
Acta Sci. Math., 49 (1985), 71—106 

On some special limits of «-groups 

JACEK MICHALSKI 

1. Introduction 

In [7J, [8], [9] a systematic study of the category of n-groups has been started. 
The present paper follows the lines of these papers, especially [7]. We improve the 
results in [7] (Theorems 1 and 3) on the preservation of projective and inductive 
limits by the functors and T, respectively, under certain additional conditions on 
the diagram scheme in consideration. In the present paper we weaken the condi-
tions that turned out in [7] to be sufficient for the preservation of limits so that 
they become necessary and sufficient. In this way the relation of $ to projective 
limits and KP to inductive limits becomes clear: 

2. Preliminaries 

The terminology of this paper is the same as in [5]—[9], where we also discussed 
relevant notions. Recall briefly some of the most significant notions and notation 
introduced there. 

We assume throughout the paper that n=sk (allowing k= 1). However, it 
is sensible (contrary to [7]) to make the assumption that n>k. For the case n=k 
(i.e., 1) some statements become trivial and others become false. 

As in [10], /¡-groups will sometimes be called polyadic groups, especially when 
the arity of the operation is not crucial. Similarly, a sequence alt ...,am of ele-
ments of an (n+ l)-group G is called (following Post) a poly ad (or shortly an m-ad). 
For convenience such sequences are denoted by (ax, ..., am). To simplify the nota-

r 
tion, in place of {ax, ...,am_r, b, ...,b) we shall write briefly (ax, ..., am_r, b). 
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Post has introduced an equivalence relation 0 on the set of all «¡-ads (for 
fixed m) of a given (n+ l)-group (G,/) . The relation © is defined as follows: 

<flj, ..., am) 0 (f>1; ..., bm) 

if and only if for a certain i = 1, ...,n+\ — m, and for some elements c l 5 ..., cn+1_m£G 
we have the equality 

f(.ci> •••) Cj, ..., am, ci+1, ..., cn+1_m) = f(c1, ..., c ;, bt, ..., bm, cl + 1, ..., cn+1_m). 

One can prove (cf. [10]) that (plt ..., am) 0 (bx, ..., bm) implies that for every 
i=l, ...,n+l—m and for every sequence jct, . . . ,x n + ,_ m £G the following equal-
ity holds: 

f ( X l , •••> Xii alt •••> am> -^i+l) •••> Xn + l-m) ~ 

= f(xi> •••> xi> bs bm, xi+1, ..., xn+1_m). 

The notion of polyads equivalent with respect to 0 will appear in Lemmas 10— 
15 and we will make use of the above mentioned theorem in the proof of Theo-
rem 2. 

In the paper we deal only with categorical properties of polyadic groups; how-
ever; in some proofs (especially in the proof of Theorem 2) we essentially turn to 
the inner view point, i.e., we consider polyadic groups as sets together with certain 
operations. This causes some inconsistency in notation. Usually we denote a polyadic 
group simply by one letter (say G), but whenever the group operation ( say / ) appears 
in an explicit form, we write (G,/) . To avoid numerous repetitions, we assume 
that / and g always denote (w+ l)-group and (k+ l)-group operations, respectively, 
and we write (G, / ) and (G, g) only to avoid a possible confusion. 

The identity morphism is denoted by eA: A-*A or briefly by e, if it is not 
misleading. 

For a (k+ l)-semigroup (G, g) one can define a new l)-ary operation 
by 

2(s)(*l> -̂ n + l) = 

= s(g(---s (s(xl! •••> + xk + 25 x2k + • • • ) > •*(s-l)t + 25 •••> •Xji + l)-
s 

If (G, g) is a (k+ l)-group, then the (sk+ l)-group (G, g(s)) is an (n+ 1)-
group, too (cf. [2]). This (n+l)-group is said to be a derived (n+ \)-group of the 
(k+l)-group (G,g) (cf. [2], [5]) and is denoted by ^ ( G , g) or shortly by *PS(G) 
(cf. [3], [7]). 

In this way one can obtain a forgetful functor lPs: Gr t+ l—Grn+1 (in this 
paper, as in [3]; [7], Gr„ denotes the category of «-groups). The functor •P, has a 



Some special limits of /¡-groups 73 

left adjoint. This is the functor <PS: Gr1I+1—Gr t+1 assigning to each (/2+l)-group 
its free covering ( k + l)-group (cf. [3], [5], [7]). 

The notion of a free covering ( k + l)-group of an (n+ l)-group, introduced in 
[3] and investigated in [5], [7], is a generalization of the well-known notion of a free 
covering group which was introduced by Post in [10]. 

3. Some lemmas 

This section is of auxiliary character. The facts presented can be treated as 
known and can be found in any basic course on category theory (e.g., [1], [11]) or 
easily inferred from statements given there. Most of these facts belong to the "folk-
lore" of category theory, and therefore they are given without references. In this 
section we collect all the auxiliary categorical lemmas that be will applied in later 
sections. 

As is known, each theorem of category theory can be given a dual formula-
tion. To avoid repetitions; we do not formulate the dual versions to the given state-
ments. When referring to the dual version of a lemma given in this section we indicate 
it by adding an asterisk to the number of the lemma. 

In this paper the term functor always means a covariant functor. We use inter-
changeably the following terms: a small category and a diagram scheme, a functor 
from a small category and a diagram. The terms diagram scheme and diagram 
are used especially in dealing with limits. The symbol © always denotes a small 
category and the symbol F a functor from that category 3> (i.e., F denotes a dia-
gram). 

We assume in the lemmas (except Lemma 2) that the categories JT, Jf i and 
are complete with respect to projective limits of all diagrams, including the 

empty diagram scheme. As a consequence, these categories possess final objects. 
Since Lemma 2 is formulated for inductive limits, we assume in it of course the 
completeness of X with respect to inductive limits. This convention has to be under-
stood so that the assumptions on the categories X, and JT2 in the dual versions 
of the lemmas are also dual. 

L e m m a 1. Let a faithful functor A: have the following property: if 
A(y)=A(P)5 where /?: B^C, y: A-C, 8: A(A)-~A(B), then the morphism 8 
is of the form 8= A (a) for some a: A-*B. Then the functor A reflects projective 
limits. 

