On the strong nilstufe of rank two torsion free groups

A. M. AGHDAM

1. Introduction

SZELE [7] defined the nilstufe of a group G to be n, n a positive integer, if there exists an associative ring R with additive group G such that $R^n \neq 0$, but for every associative ring R with additive group G the equality $R^{n+1}=0$ holds. If there exists no such positive integer n, we will say that G has nilstufe ∞ . FEIGELSTOCK [2] defines the strong nilstufe in a similar manner but allows non-associative rings on G. The nilstufe and strong nilstufe of G will be denoted by n(G) and N(G), respectively.

Unless otherwise stated, all groups in this paper are abelian, rank two torsionfree with addition denoting the group operation. A multiplication on a group G is meant to be the multiplication of a ring R with additive group G.

In this note we study N(G) by classifying G according to the cardinality of the type set, T(G), of G. Here the type set of G means the set of types t(g) of non-zero elements g in G. (See [3], p. 109, for a definition of type.)

By [5] if G is a rank two torsion-free non-nil group (i.e. N(G) > 1), then the cardinality of T(G) is at most three. In this work we will get the following results for non-nil rank two torsion-free groups:

(i) If the cardinality of T(G) is equal to one then the type must be idempotent and $N(G) = \infty$.

- (ii) If the cardinality of T(G) is equal to two then
 - (a) if G is indecomposable then N(G)=2,
 - (b) if G is decomposable and $T(G) = \{t_1, t_2\}$ such that $t_1 < t_2, t_1 t_2 > t_2$ and $t_1^2 \neq t_1, t_2^2 \neq t_2$ then N(G) = 2,
 - (c) in the remaining cases $N(G) = \infty$.
- (iii) If the cardinality of T(G) is equal to three then $N(G) = \infty$.

Received April 8, 1983 and in revised form October 18, 1983.

Let x, y be independent elements of a group G of rank two. Each element w of G has a unique representation w = ux + vy, where u, v are rational numbers. Let

$$U = \{u \in Q \mid ux + vy \in G \text{ for some } v \in Q\}, \quad U_0 = \{u_0 \in Q \mid u_0 x \in G\},$$
$$V = \{v \in Q \mid ux + vy \in G \text{ for some } u \in G\}, \quad V_0 = \{v_0 \in Q \mid v_0 y \in G\}.$$

Clearly, U_0 , V_0 are subgroups of U, V respectively, which are isomorphic to the pure subgroups $\langle x \rangle^*$ and $\langle y \rangle^*$ of G. ($\langle x \rangle^*$ denotes the pure subgroup of G generated by x.) We call U, U_0 , V, V_0 the groups of rank one belonging to the independent set $\{x, y\}$ of G.

Proposition 1 ([1], p. 107). Let G be a torsion-free abelian group of rank two. If U, U_0 , V, V_0 are the groups of rank one belonging to $\{x, y\}$, then $U/U_0 \cong \cong V/V_0$.

Proposition 2 ([3], p. 114). Let C be a pure subgroup of the torsion-free group A such that

(a) A/C is completely decomposable and homogeneous of type t,

(b) all the elements in A but not in C are of type t,

then C is a direct summand of A.

Proposition 3. Let A be a torsion-free group of rank two, $T(A) = \{t_1, t_2\}$ and $t_1 < t_2$. Let $\{x, y\}$ be an independent set of A such that $t(x) = t_1$, $t(y) = t_2$. Assume U, U_0 , V, V_0 are the rank one groups belonging to $\{x, y\}$. If $t(U_0) = t(U)$ then $\langle y \rangle^*$ is a direct summand of A. In particular, if $kU \le U_0$ or $kV \le V_0$ for some integer $k \ne 0$, then A is decomposable.

Proof. We have $A/\langle y \rangle^* \cong U$, hence $t(A/\langle y \rangle^*) = t(U)$. Let *a* be in *A* but not in $\langle y \rangle^*$; then $t(a)=t_1$. By assumption we have $t(U)=t(U_0)=t_1$, therefore the type of all elements in *A* but not in $\langle y \rangle^*$ are equal to $t(U)=t(A/\langle y \rangle^*)$. By Proposition 2, $\langle y \rangle^*$ is a direct summand of *A*. In particular, if $kU \cong U_0$ or $kV \cong V_0$ for some integer $k \neq 0$, then because of $U/U_0 \cong V/V_0$ we have that $t(U)=t(U_0)$, and hence *A* is decomposable.

