# On the strong nilstufe of rank two torsion free groups 

A. M. AGHDAM

## 1. Introduction

Szele [7] defined the nilstufe of a group $G$ to be $n, n$ a positive integer, if there exists an associative ring $R$ with additive group $G$ such that $R^{n} \neq 0$, but for every associative ring $R$ with additive group $G$ the equality $R^{n+1}=0$ holds. If there exists no such positive integer $n$, we will say that $G$ has nilstufe $\infty$. Feigelsrock [2] defines the strong nilstufe in a similar manner but allows non-associative rings on $G$. The nilstufe and strong nilstufe of $G$ will be denoted by $n(G)$ and $N(G)$, respectively.

Unless otherwise stated, all groups in this paper are abelian, rank two torsionfree with addition denoting the group operation. A multiplication on a group $G$ is meant to be the multiplication of a ring $R$ with additive group $G$.

In this note we study $N(G)$ by classifying $G$ according to the cardinality of the type set, $T(G)$, of $G$. Here the type set of $G$ means the set of types $t(g)$ of non-zero elements $g$ in $G$. (See [3], p. 109, for a definition of type.)

By [5] if $G$ is a rank two torsion-free non-nil group (i.e. $N(G)>1$ ), then the cardinality of $T(G)$ is at most three. In this work we will get the following results for non-nil rank two torsion-free groups:
(i) If the cardinality of $T(G)$ is equal to one then the type must be idempotent and $N(G)=\infty$.
(ii) If the cardinality of $T(G)$ is equal to two then
(a) if $G$ is indecomposable then $N(G)=2$,
(b) if $G$ is decomposable and $T(G)=\left\{t_{1}, t_{2}\right\}$ such that $t_{1}<t_{2}, t_{1} t_{2}>t_{2}$ and $t_{1}^{2} \neq t_{1}, t_{2}^{2} \neq t_{2}$ then $N(G)=2$,
(c) in the remaining cases $N(G)=\infty$.
(iii) If the cardinality of $T(G)$ is equal to three then $N(G)=\infty$.

Received April 8, 1983 and in revised form October 18, 1983.

Let $x, y$ be independent elements of a group $G$ of rank two. Each element $w$ of $G$ has a unique representation $w=u x+v y$, where $u, v$ are rational numbers. Let

$$
\begin{array}{rll}
U & =\{u \in Q \mid u x+v y \in G \text { for some } v \in Q\}, & U_{0}=\left\{u_{0} \in Q \mid u_{0} x \in G\right\} \\
V & =\{v \in Q \mid u x+v y \in G \text { for some } u \in G\}, & V_{0}=\left\{v_{0} \in Q \mid v_{0} y \in G\right\}
\end{array}
$$

Clearly, $U_{0}, V_{0}$ are subgroups of $U, V$ respectively, which are isomorphic to the pure subgroups $\langle x\rangle^{*}$ and $\langle y\rangle^{*}$ of $G .\left(\langle x\rangle^{*}\right.$ deñotes the pure subgroup of $\dot{G}$ generated by $x$.) We call $U, U_{0}, V, V_{0}$ the groups of rank one belonging to the independent set $\{x, y\}$ of $G$.

Proposition 1 ([1], p. 107). Let $G$ be a torsion-free abelian group of rank two. If $U, U_{0}, V, V_{0}$ are the groups of rank one belonging to $\{x, y\}$, then $U / U_{0} \cong$ $\cong V / V_{0}$.

Proposition 2 ([3], p. 114). Let $C$ be a pure subgroup of the torsion-free group $A$ such that
(a) $A / C$ is completely decomposable and homogeneous of type $t$,
(b) all the elements in $A$ but not in $C$ are of type $t$, then $C$ is a direct summand of $A$.

Proposition 3. Let $A$ be a torsion-free group of rank two, $T(A)=\left\{t_{1} ; t_{2}\right\}$ and $t_{1}<t_{2}$. Let $\{x, y\}$ be an independent set of $A$ such that $t(x)=t_{1}, t(y)=t_{2}$. Assume $, U, U_{0}, V, V_{0}$ are the rank one groups belonging to $\{x, y\}$. If $t\left(U_{0}\right)=t(U)$ then $\langle y\rangle^{*}$ is a direct summand of $A$. In particular, if $k U \leqq U_{0} \cdot$ or $k V \leqq V_{0}:$ for some integer $k \neq 0$, then $A$ is decomposable.