P r o o f . Let [G; {aD: G-F(Z>)} B e s ] and [A(L); {A(nD): A(L)—AF(D)}oes] 
be the projective limits of F: and AF: Jf2 , respectively. From the 
faithfulness of A it follows that the family {nD: L-+ F(D)}0ia is compatible with 
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F. Therefore there exists a morphism 5 such that a D ô = n D for The 
family {/l(aD): /1(G)—AF{D)}D i a is compatible with AF, and so there exists a 
morphism rj: A(G)^ A(L) such that A(nB)ri= A(aD). From the equalities 
A(nD)tiA(5)= A(a^S)= A(nD) for DÇ.3) it follows that t]A(ô)=eA(L). Hence r] 
is a retraction. On the other hand, from the assumption on A it follows that rj is 
of the form = A(/i) where fi: G-^L. Thus A(aB5n)= A(nD)rj= A(aD), which, 
by the faithfulness of A, implies that aDôn=aD for D£!2) and hence 3n=eG. 
Therefore ¡i is a co-retraction. The functor A, being faithful, preserves co-retrac-
tions and so t j=A(j i ) is a co-retraction. But t\ is also a retraction, and so tj is an 
isomorphism. As is easy to check, A reflects isomorphisms, whence n is an iso-
morphism (since ri=A(ji)y. Therefore [L; {nD: F—F(£>)}0£2] is the projective 
limit of F, which is what was to be proved. 

Let a category Jf" have an initial object U which satisfies an additional con-
dition: for every object XÇ.JT distinct from U we have M or (X,U)=&. It is 
worth adding that not every category with initial objects has initial objects with 
this property. For instance, this condition is not satisfied in Gr„ for n=2; how-
ever, for « > 2 (and also in the category of sets) it is satisfied." 

Consider a diagram F: Let be the full subcategory of Qs consisting 
of all objects D such that F(D) ^ U, and let F0 be the restriction of F to . Then 
the following lemma is true. 

L e m m a 2. [L; F(D)^L}Dia] is the inductive limit of F if and only if 
[L; {vjr,: Fa(D)-~L}oeaJ is the inductive limit of F0. 

P r o o f . Let [L; {yD: F(D)—L}B e 3] be the inductive limit of F. The family 
{VD: F0(D)—L}ûc3() is compatible with F0 . Take an arbitrary family 

{ocD: F0(D) ^ G}Di3o 

with G€ JT, which is compatible with F0 . That family can be extended to a family 
{xD: F(D)^G}Dia by choosing as morphism aD: F(D)—G for the only 
morphism from the initial object F(D) (in the category JiT) into the object G. It is 
easy to verify that the extended family of morphisms is compatible with F. Thus 
there exists a unique morphism <5: L—G with ôy D =a D for Hence, in 
particular, èyD—aD for which proves that [L; {yD: F 0 ( £ > ) — i s 
the inductive limit of F0 . 

Conversely, if [L; (yD: F0(D)~^L}D€3J is the inductive limit of F 0 , then thé 
family {yD}D£CiB can be extended in a natural way to a family {yD}z>ça- So [L; {yD}De3] 
is already the inductive limit of F. This completes the proof of Lemma 2. 

In our further considerations the notions of discrete and connected categories 
prove to be very useful. A category J f is said to be connected if for every pair of 
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objects there exists a finite sequence of objects A0, ..., Am£¿T such 
that A0=X, Am=Y and Mor (A¡, Ai+1)UMor (A¡+1, A¡)?¿0 for i=0, ...,m-l. 
A full subcategory J f ' of a category JT is said to be discrete if for any pair of dis-
tinct objects X, there exists no connected subcategory of J f containing 
X and Y. 

Using the Kuratowski—Zorn Lemma one can prove the following two lemmas. 

L e m m a 3. For each object D of a small category Si has a maximal con-
nected full subcategory $¡D, i.e., a connected subcategory 3¡B such that D£3>d and 
for any pair of objects A, Bd3> with A£3>D, B$.<3D we have Mor (A, B)\J 
U M o r ( 5 , ^ ) = : 0 . 

L e m m a 4. Every small category 2) has a maximal discrete full subcategory 
3¡d, i.e., a discrete subcategory 3>d such that for each object X£S) there exists an 
object A£®d with X£S>A. 

Consider a diagram F: J f with the following special property: every 
pair a,peMor(X,Y) with X, satisfies the equality F(a)=F(fi)\ further-
more, F(a) is an isomorphism. Let Q¡¿ be a maximal discrete full subcategory of 
and let Fd: be the restriction of F to the full subcategory ¡¿d. For such a 
diagram F we have the following lemma. 

L e m m a 5. If [L; {aD: L-*F(D)}Df3] is the projective limit of F, then 
[L; {aD: L-* FD(D)}D(iaJ is the projective limit of Fd. 

P r o o f . Let [L; {aD} f l€3] be the projective limit of F. The family 

{ccD: L-~Fd(D)}De9a 

is compatible with Fd. Take any family {/iD: C — F d ( D ) } D i 3 , where D(L£$d, which 
is compatible with Fd. To show that this family can be extended to a family 
{/?B: G—F(D)}Desl take an arbitrary object X^SH. The definition of 2>d implies 
the existence of an object AZ3)d with X£2¡A. Then there exists a sequence of 
o b j e c t s A0,...,AM€@ s u c h t h a t A0=A, AM = X a n d M o r (A¡, AI+1)U 
U M o r ( A I + 1 , AI)?±0 f o r / = 0 , . . . , m— 1. L e t a ¡ 6 M o r ( ^ ¡ , ^ ¡ + 1 ) U M o r (AI+1, A¡) 
(i~0,..., m— 1). We define morphisms fi¡: F(A¡)^F(Ai+l) by putting fi¡= F(a¡) 
for a ;€Mor(/4; ,v4 ; + 1) and ¡u¡—F~1(a¡) for a¡6Mor (A¡+1, A¡). Let 

/í = F(A)^F(X). 