2. One-element type set

For this case we first assume that the group is indecomposable.

Proposition 4. If G is an indecomposable and homogeneous group then any non-zero element of E(G), the endomorphism monoid of G, is monic.

Proof. Let $\varphi \in E(G)$, $0 \neq \operatorname{Ker} \varphi \neq G$. Then $r(G/\operatorname{Ker} \varphi) = 1$ since r(G) = 2 and Ker φ is a pure subgroup of G. We have $G/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi < G$. Assume $\overline{g} =$ $=g + \operatorname{Ker} \varphi \in G/\operatorname{Ker} \varphi$ and $g \notin \operatorname{Ker} \varphi$. Then

$$t(\bar{g}) = t(G/\operatorname{Ker} \varphi) = t(\operatorname{Im} \varphi) \leq t(G) = t(g).$$

On the other hand, $t(\bar{g}) \ge t(g)$, therefore $t(\bar{g}) = t(g)$. Hence by Proposition 2 Ker φ is a summand of G. But G is indecomposable, so Ker $\varphi = 0$, and φ is monic.

Lemma 1. If G is an indecomposable and homogeneous group then any nontrivial ring over G is without zero divisors.

Proof. Let (G, *) be a ring over G and let xy=0 for some $x, y \in G, x \neq 0$, $y \neq 0$. By Proposition 4 any non-trivial element of E(G) is monic. For the left multiplication L_x we have $L_x(y)=xy=0$, which implies that $L_x=0$, so

(1)
$$x^2 = L_x(x) = 0.$$

Let $\{x, z\}$ be an independent set of G. Then we have

$$(2) xz = L_x(z) = 0.$$

Furthermore, since the right multiplication R_z is 0 or monic, and $R_z(x)=xz=0$, therefore $R_z=0$. Hence

(3)
$$z^2 = R_z(z) = 0.$$

Taking now the left multiplication L_z , by (3) we get that L_z is 0, so

By assumption $\{x, z\}$ is an independent set of G, consequently by (1), (2), (3) and (4) (G, *) is a trivial ring. This shows that any non-trivial ring over G is without zero divisors.

We conclude from this lemma that, if G is an indecomposable and homogeneous group, then N(G)=1 or $N(G)=\infty$.

Now we assume G is decomposable.

Proposition 5 (RéDEI—SZELE [4]). A ring R with rank one torsion-free additive group G is either an associative domain, or $R^2=0$. R is an integral domain if and only if t(G) is idempotent.

Proposition 6. Let $G=H\oplus K$ and r(H)=r(K)=1. If t(H) is idempotent then $N(G)=\infty$.

Proof. If t(H) is idempotent then by Proposition 5, H is an associative integral domain, whence $N(H) = \infty$. We define a ring (G, *) by putting

$$(h, k) * (h', k') = (hh', 0).$$

This proves that $N(G) = \infty$.

A. M. Aghdam

Proposition 7. Let A; B be torsion-free, homogeneous groups of finite ranks. If t(A) > t(B) then Hom (A, B) = 0.

Proof. The fact that homomorphisms are type increasing (i.e. type non-decreasing) yields the proposition.

Lemma 2. Let $G = K \oplus H$ and let r(K) = r(H) = 1, t(H) = t(K). Then N(G) > 1 implies that t(G) is idempotent and $N(G) = \infty$.

Proof. If t(H) is idempotent then by Proposition 6, $N(G) = \infty$. If t(H) is not idempotent then $t(G \otimes G) = t^2(G) > t(G)$, and by Proposition 7, Hom $(G \otimes G, G) = 0$. We have

mult $(G) \cong \text{Hom} (G \otimes G, G)$,

therefore G is a nil group and so N(G)=1.

3. Two-element type set

Proposition 8. If R is a finite rank, torsion-free ring without zero divisors, then R^+ is homogeneous.