Proof. We have $A /\langle y\rangle^{*} \cong U$, hence $t\left(A /\langle y\rangle^{*}\right)=t(U)$. Let $a$ be in $A$ but not in $\langle y\rangle^{*}$; then $t(a)=t_{1}$. By assumption we have $t(U)=t\left(U_{0}\right)=t_{1}$, therefore the type of all elements in $A$ but not in $\langle y\rangle^{*}$ are equal to $t(U)=t\left(A \mid\langle y\rangle^{*}\right)$. By Proposition $2,\langle y\rangle^{*}$ is a direct summand of $A$. In particular, if $k U \leqq U_{0}$ or $k V \leqq V_{0}$ for some integer $k \neq 0$, then because of $U / U_{0} \cong V / V_{0}$ we have that $t(U)=t\left(U_{0}\right)$, and hence $A$ is decomposable.

## 2. One-element type set

For this case we first assume that the group is indecomposable.
Proposition 4. If $G$ is an indecomposable and homogeneous group then any non-zero element of $E(G)$, the endomorphism monoid of $G$, is monic.

Proof. Let $\varphi \in E(G), 0 \neq \operatorname{Ker} \varphi \neq G$. Then $r(G / \operatorname{Ker} \varphi)=1$ since $r(G)=2$ and $\operatorname{Ker} \varphi$ is a pure subgroup of $G$. We have $G / \operatorname{Ker} \varphi \cong \operatorname{Im} \varphi<G$. Assume $\bar{g}=$
$=g+\operatorname{Ker} \varphi \in G / \operatorname{Ker} \varphi$ and $g \notin \operatorname{Ker} \varphi$. Then.

$$
t(\bar{g})=t(G / \operatorname{Ker} \varphi)=t(\operatorname{Im} \varphi) \leqq t(G)=t(\mathrm{~g})
$$

On the other hand, $t(\bar{g}) \geqq t(g)$, therefore $t(\bar{g})=t(g)$. Hence by Proposition 2 $\operatorname{Ker} \varphi$ is a summand of $G$. But $G$ is indecomposable, so $\operatorname{Ker} \varphi=0$, and $\varphi$ is monic.

Lemma 1. If $G$ is an indecomposable and homogeneous group then any nontrivial ring over $G$ is without zero divisors.

Proof. Let $(G, *)$ be a ring over $G$ and let $x y=0$ for some $x, y \in G, x \neq 0$, $y \neq 0$. By Proposition 4 any non-trivial element of $E(G)$ is monic. For the left multiplication $L_{x}$ we have $L_{x}(y)=x y=0$, which implies that $L_{x}=0$, so

$$
\begin{equation*}
x^{2}=L_{x}(x)=0 \tag{1}
\end{equation*}
$$

Let $\{x, z\}$ be an independent set of $G$. Then we have

$$
\begin{equation*}
x z=L_{x}(z)=0 \tag{2}
\end{equation*}
$$

Furthermore, since the right multiplication $R_{z}$ is 0 or monic, and $R_{z}(x)=x z=0$, therefore $R_{z}=0$. Hence

$$
\begin{equation*}
z^{2}=R_{z}(z)=0 \tag{3}
\end{equation*}
$$

Taking now the left multiplication $L_{z}$, by (3) we get that $L_{z}$ is 0 , so

$$
\begin{equation*}
z x=L_{z}(x)=0 \tag{4}
\end{equation*}
$$

By assumption $\{x, z\}$ is an independent set of $G$, consequently by (1), (2), (3) and (4) $(G, *)$ is a trivial ring. This shows that any non-trivial ring over $G$ is without zero divisors.

We conclude from this lemma that, if $G$ is an indecomposable and homogeneous group, then $N(G)=1$ or $N(G)=\infty$.

Now we assume $G$ is decomposable.
Proposition 5 (Rédel-Szele [4]). A ring $R$ with rank one torsion-free additive group $G$ is either an associative domain, or $R^{2}=0 . R$ is an integral domain if and only if $t(G)$ is idempotent.

Proposition 6. Let $G=H \oplus K$ and $r(H) \doteq r(K)=1$. If $t(H)$ is idempotent then $N(G)=\infty$.