It is easy to check that the morphism ¡.i does not depend on the choice of the objects 
connecting ^ to X. So we can define ¡}x as a composition of fi and f}A, i.e., fix= 

G—-F(X). It is evident that the morphism Px is uniquely determined, inde-
pendently of the choice of the objects A0, ..., Am. In this way we get the family 
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{/?D: G — F(D)}Di3. From the construction of it follows that this family is 
compatible with every diagram FA (here FA denotes the diagram F restricted to 
the subcategory for A£2>d. Note that M o r ^ , 7 ) = 0 whenever X£3>A, 

A,B£% and A^B. Hence it follows that the family {pD}D&3 is com-
patible with F. Then there exists a unique morphism 5: G—L with aD<5=/?D for 

This shows that [L; {aD: L-~Fd(D)}D€9] is the projective limit of F, which 
is what was to be proved. 

Consider any small category 3>. This category can be embedded in a small 
category 3>e which is obtained by adding to 3> one (final) object E and a family of 
morphisms {efl: D — E } D i a , one morphism to each object Z>£®e. The resulting 
category 2te is obviously connected. A diagram F: can always be extended 
to Fe: by defining Fe(E) to be the final object in the category :AT and 
Fe(sD) to be the morphism induced by the final object Fe(E). 

L e m m a 6. [L; {TTd: L—F(D)}Dia] is the projective limit of F if and only if 
[L; {nD: L— Fe(D)}De3 ] (with nE: L^Fe(E) the morphism induced by Fe(E)) 
is the projective limit of Fe. 

L e m m a 7. Let a functor A: Jf^Ji^ preserve projective limits of all dia-
grams of connected diagram schemes. If [L; {nD: L—F(D)}D€3] is the projective 
limit of F: where 3) is any, not necessarily connected, diagram scheme, 
then [A(L); {A(nB): A(L)^AFe(D)}De9] is the projective limit of the extended 
diagram AFe: 

P r o o f . Let [L; {nD}Di&] be the projective limit of F. According to Lemma 6, 
[L; {nD: L^Fe(D)}Dia ] is the projective limit of Fe: The category 
is connected, whence [A{L)-, {/t(n f l): A{L)^AFe{p)}Di3Ji is the projective limit 
of AFe. 

4. The relation of the functor <P to projective limits 

We devote this section to the study of the relation of <t> to projective limits. 
We start with a lemma. 

L e m m a 8. If a composition of morphisms y: <PS(A)^ <PS(D) and <PS(J}): <PS(D)^ 
— $S(B) with A,B,D£Gr„+1 is of the form <Ps(P)y= <f>s(a) for some a: A-~B, 
then y is also of the form y= <¡>¡(8) where 5: A-*D. 

P r o o f . In view of Theorem 4 of [5] we have the equalities a n (* 
C B ^ W - C B - Then ( D y = U ^ ) y = C B ^ ) = C A - Hence, by Theorem 4 of [5], 
there exists a morphism S: A-+D such that <PS(<5)= y, which is what was to be 
proved: 
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Note that from the faithfulness of <P it follows that the morphism 5 does not 
depend on the choice of /? provided the morphism <t>s(P) remains the same. 

P r o p o s i t i o n 1. If [<PS(L); {<Ps(tid): &s(L)~<PsF(D)}D(iSI] is the projective 
limit of $SF: @—Grk+1, then [L; {nD: L—F(Z))}oe3] is the projective limit of 
F: ^ G r „ + 1 . 

P r o o f . From Lemma 8 it follows that <PS satisfies the assumption of Lemma 1. 
Then, by Lemma 1, <PS reflects projective limits, which is what was to be proved. 

The theorem converse to Proposition 1 is not true in general. This was already 
indicated in [7], where an example was shown to demonstrate that # does not pre-
serve the Cartesian product. On the other hand, in [7] a sufficient condition was 
given which, when imposed upon a diagram scheme S, made $ preserve the projective 
limits of diagrams F: Gr„+1. 

Now we show that this condition fails to be necessary. Moreover, we charac-
terize the categories 3) for which preserves projective limits. Theorem 1 of [7] is 
a particular case of the theorem given below. 

T h e o r e m 1. Let 2 be a nonempty diagram scheme. The functor preserves 
the projective limits of all diagrams F: S-*Grn+1 if and only if 2 is connected. 

P r o o f . Let 3) be connected and let 

[L; {nD: L—F(D)}De3l] and [L'\ {yD: L' - <t>sF{D)}Di3] 

be the projective limits of F: Gr„+ 1 and <PSF\ respectively. The 
family {$s(nD)}De<g is compatible with @SF, and so there exists a morphism 
p.: (PS(L)-~L' with yDfi- for D£3>. Fix some (arbitrary) object U£2>. 
Then yvH=i&s(nv)- By Corollary 6 of [5] the object [L'; {yD}Dia] (determined up 
t o isomorphism) can be chosen in such a way that Z / = <PS(G), yv = <Ps(r]v), H= @s(<>)> 
where G£Gr n + t , tju: G—F(U), 6: L^G. We show that every morphism yD is 
of the form yD= f ° r a n appropriately chosen tjD: G^F(D). To verify 
this, take an object The connectivity of 3) implies the existence of a finite 
sequence of objects A0, such that A0= U, At~A, Mor (At, Ai+1)(J 
UMor (Ai+1, AJ^Q for /=0 , . . . , /— 1. The morphisms t]Ai will be constructed by 

induction, step by step, starting with rjAi. If Mor (U, (i.e., there exists a 
morphism a : we put t]A==F(a)t]v. By the compatibihty of the family 
{yD}DiB with $SF and by the faithfulness of <PS it follows that F{a)r]u does not 
depend on the choice of a (note that the set Mor (F{U), F(Aj)) may consist of a 
lot of morphisms!). So the morphism tjA : G — F ( A t ) is well-defined. If, on the 
other hand, Mor (A1, U)^0 (i.e., there exists an a : A^U), then by Lemma 8 
there exists a morphism : G-*-F(AJ which is well-defined (independently of 
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the choice of a). In this way we get the morphism tjA . Further on, to obtain tiA 

from t]Ai we proceed as in the first step, depending on which one of the sets 
Mor (A;,Ai+1) or Mor (Ai+i,Ai) is nonempty. After performing / such steps we 
obtain t\A: G-+F(A). As is easy to verify the family \t]D}D(S is compatible with F. 
So there exists a morphism g: G — L with nDg=rjD for D££2i (since by assump-
tion [L; {nD}0 € 3] is the projective limit of F). The equalities nDg8 = t]D8 = nD 

hold for every £>6®, whence 08—eL. Similarly, from the equalities yD&s(8g)= 
= *PS(JIQ g) — (JIQ) it follows that <Ps(8g)=eL., whence 8g=ec. Then 8 (thus also 
<t>s(8)) is an isomorphism, which proves that [<PS(L); {$s(7rD)}oee] is the projec-
tive limit of # S F. 

