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On some special limits of n-groups

JACEK MICHALSKI

1. Introduction

In [7], [8], [9] a systematic study of the category of n-groups has been started.
The present paper follows the lines of these papers, especially [7]. We improve the
results in [7] (Theorems 1 and 3) on the preservation of projective and inductive
limits by the functors & and ¥, respectively, under certain additional conditions on
the diagram scheme in consideration. In the present paper we weaken the condi-
tions that turned out in [7] to be sufficient for the preservation of limits so that
they become necessary and sufficient. In this way the relation of ¢ to projective
limits and ¥ to inductive limits becomes clear.

2. Preliminaries

The terminology of this paper is the same as in [5]—{9], where we also discussed
relevant notions. Recall briefly some of the most significant notions and notation
introduced there.

- We assume throughout the paper that n=sk (allowing k=1). However, it
is sensible (contrary to [7]) to make the assumption that n>k. For the case n=k
(ie., s=1) some statements become trivial and others become false.

As in [10); n-groups will sometimes be called polyadic groups, especially when
the arity of the operation is not crucial. Similarly, a sequence a4, ...,a, of ele-
ments of an (n+1)-group G is called (following Post) a polyad (or shortly an m-ad).
For convenience such sequences are denoted by {(a,, ..., @,). To simplify the nota-
tion, in place of (dl,'...,a,,,_,, b.’_",'_i.b> we shall write briefly {(a,; ...;a,,,_,,b').
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Post has introduced an equivalence relation @ on the set of all m-ads (for
fixed m) of a given (n+1)-group (G, f). The relation O is defined as follows:

{ay, ..., a,) O <(by, ..., b

if and only if for a certain i=1, ..., n-++ 1—m, and for some elements ¢y, ..., ¢, +1_,,€G
we have the equality

f(cl’ (ae] C,-, al’ sy am? ci+19 LRAE ] Cn+1—-m) =f(cl9 e C,-, b1> ey bm9 Cit1s --o» cn+l-— )

One can prove (cf. [10]) that {(a, ...,a,)@ {b,, ..., b,) implies that for every
i=1,...,n+1—m and for every sequence x, ..., X,4+;_,6G the following equal-
ity holds:

Xy ey Xy A1y ey Ay Xpa1s ooy Xpp1om) =

= f(xla"" Xis bla s bms Xitls --v» xn+1—m)'

The notion of polyads equivalent with respect to @ will appear in Lemmas 10—
15 and we will make use of the above mentioned theorem in the proof of Theo-
Tem 2. )

In the paper we deal only with categorical properties of polyadic groups; how-
‘ever; in some proofs (especially in the proof of Theorem 2) we essentially turn to
the inner view point, i.e., we consider polyadic groups as sets together with certain
operations. This causes some inconsistency in notation. Usually we denote a polyadic
group simply by one letter (say G), but whenever the group operation (say /) appears
in an explicit form; we write (G,f). To avoid numerous repetitions, we assume
that fand g always denote (n+ 1)-group and (k+ 1)-group operations, respectively,
and we write (G,f) and (G, g) only to avoid a possible confusion.

The identity morphism is denoted by e,: A—~A4 or briefly by e, if it is not
misleading. )

For a (k+ 1)-semigroup (G, g) one can define a new (sk+ 1)-ary operation
&(s) by

g(x)(xla sres xn+l) =

= g(g("'g(g(xla ooy Xgt 1) X2 o> Xogg1)s oe)s X(s—1)k+25 ++*» n+1)'
S

If (G,g) is a (k+1)-group, then the (sk+ 1)-group (G, &) is an (n+1)-
group, too (cf. [2]). This (n+ 1)-group is said to be a derived (n+1)-group of the
(k+ D-group (G, g) (cf. [2], [5]) and is denotéd by ¥ (G, g) or shortly by ¥ (G)
(cf. 3, [7D).

In this way one can obtain a forgetful functor ¥,: Gr,,,~Gr,,, (in this
paper, as in [3]; [7], Gr, denotes the category of n-groups). The functor ¥, has a
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left adjoint. This is the functor &;: Gr,,,—~Gr,,, assigning to each '(n+ 1)-group
its free covering (k+ 1)-group (cf. [3], [5], [7]).

The notion of a free covering (k- 1)-group of an (n-+ 1)-group, introduced in
[3] and investigated in [5], [7], is a generalization of the well-known notion of a free
covering group which was introduced by Post in [10].

3. Some lemmas

This section is of auxiliary character. The facts presented can be treated as
known and can be found in any basic course on category theory (e.g., [1], [11]) or
easily inferred from statements given there. Most of these facts belong to the “folk-
lore” of category theory, and therefore they are given without references. In this
section we collect all the auxiliary categorical lemmas that be will applied in later
sections.