Proof. If $t(H)$ is idempotent then by Proposition $5, H$ is an associative integral domain, whence $N(\dot{H})=\infty$. We define a ring ( $G, *$ ) by putting

$$
(h, k) *\left(h^{\prime}, k^{\prime}\right)=\left(h h^{\prime} ; 0\right)
$$

This proves that $N(G)=\infty$.

Proposition 7. Let $A, B$ be torsion-free, homogeneous groups of finite ranks. If $t(A)>t(B)$ then $\operatorname{Hom}(A, B)=0$.

Proof. The fact that homomorphisms are type increasing (i.e. type nondecreasing) yields the proposition.

Lemma 2. Let $G=K \oplus H$ and let $r(K)=r(H)=1, t(H)=t(K)$. Then $N(G)>1$ implies that $t(G)$ is idempotent and $N(G)=\infty$.

Proof. If $t(H)$ is idempotent then by Proposition 6, $N(G)=\infty$. If $t(H)$ is not idempotent then $t(G \otimes G)=t^{2}(G)>t(G)$, and by Proposition 7, Hom $(G \otimes G, G)=0$. We have

$$
\text { mult }(G) \cong \operatorname{Hom}(G \otimes G, G)
$$

therefore $G$ is a nil group and so $N(G)=1$.

## 3. Two-element type set

Proposition 8. If $R$ is a finite rank, torsion-free ring without zero divisors, then $R^{+}$is homogeneous.

Proof. Let $\left\{x_{1}, \ldots, x_{r}\right\}$ be an independent subset of $R^{+}$. Let $x$ be in $R, x \neq 0$. First we prove that $x x_{1}, \ldots, x x_{r}$ are independent. Suppose not. Then there exist integers $a_{1} ; \ldots, a_{r}$ such that $a_{1} x x_{1}+\ldots+a_{r} x x_{r}=0$, i.e. $x\left(a_{1} x_{1}+\ldots+a_{r} x_{r}\right)=0$; but $\boldsymbol{R}$ has no zero divisors, therefore $a_{1} x_{1}+\ldots+a_{r} x_{r}=0$, which is a contradiction, since $\left\{x_{1}, \ldots, x_{r}\right\}$ is an independent set.

Hence if $x \neq 0 \neq y$ belong to $R$, then

$$
m y=m_{1} x x_{1}+\ldots+m_{r} x x_{r}=x\left(m_{1} x_{1}+\ldots+m_{r} x_{r}\right)
$$

implies that $t(y) \geqq t(x)$, and similarly $n x=n_{1} y x_{1}+\ldots+n_{r} y x_{r}=y\left(n_{1} x_{1}+\ldots+n_{r} x_{r}\right)$ implies that $t(x) \geqq t(y)$. Thus $t(x)=t(y)$, consequently $R$ is homogeneous.

Lemma 3. Let $G$ be a torsion-free indecomposable abelian group of rank two. Let $T(G)=\left\{t_{1}, t_{2}\right\}$ be such that $t_{1}<t_{2}$. If $\{x, y\}$ is an independent set such that $t(x)=t_{1}, t(y)=t_{2}$, then all non-trivial rings on $G$ satisfy the following multiplication table:

$$
x^{2}=b y, \quad x y=y x=y^{2}=0, \quad b \text { is a rational number. }
$$

Proof. Let $(G, *)$ be a non-trivial ring over $G$. Since $t_{1}<t_{2}$, in general we have

$$
x^{2}=a x+b y, \quad x y=c y, \quad y x=d y, \quad y^{2}=e y
$$

We are going to prove that $a=c=d=e=0$.

Let $U, U_{0}, V, V_{0}$ be the rank one groups belonging to $\{x, y\}$. We claim $x y=y x$ : If not, then $c \neq d$, and for an arbitrary element $g=u x+v y$ of $G$,

$$
g x=u x^{2}+v y x, \quad x g=u x^{2}+v x y, \quad g x-x g=v(d-c) y
$$

implying that $(d-c) v \in V_{0}$ for all $v \in V$. Hence there is an integer $k \neq 0$ such that $k V \leqq V_{0}$. Now by Proposition $3,\langle y\rangle^{*}$ is a direct summand of $G$, which is a contradiction. Hence $c=d$ and $x y=y x=c y$.