Conversely, let <PS preserve the projective limits of all diagrams F : &—GRN+I 

for a fixed category S . Consider the functor F : Gr n + 1 defined as follows: for 
D£S> let F(D) be a one-element («+l)-group and for a: X— Y let F(a) be the 
unique morphism from F(X) onto F(Y). Let [L; {nD: F—F(D)}D € 3] be the projec-
tive limit of F. Since all objects F(D) for are final in Gr„+ 1 , the object L is 
also a final object in Gr„+ 1 , i.e. a one-element («+l)-group. Thus i> s(L)=(T, i t+1 

(cf. [3], [7]). By assumption [4>S(L); {<f>s{nDy.$s(L)-~ $sF(D)}DiB] is the projective 
limit of $ S F. However, we can see that for any a : X— Y with X, Y£@>, the morphism 
<£sF(a) is the only isomorphism of the cyclic (k+ l)-group <$sF(A)=<iStk+i onto 
the cyclic (fc+l)-group <PsF(B)=(£s,k+1 with the property 3>sF(a)(0)=0. There-
fore, in view of Lemma 5, [<PS(L); {<P5(nD): <Ps(L)-+<I>sFd(D)}Dia) (where Fd is 
the restriction of F to is the projective limit of <i>sFd: 3>d-»Grk+1. Since @>d is 
discrete, [<PS(L); {<Ps(7rD)}063d] is simply the Cartesian product of the family of 
(k+ l)-groups {$ s F(D)} D i S i , i.e., the Cartesian power of the cyclic (k+ l)-group 
(Zs k + 1 . On the other hand, the (k+ l)-group <PS(£) is the cyclic ( k + l)-group 

1) whence the family {$ sF(D)}D e 9^ consists of one element, which means 
that S)d consists only of one object. Hence <2} is a connected category. This completes 
the proof of Theorem 1. 

From Proposition 1 and Theorem 1 we immediately infer the following 

C o r o l l a r y 1. Let 3) be a connected diagram scheme. Then [L; {nD: L— F(D)}Des] 
is the projective limit of F: Gr„+1 if and only if 

[*S(L); {4>,(7iD): &S(L) - 4>sF(D)}D,a] 

is the projective limit of <PSF: 3>^-Grk+1. 

The question arises what are the free covering (k+ l)-groups of projective 
limits of diagrams F : Gr n + 1 in the case when the diagram scheme is not con-
nected. Note that a partial answer was given in Lemma 7. In our case of the category 
of 77-groups a more specific answer can be given. 
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Take an arbitrary diagram scheme 3> and a diagram F : Let 3le 

and F.e have the same meaning as in Section 3. As is easy to see, <PSF(E) is nothing 
else than the cyclic (k+ l)-group £ S j t + 1 (cf. [3], [5]) and # s F(e D ) : <PsF(D)-+(£s k+1 

are simply the morphisms ( D : (psF(D)^(iSJl + 1 (cf. [3], [5]). Every diagram <PSF 
can be extended to $sFe: 3e-*Grk+l by adding the object (£Sjfc+1 and the family of 
morphisms {£„: $SF(.D)—(£Sifc+i.}D€S. Hence we obtain 

P r o p o s i t i o n 2. If [L; {7tfl: L-~F(D)}D£S] is the projective limit of F: 
->Gr„+1, then [4UL); R K ) : <Ps(L)-»$sFc(D)}Dea] (where 
— J is the projective limit of the extended diagram $sFe: S>e-*GTk+1. 

In this way free covering (k+ l)-groups of projective limits are always projec-
tive limits, but perhaps of an extended diagram. 

5. The relation of the functor ¥ to inductive limits 

As in the dual case of <P and projective limits, the functor ¥ reflects inductive 
limits. To show this fact, we need the following lemma. 

L e m m a 9. If a composition of morphisms ¥s(OL): ¥S(A)¥s(D) and 
y. ¥S{D)-¥S{B) with A,B,D£Grfc+1 is of the form y¥s{a)= ¥s(fi) for some 
/3: A-+B, then y is of the form y — ¥s(8) where 5: D-+B. 

P r o o f . Take any element c0£A and let d0 be the skew element to c0 in the 
(k+ l)-group A. Let d=ot(d0), t—a(c0). It is easy to check that d is skew to c in the 
(k+ l)-group D. On the other hand, the element y(d)=yoi(d0)=f}(d0) is skew to 
y(c)=ya(c0)=ft(c0) (since />': A—B). Hence, by Corollary 3 of [6], y is a homo-
morphism of ( k + l)-groups, which is what was to be proved. 

P r o p o s i t i o n 3. If [¥S{L)\ {¥s(yD)-~¥s(L)}Dli3] is the inductive limit of 
¥SF: 3>-~Grn+1, then [L\ {yD: F(D)^L}DiS] is the inductive limit of F: 

P r o o f . Lemma 9 shows that ¥ s satisfies the assumption of Lemma 1*. Thus 
¥ s reflects inductive limits. 

Theorem 1 describes the preservation of projective limits by <f>. Theorem 2 (dual 
to Theorem 1), formulated below, gives a condition characterizing those diagram 
schemes for which ¥ preserves inductive limits. The proof of Theorem 2 proceeds 
via complicated calculations. To stress the main idea of the proof a part of those 
calculations is presented in a sequence of five lemmas. All those lemmas have some 
common assumptions. To avoid repetition, we formulate these assumptions before 
starting the lemmas. 
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Given a diagram F : let [L';{yD: VsF(D)~L'}Dia] be the induc-
tive limit of WSF. As was mentioned in Section 2, we denote by g the l)-group 
operation in all (k+ l)-groups (i.e., F(D), L, G), while b y / the («+ l)-group opera-
tion in all (n+l) -groups (i.e., TSF(D), TS(L), !f s(G), L'). To avoid confusion we 
assume that the symbol x always denotes the element skew to x in the corresponding 
(n+ l)-group (but not in a (k+ l)-group). The equivalence of polyads is understood 
in the sense of [10]. 