Proof. Let $\{x_1, ..., x_r\}$ be an independent subset of R^+ . Let x be in R, $x \neq 0$. First we prove that $xx_1, ..., xx_r$ are independent. Suppose not. Then there exist integers $a_1, ..., a_r$ such that $a_1xx_1 + ... + a_rx_r = 0$, i.e. $x(a_1x_1 + ... + a_rx_r) = 0$; but R has no zero divisors, therefore $a_1x_1 + ... + a_rx_r = 0$, which is a contradiction, since $\{x_1, ..., x_r\}$ is an independent set.

Hence if $x \neq 0 \neq y$ belong to R, then

$$my = m_1 x x_1 + \ldots + m_r x x_r = x(m_1 x_1 + \ldots + m_r x_r)$$

implies that $t(y) \ge t(x)$, and similarly $nx = n_1yx_1 + ... + n_ryx_r = y(n_1x_1 + ... + n_rx_r)$ implies that $t(x) \ge t(y)$. Thus t(x) = t(y), consequently R is homogeneous.

Lemma 3. Let G be a torsion-free indecomposable abelian group of rank two. Let $T(G) = \{t_1, t_2\}$ be such that $t_1 < t_2$. If $\{x, y\}$ is an independent set such that $t(x) = t_1$, $t(y) = t_2$, then all non-trivial rings on G satisfy the following multiplication table:

 $x^2 = by$, $xy = yx = y^2 = 0$, b is a rational number.

Proof. Let (G, *) be a non-trivial ring over G. Since $t_1 < t_2$, in general we have

 $x^2 = ax + by$, xy = cy, yx = dy, $y^2 = ey$.

We are going to prove that a=c=d=e=0.

Let U, U_0, V, V_0 be the rank one groups belonging to $\{x, y\}$. We claim xy = yx. If not, then $c \neq d$, and for an arbitrary element g = ux + vy of G,

$$gx = ux^2 + vyx, \quad xg = ux^2 + vxy, \quad gx - xg = v(d-c)y,$$

implying that $(d-c)v \in V_0$ for all $v \in V$. Hence there is an integer $k \neq 0$ such that $kV \leq V_0$. Now by Proposition 3, $\langle y \rangle^*$ is a direct summand of G, which is a contradiction. Hence c=d and xy=yx=cy.

We claim that a=0. If not, take two arbitrary elements $g_1=ux+vy$, $g_2=rx+sy$ of G. Then

$$g_1g_2 = urx^2 + (su + rv)xy + vsy^2 = aurx + (urb + suc + rvc + vse)y.$$

This implies that $aU^2 \leq U \leq U^2$, whence $t(U) = t(U^2)$. Consequently,

(1) if
$$a \neq 0$$
 then $t(U)$ is idempotent.

G is not homogeneous, hence by Proposition 8, G should have two non-zero elements X=rx+sy, $Y=\alpha x+\beta y$ such that XY=0, i.e.

$$XY = (rx + sy)(\alpha x + \beta y) = a\alpha rx + (\alpha rb + s\alpha c + r\beta c + \beta se) y = 0.$$

Since x, y are independent elements, $a\alpha r=0$. By assumption $a\neq 0$, hence we should have one of the following cases:

(i) $\alpha = 0$, r = 0, (ii) $\alpha = 0$, $r \neq 0$, (iii) $\alpha \neq 0$, r = 0.

In case (i), s and β must be non-zero, as $X \neq 0$, $Y \neq 0$. Hence $0 = XY = s\beta y^2 = s\beta ey$, which implies that e=0.

In case (ii), $\{X=rx+sy, y\}$ is an independent set of G, and

$$0 = XY = (rx + sy)(\beta y) = \beta(rx + sy)y,$$

since $\alpha = 0$. However, $Y \neq 0$, therefore $\beta \neq 0$, so that

Let H, H_0, F, F_0 be the rank one groups belonging to $\{X, y\}$, and let g=hX+fy be an arbitrary element of G where $h \in H, f \in F$. By (2) and by the assumption $y^2 = ey$ we have

$$gy = hXy + fy^2 = efy,$$

so we conclude that ef belongs to F_0 for all f in F. If $e \neq 0$ then there is an integer $k \neq 0$ such that $kF \leq F_0$, so by Proposition 3, $\langle y \rangle^*$ is a direct summand of G, contradicting the indecomposability of G. Hence e=0.