We claim that $a=0$. If not, take two arbitrary elements $g_{1}=u x+v y, g_{2}=r x+s y$ of $G$. Then

$$
g_{1} g_{2}=u r x^{2}+(s u+r v) x y+v s y^{2}=a u r x+(u r b+s u c+r v c+v s e) y
$$

This implies that $a U^{2} \leqq U \leqq U^{2}$, whence $t(U)=t\left(U^{2}\right)$. Consequently,

$$
\begin{equation*}
\text { if } a \neq 0 \text { then } t(U) \text { is idempotent. } \tag{1}
\end{equation*}
$$

$G$ is not homogeneous, hence by Proposition $8, G$ should have two non-zero elements $X=r x+s y, Y=\alpha x+\beta y$ such that $X Y=0$, i.e.

$$
X Y=(r x+s y)(\alpha x+\beta y)=a \alpha r x+(\alpha r b+s \alpha c+r \beta c+\beta s e) y=0
$$

Since $x, y$ are independent elements, $a x r=0$. By assumption $a \neq 0$, hence we should have one of the following cases:
(i) $\alpha=0, r=0$,
(ii) $\alpha=0, r \neq 0$,
(iii) $\alpha \neq 0, \quad r=0$.

In case (i), $s$ and $\beta$ must be non-zero, as $X \neq 0, Y \neq 0$. Hence $0=X Y=s \beta y^{2}=$ $=s \beta e y$, which implies that $e=0$.

In case (ii), $\{X=r x+s y, y\}$ is an independent set of $G$, and

$$
0=X Y=(r x+s y)(\beta y)=\beta(r x+s y) y
$$

since $\alpha=0$. However, $Y \neq 0$, therefore $\beta \neq 0$, so that

$$
\begin{equation*}
X y=(r x+s y) y=0 . \tag{2}
\end{equation*}
$$

Let $H, H_{0}, F, F_{0}$ be the rank one groups belonging to $\{X, y\}$, and let $g=h X+f y$ be an arbitrary element of $G$ where $h \in H, f \in F$. By (2) and by the assumption $y^{2}=e y$ we have

$$
g y=h X y+f y^{2}=e f y
$$

so we conclude that $e f$ belongs to $F_{0}$ for all $f$ in $F$. If $e \neq 0$ then there is an integer $k \neq 0$ such that $k F \leqq F_{0}$, so by Proposition $3,\langle y\rangle^{*}$ is a direct summand of $G$, contradicting the indecomposability of $G$. Hence $e=0$.
Similarly, in case (iii) we also conclude that $e=0$. Therefore,

$$
\begin{equation*}
\text { if } a \neq 0 \text { then } e=0 \tag{3}
\end{equation*}
$$

Let $g=u x+v y$ be an arbitrary element of $G$ with $u \in U, v \in V$. By (3) we have $g y=u x y+v y^{2}=c u y$, so if $c$ is not zero then $c U \leqq V_{0}$, hence

$$
\begin{equation*}
t(U .) \leqq t\left(V_{0}\right) \tag{4}
\end{equation*}
$$

Now, ușing (1) and (4) we prove that $t(U)=t\left(U_{0}\right)$. By (1), $t(U)$ is idempotent, therefore $h_{p}^{U}(1)=0$ or $\infty$ except for finitely many prime numbers. $U_{0} \leqq U$ implies that $t\left(U_{0}\right) \leqq t(U)$, so that $h_{p}^{U}(1)=0$ implies $h_{p}^{U_{0}(1)=0}$ and $h_{p}^{U}(1)<\infty$ implies $h_{p}^{U_{0}}(1)<\infty$. It remains to prove that $h_{p}^{U_{0}}(1)=\infty$ if $h_{p}^{U}(1)=\infty$. Let $1 / p^{n} \in U$ and $h_{p}^{U}(1)=\infty$. Then by the definition of $U$ there is $K / m \in V$ such that $g=\left(1 / p^{n}\right) x+$ $+(K / m) y \in G$. Let $m=m^{\prime} p^{i}$ where $\left(m^{\prime}, p\right)=1$. Then

$$
g=\left(1 / p^{n}\right) x+\left(K / m^{\prime} p^{i}\right) y, \quad m^{\prime} g=\left(m^{\prime} / p^{n}\right) x+\left(K / p^{i}\right) y, \quad\left(m^{\prime} g-K\left(y / p^{i}\right)\right)=\left(m^{\prime} / p^{n}\right) x
$$

By (4), $1 / p^{i} \in V_{0}$, so that $1 / p^{n} \in U_{0}$. This is correct for all $n<\infty$, hence $h_{p}^{U_{0}}(1)=\infty$, so we conclude that $t(U) \leqq t\left(U_{0}\right)$. But $t\left(U_{0}\right) \leqq t(U)$, therefore $t\left(U_{0}\right)=t(U)$. By Proposition $3,\langle y\rangle^{*}$ will be a direct summand of $G$ which is in contradiction with indecomposability. Consequently $c=0$.