L e m m a 10. If for some objects A,B£@ we have Mor (A, £ ) U M o r (B, 
then for an arbitrary element a£F(A) there exists an element b£F(B) such that the 

n-k k-1 n-k k-1 
k-ads \yx(g(S_i)(a, a)),yA(a)) and <yB(g ( s_„(5, b )), yB{b)) are equivalent. 

P r o o f . Let a : A-*B and b = F(a)(a). Take elements xY, ..., xn+y^k£L'. 
Then 

n-k k-1 
/(*,, ..., xn+1-k,yA(g(s-1)(a, a )), yA(a)) == 

= /(..., xn+1_„ yB¥sF(oc)(g^(a, "a")), yBY~F(«)(«)) = 
n-k k-1 

= /(•••> *»+i-fc, yB(.F(^Xg(s-i)(d, a ))), yB(F(a)(a))) = 

= /(..., xn+1-k, •yB(g(.,-i)(F(a)(a), F(a)~(a))), = n-k k-1 

= f(x±, ..., xn+1-k, yB(g(5-i)(6. b )), 7b(£>)). 

Next, let fi: B^-A. Take an arbitrary element b£F(B). Then 
n-k k-1 

/(*!, ..., Xn+1.k, - ^ ( g ^ - ! ) ( « , a )), yA(a)) = 
n~k fc—1 «—1 

=fm{---,xn+1-k,yA(gis-1)(a, a)),yA(a),yB(B),yB(b)) = . 

=/(..., /(^(g(,-1)(a,"a't)), y~(a), yA VSF{P){B), yA £ f ( / 3 ) (/>)), = 

= / ( . . . , + / ( Y A ( G w ( a , " a L ) ) , yA(a), v A m t f ) ) , ^ ( A F F ) (&))), V B W ) = 

= / ( . . . , y ^ g ^ - i ) ^ , " ^ ) , "a", F(/?)(5), F(J)(&)))> y*(b)) = 

= / ( . . . , xn + 1_ f c , F(/?)(5)), F(/?)(b))), yllb))) -

= / ( - , v x ( g c - 1 ) № *X0)(5))> = 

=/(..., xn+1_k, VsFmgis-itf, "b)), YLM = 
n-k k-1 = / ( * ! , ..., yB(g (s_i)(b, b)),yB(b)). 



Some special limits of /¡-groups 81 

L e m m a 11. If a category 3 is connected, then for every pair of objects A, 
and for any element F(A) there exists an element b£F(B) such that the k-ads 

n-k k-1 n-k k-1 
<X4(S(S-i)(a> a)),yA(a)) and (yB{g{s-i)& b)),yB(b)) are equivalent. 

P r o o f . The category 3) is connected by assumption, so for any pair of objects 
A, Bd3 there exists a sequence of objects A0, ..., Ar£3 such that A0=A, Ar=B 
and M o r ( ^ i 5 y4 i+1)UMor (Ai+1, for / = 0 , ..., r— 1. Applying Lemma 10 
r times, we infer the equivalence of the polyads in question. 

L e m m a 12. For any elements a,y€F(A) the (k+l)-ads 
n-k k-1 _ n-k k-L 

(yA(g{s-i)(a> a)),yA(a),yA(y)) and <yA(y), y^g^ia, ))> YA(O)) 

are equivalent. 
P r o o f . Let ..., xn_k£L'. Then 

n-k fc-1 
f ( x j , ..., yA(g(s-i)(ö, a )), yA(a), yA(y)) = 

n-k k-1 n-1 

=/<*n-k, yx(g(,-i)(a. a )), yA(a), yA(y), yA(a), yA(a)) = 
n-k k-1 n-k-1 k 

=/(-. xn^k,f(yA(g(s~i)(ü, a )), yA(a), yA(y), yA(a), yA(a)), yA(a)) = 
n-k k-1 n-k-1 k 

= /(..., x„-k, yA(g(s>(g(s-,)(a, a), a, y, a, a )),yA(a)) = 
n-k k-1 n—ft—1 k 

=/(..., x„.k, y A ( g ( s ) ( a , a , a , y), a, a )), yA(a)) = 
n - l n - k - 1 k 

=f(...,x„-k,yA(gis-1)(f(a, a , y), a, a )), yA(a)) = 
n - l n - k - 1 Ik 

=/(•••> x„-k,yA(gis-i)(f(y, a, a), a, a )),yA(a)) = 
n-l n-k-1 k 

= / ( . . . , *11-t,y i t(g(,-i)(g(S)(j', a, a), a, a )), yA(a)) = 
n-k k-1 n-k-1 k 

=f(...,xn-k,yA(g(s)(y, gCs-i)(a, a), a ,a, a )),yA(a)) = 
n-k k-1 ti — 1 — k k 

= /(..., xn.k,f(yA(y), ^(g(s-i)(a, a )), yA(a), yA(a), yA(a)), yA(a)) = 
n-k k-1 n-k-1 k-1 

= /(..., yA(v), f(yA(g(s-r,(a, a )), yA(a), yA(a), yA(a), yA(a)), yA(a)) = 
n-k k-1 

=/(*!, ..., xn-k, yA{y), ^(g(s_!)(«, a )), yA(a)). 