As is known, each theorem of category theory can be given a dual formula-
tion. To avoid repetitions; we do not formulate the dual versions to the given state-
ments. When referring to the dual version of a lemma given in this section we indicate
it by adding an asterisk to the number of the lemma.

In this paper the term functor always means a covariant functor. We use inter-
changeably the following terms: a small category and a diagram scheme, a functor
from a small category and a diagram. The terms diagram scheme and diagram
are used especially in dealing with limits. The symbol 2 always denotes a small
category and the symbol F a functor from that category 2 (i.e., F denotes a dia-
gram).

We assume in the lemmas (except Lemma 2) that the categories ¢, .#; and
A, are complete with respect to projective limits of all diagrams, including the
empty diagram scheme. As a consequence, these categories possess final objects.
Since Lemma 2 is formulated for inductive limits, we assume in it of course the
completeness of £ with respect to inductive limits. This convention has to be under-
stood so that the assumptions on the categories J#, J#; and 2, in the dual versions
of the lemmas are also dual.

Lemma 1. Let a faithful functor A: A —~A, have the following property: if
A(@)=A(P)6 where B: B—C, y: A—=C, 6: A(A)—~A(B), then the morphism &
is of the form 3= A(x) for some «: A—B. Then the functor A reflects projective
limits. :

Proof. Let [G; {ap: G-~ F(D)}p¢ o) and [A(L); {A(ny): A(L)~ AF(D)}p¢ o)
be the projective limits of F: 2—; and AF: @9+, respectively. From the
faithfulness of A it follows that the family {n,: L—~F(D)},., is compatible with
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F. Therefore there exists a morphism & such that apd==z, for D€9D. The
family {A(xp): A(G)~AF(D)}p, is compatible with AF, and so there exists a
morphism #: A(G)—~A(L) such that A(np)n=A(xp). From the equalities
A(mp)nA(8)= A(apd)= A(np) for D€D it follows that nA(d)=e - Hence g
is a retraction. On the other hand, from the assumption on A it follows that # is
of the form n=A(u) where u: G—~L. Thus A(opdp)=A(np)n=A(ap), which,
by the faithfulness of A, implies that a,du=a, for D€Z and hence du=e;.
Therefore u is a co-retraction. The functor A, being faithful, preserves co-retrac-
tions and so 7= A(y) is a co-retraction. But # is also a retraction, and so 7 is an
isomorphism. As is easy to check, A4 reflects isomorphisms, whence u is- an iso-
morphism (since 5= A(p)): Therefore [L; {np: L—~F(D)}pco] is the projective
limit of F, which is what was to be proved.

Let a category 2 have an initial object U which satisfies an additional con-
dition: for every object X¢€2¢ distinct from U we have Mor (X, U)=0. It is
worth adding that not every category with initial objects has initial objects with
this property. For instance, this condition is not satisfied in Gr, for n=2; how-
ever, for n>2 (and also in the category of sets) it is satisfied.” .

Consider a diagram F: 9—~%. Let 9, be the full subcategory of 2 consisting
of all objects D such that F(D)=U, and let Fy, be the restriction of F to 9,. Then
the following lemma is true. '

Lemma 2. [L; {yp: F(D)~L}p.,] is the inductive limit of F zf and only if
[L; {yp: Fo(D)~L}pcq] is the inductive limit of Fy.

Proof. Let [L; {yp: F(D)~L}p.,] be the inductive limit of F. The family
{vp: F‘,(D)—>L}D€5ao is compatible with F,. Take an arbitrary family

{apt Fo(D) — G}oego

with G€X, which is compatible with F,. That family can be extended to a family
{oep: F(D)~G}p., by choosing as morphism «p: F(D)—~G for D¢9,, the only
morphism from the initial object F(D) (in the category ) into the object G. It is
easy to verify that the extended family of morphisms is compatible with F. Thus
there exists a unique morphism &: L—G with dyp=a, for Dc2. Hence, in
particular, dyp,=a, for D€Z,, which proves that [L; {yD FO(D)—»L}DEQ] is
the inductive limit of Fj.

Conversely, if [L; {yp: Fo(D)~L}peg,] is the inductive limit of Fy, then the
family {yp}p¢ o, can beextendedin a natural way to a family {yp}pc - S0 [L; {vp}pcol
is already the inductive limit of F. This completes the proof of Lemma 2.

In our further considerations the notions of discrete and connected categories
prove to be very useful. A category ¢ is said to be connected if for every pair of
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objects X, YeX there exists a finite sequence of objects A, ..., A,€# such
that 4,=X, 4,=Y and Mor (4;, 4;+1)UMor (4;,,, 4)#9 for i=0;...,m—1.
A full subcategory ¢’ of a category J¢ is said to be discrete if for any pair of dis-
tinct objects X, Y€ there exists no connected subcategory of A containing
XandY. »

Using the Kuratowski—Zorn Lemma one can prove the following two lemmas.