Similarly, in case (iii) we also conclude that e=0. Therefore,

(3) if
$$a \neq 0$$
 then $e = 0$.

Let g=ux+vy be an arbitrary element of G with $u \in U$, $v \in V$. By (3) we have $gy=uxy+vy^2=cuy$, so if c is not zero then $cU \le V_0$, hence

$$(4) t(U) \leq t(V_0).$$

Now, using (1) and (4) we prove that $t(U) = t(U_0)$. By (1), t(U) is idempotent, therefore $h_p^U(1)=0$ or ∞ except for finitely many prime numbers. $U_0 \leq U$ implies that $t(U_0) \leq t(U)$, so that $h_p^U(1)=0$ implies $h_p^{U_0}(1)=0$ and $h_p^U(1)<\infty$ implies $h_p^{U_0}(1)<\infty$. It remains to prove that $h_p^{U_0}(1)=\infty$ if $h_p^U(1)=\infty$. Let $1/p^n \in U$ and $h_p^U(1)=\infty$. Then by the definition of U there is $K/m \in V$ such that $g=(1/p^n)x+$ $+(K/m)y \in G$. Let $m=m'p^i$ where (m', p)=1. Then

$$g = (1/p^n)x + (K/m'p^i)y, \quad m'g = (m'/p^n)x + (K/p^i)y, \quad (m'g - K(y/p^i)) = (m'/p^n)x.$$

By (4), $1/p^i \in V_0$, so that $1/p^n \in U_0$. This is correct for all $n < \infty$, hence $h_p^{U_0}(1) = \infty$, so we conclude that $t(U) \le t(U_0)$. But $t(U_0) \le t(U)$, therefore $t(U_0) = t(U)$. By Proposition 3, $\langle y \rangle^*$ will be a direct summand of G which is in contradiction with indecomposability. Consequently c=0.

By assuming $a \neq 0$ we got c=0 and e=0, that is $x^2=ax+by$, $xy=yx==y^2=0$. Thus $\{z=ax+by, y\}$ is an independent set of G, and $z^2=a^2x^2+b^2y^2++2abxy=a^2x^2=a^2z$, $zy=yz=y^2=0$. Let W, W_0 , T, T_0 be the rank one groups belonging to $\{z, y\}$. Let g=wz+ty be an arbitrary element of G and $w\in W$, $t\in T$. Then $gz=wz^2=a^2wz$.

Since we supposed $a \neq 0$, we have $a^2W \leq W_0 \leq W$, hence $t(W_0) = t(W)$. Again by Proposition 3, $\langle y \rangle^*$ is a direct summand of G which is a contradiction. All contradictions are due to the assumption $a \neq 0$. Consequently a=0.

So far we proved that

$$x^2 = by, \quad xy = yx = cy, \quad y^2 = ey.$$

Let g=ux+vy be an arbitrary element of G. Then

$$gx = uby + vcy = (ub + cv)y$$
, $gy = cuy + evy = (cu + ev)y$,

hence

 $ub + cv = v_0$ $cu + ev = v'_0$ for some v_0 , v'_0 in V_0 .

This implies that $(c^2-be)v=v_0''$ for some v_0'' in V_0 . If $c^2-be\neq 0$ then there is an integer $k\neq 0$ such that $kU \leq U_0$, which implies by Proposition 3 that $\langle y \rangle^*$ is a direct summand of G. This is a contradiction. Therefore

$$c^2 - be = 0.$$

If b=0 then $gy=uxy+vy^2=evy$. Again this is a contradiction, hence

 $b\neq 0.$

By (5) and (6)
(7)
$$e = 0$$
 if and only if $c = 0$.
If $e \neq 0$ and $c \neq 0$ then $\{z_1 = -cx + by, y\}$ is an independent set of G. We get
 $z_1^2 = (-cx + by)^2 = c^2 x^2 + b^2 y^2 - 2cbxy = c^2 by + eb^2 y - 2c^2 by =$
 $= b(eb - c^2) y = 0$ (by (5)),
 $z_1 y = yz_1 = -cxy + by^2 = -c^2 y + eby = (-c^2 + eb) y = 0$ (by (5)),
 $y^2 = ey$.