By assuming $a \neq 0$ we got $c=0$ and $e=0$, that is $x^{2}=a x+b y, x y=y x=$ $=y^{2}=0$. Thus $\{z=a x+b y, y\}$ is an independent set of $G$, and $z^{2}=a^{2} x^{2}+b^{2} y^{2}+$ $+2 a b x y=a^{2} x^{2}=a^{2} z, z y=y z=y^{2}=0$. Let $W, W_{0}, T, T_{0}$ be the rank one groups belonging to $\{z, y\}$. Let $g=w z+t y$ be an arbitrary element of $G$ and $w \in W, t \in T$. Then $g z=w z^{2}=a^{2} w z$.

Since we supposed $a \neq 0$, we have $a^{2} W \leqq W_{0} \leqq W$, hence $t\left(W_{0}\right)=t(W)$. Again by Proposition 3, $\langle y\rangle^{*}$ is a direct summand of $G$ which is a contradiction. All contradictions are due to the assumption $a \neq 0$. Consequently $a=0$.

So far we proved that

$$
x^{2}=b y, \quad x y=y x=c y, \quad y^{2}=e y .
$$

Let $g=u x+v y$ be an arbitrary element of $G$. Then

$$
g x=u b y+v c y=(u b+c v) y, \quad g y=c u y+e v y=(c u+e v) y
$$

hence

$$
\begin{aligned}
u b+c v & =v_{0} \\
c u+e v & =v_{0}^{\prime} \\
\text { for some } v_{0}, v_{0}^{\prime} & \text { in } V_{0} .
\end{aligned}
$$

This implies that $\left(c^{2}-b e\right) v=v_{0}^{\prime \prime}$ for some $v_{0}^{\prime \prime}$. in $V_{0}$. If $c^{2}-b e \neq 0$ then there is an integer $k \neq 0$ such that $k U \leqq U_{0}$, which implies by Proposition 3 that $\langle y\rangle^{*}$ is a direct summand of $G$. This is a contradiction. Therefore

$$
\begin{equation*}
c^{2}-b e=0 \tag{5}
\end{equation*}
$$

If $b=0$ then $g y=u x y+v y^{2}=e v y$. Again this is a contradiction, hence

$$
\begin{equation*}
b \neq 0 \tag{6}
\end{equation*}
$$

By (5) and (6)

$$
\begin{equation*}
e=0 \quad \text { if and only if } c=0 \tag{7}
\end{equation*}
$$

If $e \neq 0$ and $c \neq 0$ then $\left\{z_{1}=-c x+b y, y\right\}$ is an independent set of $G$. We get

$$
\begin{gathered}
z_{1}^{2} \doteq(-c x+b y)^{2}=c^{2} x^{2}+b^{2} y^{2}-2 c b x y=c^{2} b y+e b^{2} y-2 c^{2} b y= \\
=b\left(e b-c^{2}\right) y=0 \quad(\text { by }(5)) \\
z_{1} y=y z_{1}=-c x y+b y^{2}=-c^{2} y+e b y=\left(-c^{2}+e b\right) y=0 \quad(\text { by }(5)) \\
y^{2}=e y
\end{gathered}
$$

Let $M, M_{0}, N, N_{0}$ be the rank one groups belonging to $\left\{z_{1}, y\right\}$, and let $g=m z_{1}+n y$ be an arbitrary element of $G$ where $m \in M$ and $n \in N$. Then $g y=n y^{2}=e n y$, hence $e N \leqq N_{0}$. It follows now that there is an integer $k \neq 0$ such that $k N \leqq N_{0}$, so by Proposition $3,\langle y\rangle^{*}$ is a direct summand of $G$, contradicting the indecomposability of $G$. Therefore $c=0$ or $e=0$, whence by (7) $c=0$ and $e=0$, completing the proof of Lemma 3.