L e m m a 13. If for some objects A,B£3> we have Mor (A, ¿?)UMor (B, A)^0, 
then for an arbitrary element F(A) there exists an element b£F(B) such that 

s - l ( k - l ) ( s - l ) s - l ( * - l ) ( s - l ) 

the (n-k)-ads (yA(as), yA(a) > and. (yB(bs), yB{b) ) are equivalent (here as and 

e 
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bs denote the skew elements to a and b in the (k+ l)-groups F(A) and F(B), respec-
tively).' • 

P r o o f . Let a : A-~B and b= F(a.)(a) (hence also bs= F(a)(asj). Take ele-
ments xk+i£L'. Then 

s - l ( i-l ) ( s-l ) s - l ( t-l ) (s-l ) 

f[x,, xk + l , yx(as), ) =/(•••, xk+1, yBPsF(a)(aj, yB<FsF(a)(a)) = 
s-l. - (k-lXs-1) . s - l (ft-lXs-1) 

=/(•••» xk+1, yB(F(ci)(as)), YB(H*)(a))) =/(*i, ..., xk+1, yB(bs), y„(b) ). 

Next, let /?: B-+A. Take an arbitrary element b£F(B). Let bs be the skew element 
to b in.theXfe^ l)-group F(B). Then 

s - l (fc-l)(s-lj 

f(xi, ..., xk+1, yA(as), yA(a) ) = 
S-l (fc-l)U-l) 

= f{-;Xk+1 ,VA(gM(FmbJ, F(P)(]b), 
k - 1 s - 2 (fc-l)Cs-l) 

F(fJ)(bs), F(fi)(b), fls)), yA (as), yA (a) ) = 

s - l : Cfc-lXs-1) 

=/(•••, x k + i ,f(yA(Fmbs)),yA(Fmb)), 
k - 1 s - 2 (fc-l)(s-l) 

yJFimbJ), yAHP)(b)), yA{as)), yA{as), yA{a) ) = 
s - l (fc-lXs-1) 

=/(-, **+•!,f(VA VsFmbs), yA VsFmb), 
k - 1 s - 2 (fc-lXs-1) 

' • : yA^sF(bs), yAysF(b), yA(as)), yA(as), yA(a) ) = 
s - l (fc-lXs-l)-l 

=/(-, xk+1,yB{bs), yB(b) JiyAF-mb)), 
k-l s-2 (*-lXs-l) 

yAFmbs)), yAF(p)(b)), yA(as), yA(as), yA(a) )) = 
s - l (fc-lXs-l)-l 

=f(-,xk+1;yB(bs), yB(b) ' ,yAg(s)(Fmbl 
k - l s - l (fc-l)(s-l) 

• ; , F(f})(bs), F(P)(b), as, a ))) = 
s - l ( t - l X s - l ) - l 

: xk+1,yB{bs), yB(b) ,yA(F(fl)(b))) = 
S - l (ft-lXs-1) 

, ,-=/(*!, ..;Xk+1,yB(bs), yB(b) ). 

L e m m a 14. If a category 2) is connected, then for every pair of objects A, 
and for an arbitrary element a£F(A) there exists an element b£F(B) such that the 

s - l (ft—1) (s—1) s - l ( * - l ) ( s - l ) 

(n-k)-ads (yAas), yA(a) > and (yB(bs), yB(b) ) are equivalent (here as and 
bg-denote the Skew element to a and b in the {k+\)-groups F(A) and F(B), respec-
tively). . . . ; - . . - ' • • _ 
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P r o o f . The proof of this lemma is analogous to that of Lemma 11. 

L e m m a 15. If a, b are any elements of an object F(D) with then the k-ads 
••• ' n-k k-1 • n-k ' k - l ' , 

(yD(g(s-i)(a, a )), yD(a)) and (yD(gis^(.B, b )), yD(b)) are equivalent. 

P r o o f . Let ..., x„+1_k£L'. Then n-k k-l 
/(*!, ..., xn+1.k, 7D(g(s-i)(a, a )), yD(a)) = 

n-k k-l n-l 

=/(2)(-» x„+i-k, yD(g(s-i)(a, a )), yD(a), yD(b), yD(B)) = 

n-k •' k-l n + l-k k- 2 • 
. = / ( ; . . , ^n + i-fc,/(?p(g( s-i)(a, a )). yo(f>)), yD(b), Vd(5)) = . . . 

n - k k - l n + l - k k—2 

=/(. . . ,x,1 + 1- ) t ,y I )(g< s )(g ( s_1 )(fl , . a ), a , b )),yD(b),y:D(E)) = 

n-l n-k fc—2 

=/(..., xn+i-k, yD(g(s-i)(f(a, a ,b), b )), yD(b), yD(B)) = 

n - l n-k k - 2 

=/(..., yD(g(s-X)(f(b, b , b), b )), yD(b), yD(B)) = 

n-k k-l n+l-k k-2 
=f(.,.,x„+1-k,yD(g(s)(gu-1)(B, b), b, b )), yD(b), yD(B)) = 

n-k k-l n + l-k k-2 
=/(..., x„+1^k,f(yD(gis--l)(h; b )), yD(b), yD(b)), yD(b), yD(h)) = 

n - k k - l 

= / ( * i , . . . , * n + l - k , 7j)(g(s-l)(6> > )), V b W ) -

T h e o r e m 2. Given a diagram scheme 2>, assume that 3> is nonempty or /c> 1. 
The functor preserves the inductive limits of all diagrams F: 3-»Grk+1 if and 
only if the full subcategory Sl0 of 3>, which consists of those objects D for which 1'SF(D) 
is not an initial object in Gr„+1, is connected. 

P r o o f . Assume that the nonempty category 2>0 is connected. Let 

[L; {aD: F(D) - L}Di3] and [L'; { ? D : WSF(D) - L%iS] 

be the inductive limits of F: Gr t+1 and ¥SF: Gr„+1, respectively. Note 
that for k= 1 the diagram scheme is equal to S) (since T„ F(D) is not an empty 
(h+ l)-group). On the other hand, for /c> 1 the full subcategory of 3> consisting 
of those objects for which F(D) (but not f s F(D) as in the definition of 2>0) is a 
nonempty (k+ l)-group, equals (since F(D) is nonempty iff WSF(D) is nonempty). 
In view of Lemma 2, [L; {<r D :F 0 {D)~L} D i ^} and [L'; {yD: ¥SF0 

(where F0 is the restriction of F t o .@0) are also the inductive limits of F0 and '/', F0. 

