence
ub+cv =y, for s .. v
cuten = g, or some .Uo, vy in V.
This implies that (c2—be)v=v for some v;. in V,. If c2—be+%0 then there is an
integer k>0 such that kU=U,, which implies by Proposition 3 that (y)* is a
direct summand of G. This is a contradiction. Therefore

) . . c—be=0. :
If b=0 then gy=uxy+vy®=evy. Again this is a contradiction, hence
©) : b0
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By (5) and (6)
) e=0 ifandonlyif c¢=0.

If e#0 ,é.'nd' c#0 then {zs=—cx+by,y} is an inaepéndent set of.G.. We get
| -zi = (—cx+by)? = 2x2+ by —2cbxy = c*by+eb*y—2cby =
=b(eb—c)y =0 (by (),
2,y = yz; = —cxy+by* = —c?y+eby = (—c®+eb)y =0 (by (5),

. y=e. . .
Let M, M,, N, N, be the rank one groups belonging to {z,, y}, and let- g=mz,+ny
be an arbitrary element of G where mé M and n€N. Then gy=ny?*=eny, hence
eN=N,. It follows now that there is an integer k0 such that KkN=N,, so by
Proposition 3, (y)* is a direct summand of G, contradicting the indecomposability
of G. Therefore ¢=0 or ¢=0, whence by (7) ¢=0 and e=0, completing the
proof of Lemma 3.

Remark 1. In case no element of T(G)={t, 1} is idempotent, let {x,y}
be an independent set of G such that 1(x)=#, t(y)=ty; t;y<1, and f1,#t,. Then
x2=by; xy=yx=p?=0 for any ring over G.

Theorem 1. Let T(G)={t,, ,}, ty<t,, and let {x,y} be an independent set
of G such that t(x)=1,, t(y)=t,. Let U, Uy, V, V, be the rank one groups belonging
to {x,y}. If G is either indecomposable or neither t, nor t, is idempotent and t,t,>t,,
then G is a non-nil group if and only if t(UH=t({V,).

‘Proof. Suppose G is a non-nil group. By Lemma 3 and Remark 1 we have
' x2=by, xy=yx=3y2=0, b#0.

Let g=ux+vy, h=rx+sy be arbitrary elements of G with u, 76U and v, scV.
‘Then gh=bury, which implies that bU2=V,, that is t(U)=1(V,).

Conversely, if #(U?)=1(V,) then there is an integer b0 such that bU2=V,.

Let g= ux+vy, h=rx+sy be arbitrary elements of G, and define a multiplica-

tion over G by gh=bury. This multiplication is a ring over G, hence G is a non-
nil group. '

Remark 2. Let G be decomposable and let T(G)={t,?} be such that
Bt 2#t,. In [6] it has been proved that #,7,=1, implies N(G)=oo.
i Remark 3. Under the hypothesis of Theorem 1; N(G)=1 or 2. ,:N(G)=2
“if and only if 1(UD=1(V,). ' o .

- Remark 4. If G=H®K and at least one of #(H) and ¢(K) is idempotent then
by Proposition 6, N(G)=ce.
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4. At least three-element type set

Proposition 9. Let G be a torsion-free group of rank two and let T(G)=
={ty, 11, Io}. Let x,y€G be such that 1(x)=1, and t(y)=t,. Suppose that ty<t,,
to<ty. If t, t, are incomparable, then for any ring on G we have x?*=ax, y*=by,
xy=yx=0 for some a,bcQ.

Proof. The set G(t;) of elements g in G whose types are =1, form a pure
subgroup of G ([3], p. 109). Let z€G be suchthat #(z)=1,. Then z4G(¢,). Because
of the purity of G(t,), r[G(t)]=1." Since r(x¥)=¢(x)=t,, we have x xcG(fy),
thus x% and x are dependent elements, that is x*=ax for some a€(Q. Similarly
we conclude that y2=by for some b€Q. By the same token #(yx)=¢(x) implies
that yx, x€G(t,), hence yx=ex for some ecQ. Similarly we deduce that yx=fy
for some f€Q. If yx0 then #(yx)=t(x)=¢(y). This contradicts our hypothesis,
therefore yx=0. In the same way we conclude that xy=0.

If the cardinality of T(G) is greater than three, then by [5] G is nil group, that
is, N(G)=1.

If the cardinality of T(G) is equal to three then by [5] T(G) has one minimal
and two maximal elements; let {x,y} be an independent set of G such that #(x)
and 7(y) are maximal. By Proposition 9, for any ring over G we have x2=ax, xy=
=yx=0, y*=by, where g, b are rational numbers. If G is non-nil, then a or b is
non-zero, say a>0. Then x"=a""'x, hence there is no integer n such that x"=0.
This implies that N{G)= .

Theorem 2. Let G be a rank two torsion-free group and let T(G)={t,, t, ts}
be such that ty<t,, ty<t,. Let {x,y} be an independent set such that t(x)=1t,,
t(y)=f,. Let U, Uy, V, V, be the rank one groups belonging to {x,y}. Then G is
a non-nil group if and only if either t(Uy)=1t(U) and t(U,) is idempotent or t(Vy)=
=t(V) and t(V,) is idempolent.

Proof. Let G be a non-nil group. Then x*=ax, xy=yx=0, y*=by and a
or b is non-zero. We assume a>0. Let g=ux+vy be an arbitrary element of G
where u€U and v»€V. Then gx=ux®+vyx=aux. This implics that aucU, for
all u€U, so it follows that aU=U,. However, U,=U, therefore t(U)=t(U,).
Furthermore, since a0, we have x%23£0, hence #(U,) is idempotent.

Conversely, if #(U)=t(U,) and t(U,) is idempotent then there is an integer
m such that mU=U;. Let g=ux+wy, h=rx+sy be arbitrary elements of G,
and define a multiplication over G by gh=m%rx. This multiplication is a ring
over G, therefore G is a non-nil group.
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5. Concluding remarks

(a) Lemma 1 and Lemma 2 imply that if G is a homogeneous t orsion-free group
of rank two then n(G)=N(G). ~

(b) Let G be a torsion-free group of rank two and let T'(G)={t,, t,} be such
that #,<t7,. Then Lemma 3 shows that if G is indecomposable then »n(G)=N(G).
However, in the decomposable case it has been shown in [6] by an example that,
in general, n(G) and N(G) are not equal.

(¢) If G is a torsion-free group of rank two with |{T(G)|=3 then n(G)= N(G).
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