Remark 1. In case no element of $T(G)=\left\{t_{1}, t_{2}\right\}$ is idempotent, let $\{x, y\}$ be an independent set of $G$ such that $t(x)=t_{1}, t(y)=t_{2}, t_{1}<t_{2}$ and $t_{1} t_{2} \neq t_{2}$. Then $x^{2}=b y ; x y=y x=y^{2}=0$ for any ring over $G$.

Theorem 1. Let $T(G)=\left\{t_{1}, t_{2}\right\}, t_{1}<t_{2}$, and let $\{x, y\}$ be an independent set of $G$ such that $t(x)=t_{1}, t(y)=t_{2}$. Let $U, U_{0}, V, V_{0}$ be the rank one groups belonging to $\{x, y\}$. If $G$ is either indecomposable or neither $t_{1}$ nor $t_{2}$ is idempotent and $t_{1} t_{2}>t_{2}$, then $G$ is a non-nil group if and only if $t\left(U^{2}\right) \leqq t\left(V_{0}\right)$.

Proof. Suppose $G$ is a non-nil group. By Lemma 3 and Remark 1 we have

$$
x^{2}=b y, \quad x y=y x=y^{2}=0, \quad b \neq 0 .
$$

Let $g=u x+v y, h=r x+s y$ be arbitrary elements of $G$ with $u, r \in U$ and $v, s \in V$. Then $g h=b u r y$, which implies that $b U^{2} \leqq V_{0}$, that is $t\left(U^{2}\right) \leqq t\left(V_{0}\right)$.

Conversely, if $t\left(U^{2}\right) \leqq t\left(V_{0}\right)$ then there is an integer $b \neq 0$ such that $b U^{2} \leqq V_{0}$. Let $g=u x+v y, h=r x+s y$ be arbitrary elements of $G$, and define a multiplication over $G$ by $g h=b u r y$. This multiplication is a ring over $G$, hence $G$ is a nonnil group.

Remark 2. Let $G$ be decomposable and let $T(G)=\left\{t_{1}, t_{2}\right\}$ be such that $t_{1}^{2} \neq t_{1}, t_{2}^{2} \neq t_{2}$ : In [6] it has been proved that $t_{1} t_{2}=t_{2}$ implies $N(G)=\infty$.

Remark 3. Under the hypothesis of Theorem 1; $N(G)=1$ or $2 . N(G)=2$ if and only if $t\left(U^{2}\right) \leqq t\left(V_{0}\right)$.

Remark 4. If $G=H \oplus K$ and at least one of $t(H)$ and $t(K)$ is idempotent then by Proposition 6, $N(G)=\infty$.

## 4. At least three-element type set

Proposition 9. Let $G$ be a torsion-free group of rank two and let $T(G)=$ $=\left\{t_{0}, t_{1}, t_{2}\right\}$. Let $x, y \in G$ be such that $t(x)=t_{1}$ and $t(y)=t_{2}$. Suppose that $t_{0}<t_{1}$, $t_{0}<t_{2}$. If $t_{1}, t_{2}$ are incomparable, then for any ring on $G$ we have $x^{2}=a x, y^{2}=b y$, $x y=y x=0$ for some $a, b \in Q$.

Proof. The set $G\left(t_{1}\right)$ of elements $g$ in $G$ whose types are $\geqq t_{1}$ form a pure subgroup of $G([3], p .109)$. Let $z \in G$ be such that $t(z)=t_{0}$. Then $z \notin G\left(t_{1}\right)$. Because of the purity of $G\left(t_{1}\right), r\left[G\left(t_{1}\right)\right]=1$. Since $t\left(x^{2}\right) \geqq t(x)=t_{1}$, we have $x^{2}, x \in G\left(t_{1}\right)$, thus $x^{2}$ and $x$ are dependent elements, that is $x^{2}=a x$ for some $a \in Q$. Similarly we conclude that $y^{2}=b y$ for some $b \in Q$. By the same token $t(y x) \geqq t(x)$ implies that $y x, x \in G\left(t_{1}\right)$, hence $y x=e x$ for some $e \in Q$. Similarly we deduce that $y x=f y$ for some $f \in Q$. If $y x \neq 0$ then $t(y x)=t(x)=t(y)$. This contradicts our hypothesis, therefore $y x=0$. In the same way we conclude that $x y=0$.