6* 
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Take an arbitrary (but fixed) object and choose an element c0€C. Let 
C5€C be the skew element to c„ in the ( k + l)-group F(C). We prove that the element 
d=yc(cs) is an i-skew element to the element c=yc(c0) in the («4- l)-group U. 
Indeed, for any element L' we have 

S (k-l)s 5 (t-l)s /1-1 

fid, c , x) =f(yc(cs), yc(.c0),f(yc(c0), yc(c0), x)) = 

s (k-l )s n-1 
= f(f(yC(cs), yc(c0), yc(c0)), Vc(c0), x) = 

s (fc-ljs n-1 n-1 

=f(yC(g(s)(Cs> c0 , c0)), yc(c0), x) = f(yc(c0), yc(c0), X) =• X, 

which shows that the elements d and c satisfy condition 1° of the definition of an 
i-skew element (cf. [6]). 

Next, take elements jci, ..., xn+1_k£L' and fix / = 1 , . . . , « + l—k. Then 
k-i 

f(x1,...,xi,d, c , xi+1, ..., xn+1_t) = 

k - l n - 1 
= /(..., Xi, yc(cs), yc(c0), f(yc(c0), Vc(co)> xi + d, xi + 2, ...) = 

k - l n-k k-l 
= f ( - , Xi,f(yc(cs), yc(c0), yc(c0), yc(c0)), yc(c0), Xi+1, ...) = 

k-l n-k k-l 
= / ( . . . , x f , yc(g(5)(cs, c 0 , c0, c0)) , yc(c0), Xi+1, ...) = 

k - l n - k k - l 
= / ( . . . , x^ y c (g ( s ) (c 0 , cs, c0, c0)), yc(c0), Xi+1, ...) = 

k - l n-k k-l 
=/(..., , f{yc(c0), yc(cs), yc(c0), yc(c0)), yc(C0), Xi+1, ...) = 

k - l n - k k - l 

= /(..., x^ c , d,f(yc(c0), yc(c0), Vc(co). *i+l), Xi+2, ...) = 

k - l 

=/(•••> x^ c ,d,xt+i, ..., x„+ 1-k) . 

Moreover, by the definition of the (n-kl)-group L' (as an inductive limit of (n+1)-
groups) it follows that the elements of L' are generated by the set (J yB(F(D)). 

Dea 
Hence in particular x(=/(.)(yBiO>1), yDr(y r)h where / = 1 (modn), y j £ F ( D j ) 
for j= 1, ...,/% and xl=f.)(yAi(zl), ...,yAt(z,)), where f = l (modn), Zj£F(Aj) 
for 7=1 , ..., t. 

To explain the sequence of transformations, we will write the numbers of the 
lemmas we refer to, below the sign of equality. The elements chosen according to -
Lemmas lOand 11 will be denoted by d-, in the (k+ l)-groups F(Dt) and by ai in the 
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(k+ l)-groups F(At). Then 

k-1 
f(Xi, • ••, xt, d, c , Jfj+i', • ••, xn+1_fc) = 

k-1 n-1 
= / ( • • • . X,, yc(cs), yc(c0), f(yc(c0), yc(c0), xi+1), xi+2, ...) = 

k-1 n-k k-1 
=f(...,Xi, f(yc(cs), Vc(co), 7c(c0), 7c(Co)), 7c (c0), * i + i , •••) = 

k-1 n-k k-1 

= / ( . . . , x i_1,/ (. )(7Dl(^1), •••, 7D r(y r)\ yc(g(s)(cs, Co , C0, c0 )), 7c(c0), x i + 1 , ...) = 

n-k k-1 

=/<•)(-, *«-i, 7d,(>>i), •••, 7flr0'r), 7c(g(,-i)(c0, c0 )), 7c(c0), x i + 1 , ...) = 

n — /c k-1 

= /(•)(•••> *f - i> VfliiJ'i), •••, 7fl r- ,(>'r-i) , 7or(vr), 7D r (g( S - i )0 r , dt)), yDr(dr), xi+1, ...)--

n-k k-1 

=/(•)(•••' ^.-i.T^O'i), •••: 7 ^ - ^ , - 1 ) , yDr(g(s~v)(dr, dr)), 7Dr(dr), 7D r(y r), xi+1, ...) = 
n-k 

7ßr-1(iir-i), 7ßr(^r), *;+!, •••) = 

B-t 
/»/<•)(-» Vo.CVi), •••, 70,^(^-2) , 7D r- 1(g(S- i )K-i , dr-J), (.12) 

&—1 
7D„-1Wr-l), 7fl r- l(jr-l), ^ ( J r ) , + . . .)=••• = 

n-k k-1 
= /o)(yA1(g(s- i)(o1 , a , ) ) , yA l(a 1) , y A l (z , ) , .. . , yAt(z,), x2, ...) = 

n-k k-1 

. fiyc(g(s-1)(Co, Co)), 7c(Co), Xi, . . . ) = (11), (IB) 
k-1 n-k k-1 

= / (7c (g( S ) (c s , C0 , c 0 , c 0 ) ) , 7C(c0), x l s . . .) = 

k-1 n-k k-1 k-1 

= / ( / ( V c ( c s ) , 7c(c0), 7c(co), 7c(co))> 7c(c0), * i , •••) = f ( d , c , xx, ...), 

which proves that the elements d and c satisfy condition 2° of the definition of an 
j-skew element (cf. [6]). Therefore the element d is ,v-.skew to c in the (n+ l)-group 
i f . Thus, by Proposition 1 of [6] (cf. also Theorem 5 of [5]), the (n+ l)-group ( L ' , f ) 
is derived from some (k + l)-group (G,g), i.e., ¥S(G)=L'. Furthermore, the (k +1)-
group operation g in G is given by 

S - l ( * - l X s - l ) 

g ( x l 5 xk+1) = f ( x u ...,xk+l, d , c ). 
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By Corollary 2 of [6] the element d is skew to c in that (fe+l)-grdup G. Let 
x „ ...,xk+1£F(D) for any Then 

s - 1 (K-lKs-l) 

g(yD(*i), •••> Yo(xk + i)) = /(yD(*i), •••, yo(^+i), yc(cs)> yc(c0) ) = 
s - l (fc-lXs-1) ' 