Let M, M_0, N, N_0 be the rank one groups belonging to $\{z_1, y\}$, and let $g=mz_1+ny$ be an arbitrary element of G where $m \in M$ and $n \in N$. Then $gy=ny^2=eny$, hence $eN \leq N_0$. It follows now that there is an integer $k \neq 0$ such that $kN \leq N_0$, so by Proposition 3, $\langle y \rangle^*$ is a direct summand of G, contradicting the indecomposability of G. Therefore c=0 or e=0, whence by (7) c=0 and e=0, completing the proof of Lemma 3.

Remark 1. In case no element of $T(G) = \{t_1, t_2\}$ is idempotent, let $\{x, y\}$ be an independent set of G such that $t(x) = t_1$, $t(y) = t_2$, $t_1 < t_2$ and $t_1 t_2 \neq t_2$. Then $x^2 = by$, $xy = yx = y^2 = 0$ for any ring over G.

Theorem 1. Let $T(G) = \{t_1, t_2\}, t_1 < t_2$, and let $\{x, y\}$ be an independent set of G such that $t(x) = t_1, t(y) = t_2$. Let U, U_0, V, V_0 be the rank one groups belonging to $\{x, y\}$. If G is either indecomposable or neither t_1 nor t_2 is idempotent and $t_1 t_2 > t_2$, then G is a non-nil group if and only if $t(U^2) \leq t(V_0)$.

Proof. Suppose G is a non-nil group. By Lemma 3 and Remark 1 we have

$$x^2 = by, xy = yx = y^2 = 0, b \neq 0.$$

Let g=ux+vy, h=rx+sy be arbitrary elements of G with $u, r \in U$ and $v, s \in V$. Then gh=bury, which implies that $bU^2 \leq V_0$, that is $t(U^2) \leq t(V_0)$.

Conversely, if $t(U^2) \le t(V_0)$ then there is an integer $b \ne 0$ such that $bU^2 \le V_0$. Let g = ux + vy, h = rx + sy be arbitrary elements of G, and define a multiplication over G by gh = bury. This multiplication is a ring over G, hence G is a non-nil group.

Remark 2. Let G be decomposable and let $T(G) = \{t_1, t_2\}$ be such that $t_1^2 \neq t_1, t_2^2 \neq t_2$. In [6] it has been proved that $t_1 t_2 = t_2$ implies $N(G) = \infty$.

Remark 3. Under the hypothesis of Theorem 1, N(G)=1 or 2. N(G)=2 if and only if $t(U^2) \leq t(V_0)$.

Remark 4. If $G=H\oplus K$ and at least one of t(H) and t(K) is idempotent then by Proposition 6, $N(G) = \infty$.

A. M. Aghdam

4. At least three-element type set

Proposition 9. Let G be a torsion-free group of rank two and let $T(G) = = \{t_0, t_1, t_2\}$. Let x, $y \in G$ be such that $t(x) = t_1$ and $t(y) = t_2$. Suppose that $t_0 < t_1$, $t_0 < t_2$. If t_1 , t_2 are incomparable, then for any ring on G we have $x^2 = ax$, $y^2 = by$, xy = yx = 0 for some $a, b \in Q$.

Proof. The set $G(t_1)$ of elements g in G whose types are $\geq t_1$ form a pure subgroup of G([3], p. 109). Let $z \in G$ be such that $t(z) = t_0$. Then $z \notin G(t_1)$. Because of the purity of $G(t_1)$, $r[G(t_1)] = 1$. Since $t(x^2) \geq t(x) = t_1$, we have $x^2, x \in G(t_1)$, thus x^2 and x are dependent elements, that is $x^2 = ax$ for some $a \in Q$. Similarly we conclude that $y^2 = by$ for some $b \in Q$. By the same token $t(yx) \geq t(x)$ implies that $yx, x \in G(t_1)$, hence yx = ex for some $e \in Q$. Similarly we deduce that yx = fyfor some $f \in Q$. If $yx \neq 0$ then t(yx) = t(x) = t(y). This contradicts our hypothesis, therefore yx = 0. In the same way we conclude that xy = 0.