If the cardinality of $T(G)$ is greater than three, then by [5] $G$ is nil group, that is, $N(G)=1$.

If the cardinality of $T(G)$ is equal to three then by [5] $T(G)$ has one minimal and two maximal elements; let $\{x, y\}$ be an independent set of $G$ such that $t(x)$. and $t(y)$ are maximal. By Proposition 9, for any ring over $G$ we have $x^{2}=a x, x y=$ $=y x=0, y^{2}=b y$, where $a, b$ are rational numbers. If $G$ is non-nil, then $a$ or $b$ is. non-zero, say $a \neq 0$. Then $x^{n}=a^{n-1} x$, hence there is no integer $n$ such that $x^{n}=0$. This implies that $N(G)=\infty$.

Theorem 2. Let $G$ be a rank two torsion-free group and let $T(G)=\left\{t_{0}, t_{1}, t_{2}\right\}$ be such that $t_{0}<t_{1}, t_{0}<t_{2}$. Let $\{x, y\}$ be an independent set such that $t(x)=t_{1}$, $t(y)=t_{2}$. Let $U, U_{0}, V, V_{0}$ be the rank one groups belonging to $\{x, y\}$. Then $G$ is a non-nil group if and only if either $t\left(U_{0}\right)=t(U)$ and $t\left(U_{0}\right)$ is idempotent or $t\left(V_{0}\right)=$ $=t(V)$ and $t\left(V_{0}\right)$ is idempotent.

Proof. Let $G$ be a non-nil group. Then $x^{2}=a x, x y=y x=0, y^{2}=b y$ and $a$ or $b$ is non-zero. We assume $a \neq 0$. Let $g=u x+v y$ be an arbitrary element of $G$ where $u \in U$ and $v \in V$. Then $g x=u x^{2}+v y x=a u x$. This implies that $a u \in U_{0}$ for all $u \in U$, so it follows that $a U \leqq U_{0}$. However, $U_{0} \leqq U$, therefore $t(U)=t\left(U_{0}\right)$. Furthermore, since $a \neq 0$, we have $x^{2} \neq 0$, hence $t\left(U_{0}\right)$ is idempotent.

Conversely, if $t(U)=t\left(U_{0}\right)$ and $t\left(U_{0}\right)$ is idempotent then there is an integer $m$ such that $m U \leqq U_{0}$. Let $g=u x+v y, h=r x+s y$ be arbitrary elements of $G$, and define a multiplication over $G$ by $g h=m^{2} u r x$. This multiplication is a ring over $G$, therefore $G$ is a non-nil group.

## 5. Concluding remarks

(a) Lemma 1 and Lemma 2 imply that if $G$ is a homogeneous torsion-free group of rank two then $n(G)=N(G)$.
(b) Let $G$ be a torsion-free group of rank two and let $T(G)=\left\{t_{1}, t_{2}\right\}$ be such that $t_{1}<t_{2}$. Then Lemma 3 shows that if $G$ is indecomposable then $n(G)=N(G)$. However, in the decomposable case it hás been shown in [6] by an example that, in general, $n(G)$ and $N(G)$ are not equal.
(c) If $G$ is a torsion-free group of rank two with $|T(G)| \geqq 3$ then $n(G)=N(G)$.

## References

[1] R. A. Beaumont and R. J. Wisner, Rings with additive group which is a torsion-free group of rank two, Acta Sci. Math., 20 (1959), 105-116.
[2] S. Feigelstock, On the nilstufe of homogeneous groups, Acta Sci. Math., 36 (1974), 27-28.
[3] L. Fuchs, Infinite Abelian Growps, Vol. II, Academic Press (New York, 1973).
[4] L. Rédei and T. Szele, Die Ringe „ersten Ranges", Acta Sci. Math., 12 (1950), 18-29.
[5] A. E. Stratton, The type set of torsion-free rings of finite rank, Comnent. Math. Univ. St. Pauli, 27 (1979), 199-211.
[6] A. E. Stratron and M. C. Webb, Type sets and nilpotent multiplications, Acta Sci. Math., 41 (1979), 209-213.
[7] T. Szele, Gruppentheoretische Beziehungen bei gewissen Ringkonstruktionen, Math. Z., 54 (1951), 168-180.