(=/(yD(^i). •••> Yd(xk+1)> y y D ( d 0 ) ) = yD(gOi, x
k+i))> 

where d0 is some element of F(D) and d, is the skew element to d0 in this (k+ l)-group 
F(D). This shows that yD is of the form y D = f s ( £ D ) with PD: F(£>)-G for 
The faithfulness of *FS implies the compatibility of the family {j?D: F0(D)—G}Dia 

with F0. So there exists a unique morphism 5: L-~G such that <5<Td=/?d for 
The family {^(cdWdca ' s compatible with f s F , which implies the existence of a 
unique morphism m: f s(G)—VS(L) with (oyD=¥s(aD) for D^S> (since L'=<FS(G) 
is the inductive limit of *PSF). Then Vs{b)myD= ¥s(5aD)= Vs(pD)=yD for D£%, 
which shows that Ws(d)co=eL.. Hence Ws(8) is an epimorphism, and so 5 is an 
epimorphism, too. It is easy to verify that the element co(d) is skew to co(c) in the 
(k+ l)-group L. As was proved above, d is skew to c in the (k+ l)-group G. There-
fore by Corollary 3 of [6] co is of the form <u='i/

s(v) where v : G — L. Hence 
f s(v<5ff0)=wf, (/?D) = Vs(aD) for De® 0 . By the faithfulness of f s we obtain 
vdaD=aD for Then vb=eL, whence 6 is a monomorphism. The morphism 
Vs(5), being an epimorphism and a monomorphism, is an isomorphism. Therefore 

[V,(L); TSF0(D) - «^(L)}^] 

is the inductive limit of XFSF0, and so by Lemma 2 

[Vm(L);-{Tm(<tJ: V,F(D) - ¥s(Q}D,a] 

is the inductive limit of TSF. The functor preserves the inductive limit of F. 
Conversely, let YS preserve the inductive limits of all diagrams F: 3>-*GIK+L 

where 3 is nonempty. Consider the functor F : 3 ^ G i k + 1 defined as follows: 
for the object F{D) is a one-element (k+ l)-group and for a : X^Y the 
morphism F(a) is the (unique) isomorphism of F(X) onto F(Y). By the definition 
of F it follows that in this case Let [L;{yB: F ( O ) — b e the inductive 
limit of F. By assumption, Ws preserves inductive limits, therefore 

[<FS(L); {^(y D ) : T . F i D ) - ^ ( ¿ ) } D e 3 ] 

is the inductive limit of *FSF. Note that.for any.morphism a: X-*Y with X, Y£2, 
the morphism VSF(a) is the (unique) isomorphism of the one-element (M+1)-
group VSF(X) onto the one-element («+l)-group ! f s F(F) . Therefore, in view of 
Lemma 5*, [ ^ ( L ) ; {f s(yB) : TsFd(D)-¥s(L)}Di3d] (where Fd is the restriction 
of F to 3>d) is the inductive limit of ¥s Fd. The category 3d is discrete, and hence 
[VS(L); {^(y^Joga, ] is simply the free product of the family of (w+l)-groups 
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{!PsFd(.£>)}D63d. According to Theorem 3 of [8] the free product of at least two 
nonempty (n+ l)-groups is not an («+ l)-group derived from a (A:4- l)-group; so 
the family of («+ l)-groups {*FsFd(D)}D(:Sd is a one-element family (since f s ( L ) is 
obviously derived from the (k+ l)-group L). Thus 3d consists of one object only, 
whence 3 is a connected category. 

If 3: is an empty category and 1, then L (as the inductive limit of the empty 
diagram F ) is the empty (k+ l)-group. Hence TS{L) is the inductive limit of 
The empty category is obviously connected. This completes the proof of Theo-
rem 2. 

C o r o l l a r y 2. Let 3 be a nonempty comected diagram scheme. Then 
[L; {crD: F(D)-+L}Bi3] is the inductive limit of F: 3—Grt+1 if and only if 
[<PS(L); {Vs(<rD): VsF(D)^Ps{L))Dia] is the inductive limit of TSF: 3^Gxn^. 

Note that in the case k= 1 we always have 30=3 (since («+ l)-groups derived 
from groups are always nonempty). But for k > 1 the («+l ) -group derived from 
the empty (k+ l)-group is empty. That case has to be excluded. This is the reason 
for considering the category 30 instead of 3. This, however, is only a minor restric-
tion since, as mentioned in Lemma 2, in considering inductive limits of («+1)-
groups the empty (/1+l)-group is inessential. 

As in the dual case of <t> (Section 4), the question arises what are the (n+1)-
groups derived from the inductive limits of diagrams F: 3—Grk+1 in the case 
when 3 is not connected. As in the case of <t>, a partial answer is offered by Lemma 7* 
for k= 1, but here too (i.e. in the case of Gr2) more details can be given. 

Take any diagram scheme 3 and a diagram F: 3->-Gr2. Let 3{ denote the 
category obtained from 3 by adding an initial object I and Ff the functor F extended 
to that category 3t. The object Ff(7) is obviously a trivial (i.e., one-element) group. 
For D£3 let nD: F^I)-*F((D) denote the embedding of the trivial group into 
any group F(D). Every (n+ l)-group ^I^F^D), being derived from a group, contains 
an invariant element of order one (cf. [2], [10]). The embedding of that element 
(treated as a one-element group) is just the morphism xl'n(¡¿D) '• xP„Fi{I)-^tPnFi{D). 
Thus every diagram *F„F can be extended to ^„Fi by adding the one-element (n+1)-
group «FnF ;(/) and the family of morphisms {f„0<D): <F,,F i(/)-<FMF i(Z>)}D63. 
Hence we obtain 

P r o p o s i t i o n 4. If[L',{yD\ F(D)^L)Di9] is the inductive limit of F: 3-»GT2, 
then [!P„(F); {f„(yD) : ^ F ^ D ) - f „ ( L ) } D e ! ? . ] is the inductive limit of the extended 
diagram yFn F ; : 3-* Gr„+ 1 . 

In particular, for the case when 3 is a discrete category we get 

C o r o l l a r y 3. An (n+\)-group derived from a free product of groups is the 
free product of (n+l)-groups with an amalgamated one-element sub-(n +1 )-group. 
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