If the cardinality of T(G) is greater than three, then by [5] G is nil group, that is, N(G)=1.

If the cardinality of T(G) is equal to three then by [5] T(G) has one minimal and two maximal elements; let $\{x, y\}$ be an independent set of G such that t(x)and t(y) are maximal. By Proposition 9, for any ring over G we have $x^2=ax$, xy==yx=0, $y^2=by$, where a, b are rational numbers. If G is non-nil, then a or b is non-zero, say $a \neq 0$. Then $x^n = a^{n-1}x$, hence there is no integer n such that $x^n = 0$. This implies that $N(G) = \infty$.

Theorem 2. Let G be a rank two torsion-free group and let $T(G) = \{t_0, t_1, t_2\}$ be such that $t_0 < t_1, t_0 < t_2$. Let $\{x, y\}$ be an independent set such that $t(x) = t_1, t(y) = t_2$. Let U, U_0, V, V_0 be the rank one groups belonging to $\{x, y\}$. Then G is a non-nil group if and only if either $t(U_0) = t(U)$ and $t(U_0)$ is idempotent or $t(V_0) = t(V)$ and $t(V_0)$ is idempotent.

Proof. Let G be a non-nil group. Then $x^2=ax$, xy=yx=0, $y^2=by$ and a or b is non-zero. We assume $a \neq 0$. Let g=ux+vy be an arbitrary element of G where $u \in U$ and $v \in V$. Then $gx=ux^2+vyx=aux$. This implies that $au \in U_0$ for all $u \in U$, so it follows that $aU \leq U_0$. However, $U_0 \leq U$, therefore $t(U)=t(U_0)$. Furthermore, since $a \neq 0$, we have $x^2 \neq 0$, hence $t(U_0)$ is idempotent.

Conversely, if $t(U)=t(U_0)$ and $t(U_0)$ is idempotent then there is an integer m such that $mU \leq U_0$. Let g=ux+vy, h=rx+sy be arbitrary elements of G, and define a multiplication over G by $gh=m^2urx$. This multiplication is a ring over G, therefore G is a non-nil group.

5. Concluding remarks

(a) Lemma 1 and Lemma 2 imply that if G is a homogeneous torsion-free group of rank two then n(G) = N(G).

(b) Let G be a torsion-free group of rank two and let $T(G) = \{t_1, t_2\}$ be such that $t_1 < t_2$. Then Lemma 3 shows that if G is indecomposable then n(G) = N(G). However, in the decomposable case it has been shown in [6] by an example that, in general, n(G) and N(G) are not equal.

(c) If G is a torsion-free group of rank two with $|T(G)| \ge 3$ then n(G) = N(G).

References

- R. A. BEAUMONT and R. J. WISNER, Rings with additive group which is a torsion-free group of rank two, Acta Sci. Math., 20 (1959), 105-116.
- [2] S. FEIGELSTOCK, On the nilstufe of homogeneous groups, Acta Sci. Math., 36 (1974), 27-28.
- [3] L. FUCHS, Infinite Abelian Groups, Vol. II, Academic Press (New York, 1973).
- [4] L. RÉDEI and T. SZELE, Die Ringe "ersten Ranges", Acta Sci. Math., 12 (1950), 18-29.
- [5] A. E. STRATTON, The type set of torsion-free rings of finite rank, Comment. Math. Univ. St. Pauli, 27 (1979), 199–211.
- [6] A. E. STRATTON and M. C. WEBB, Type sets and nilpotent multiplications, Acta Sci. Math., 41 (1979), 209-213.
- [7] T. SZELE, Gruppentheoretische Beziehungen bei gewissen Ringkonstruktionen, Math. Z., 54 (1951), 168–180.

UNIVERSITY OF EXETER DEPARTMENT OF MATHEMATICS EXETER, EX4 4QE, ENGLAND