Lemma 3. For each object D of a small category 2, Dhas a maximal con-
nected full subcategory Dy, i.e., a connected subcategory @Dy such that Dc2D,, and
for any pair of objects. A, BED with Ac2D,, B¢D, we habe Mor (4, B)U
UMor (B, A)=0.

Lemma 4. Every small category 2 has a maximal discrete full subcategory
9,, i.e., a discrete subcategory 2, such that for each object X€D there exists an
object A€, with X€9,.

_,Consider a diagram F: 92— with the following special property: every
pair a, feMor (X, Y) with X, Yc9 satisfies the equality F(a)=F(f); further-
more, F(x) is an isomorphism. Let &, be a maximal discrete full subcategory of 2
and let F;: 9,—~ be the restriction of F to the full subcategory 94 F or such a
diagram F we have the following lemma.

. Lemma 5. If [L; {ap: L—»F(D)}Dw] is the projective limit of F then
IL; {aD L—~Fp(D)peo,] is the projective limit of F,. :

Proof. Let [L; {ap}yc4] be the projective limit of F. The family
{op: L"Fd(D)}Degd

is compatible with F,. Take any family {f,: G—F,(D)}, ¢g,» where Dc9,, which
is compatible with F;. To show that this family can be extended to a family
{Bp: G~F(D)}pcp take an arbitrary object X€¢2. The definition of P, implies
the existence of an object A€, with X€9,. Then there exists a sequence of
objects Ay, ..., 4,62 such that Ay,=A4, A,=X . and . Mor(4;, 4;,,)U
UMor (4;,1, A)#90 for i=0,...,m—1. Let a;¢ Mor (A,, A,+1)UMor (A;14, 4)
(=0, ...;,m—1). We define morphisms p;: F(4,)~F(4;,,) by putting p;=F(a;)
for a;¢Mor (4;, Aiyq)-and ;=F ~(a;) for a;6Mor (A4;4,, 4;). Let

H= Wy alp=2---Ho: F(A)»F(X)

It is easy to check that the morphism u does not depend on the choice of the objects
connecting 4 to X. So we can define f; as a-composition of u and B,, ie., By=
=puf,: G—~F(X). It is evident that the morphism B, is uniquely determined, inde-
pendently of the choice of the objects A,, ..., 4,,. In this way we get the family
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{Bp: G—~F(D)}pco- From the construction of By it follows that this family is
compatible with every diagram F, (here F, denotes the diagram F restricted to
the subcategory 2,) for A€2,. Note that Mor (X;Y)=0 whenever Xc2,,
YeDy, A,Bc9, and A=B. Hence it follows that the family {f,},., is com-
patible with F. Then there exists a unique morphism 6: G—L with «,6=§, for
D€ 9. This shows that [L; {ap: L—~Fy(D)}peo ) is the projective limit of F, which
is what was to be proved.

Consider any small category 9. This category can be embedded in a small
category 2, which is obtained by adding to & one (final) object E and a family of
morphisms {ep: D—~E},. 4, one morphism to each object D€D,. The resulting
category 9, is obviously connected. A diagram F: 92— can always be extended
to F,: 9,~A by defining F,(E) to be the final object in the category # and
F,(gp) to be the morphism induced by the final object F,(E).

Lemma 6. [L; {np: L~F(D)},,] is the projective limit of F if and only if
[L; {np: L~F.(D)}peo,) (with mp: L—~F.(E) the morphism induced by F.(E))
is the projective limit of F,.

Lemma 7. Let a functor A: Hy—~A, preserve projective limits of all dia-
grams of connected diagram schemes. If [L; {np: L—~F(D)}pc 4l is the projective
limit of F: @—~A, where @ is any, not necessarily connected, diagram scheme,
then [A(L); {A(np): A(L)~AF.(D)}pcy) is the projective limit of the extended
diagram AF,: 9.~ A,.

Proof. Let [L; {np}, 5] be the projective limit of F. According to Lemma 6,
[L; {rp: L~F.(D)}peo,] is the projective limit of F,: 2,—~;. The category 2,
is connected, whence [A(L) {A(n,,) A(L)—~ AF (D)} ,] is the projective limit
of AF,.

4. The relation of the functor @ to projective limits

We devote this section to the study of the relation of & to projective limits,
We start with a lemma.

Lemma 8. If a composition of morphisms y: ®;(A)~ @,(D) and ¢,(f): D,(D)—
—~@,(B) with A,B,D¢Gr, ., is of the form D, (B)y= P (a) for some o: A—B,
then y is also of the form y=®,(8) where 6: A-D.

Proof. In view of Theorem 4 of [5] we have the equalities {;®P,(x)={, and
(s D (B)={p. Then {py=L5P,(B)y={pP.(a)={,. Hence, by Theorem 4 of [5],
there exists a morphism é: A—~D such that &,(6)=y, which is what was to be
proved:
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Note that from the faithfulness of @ it follows that the morphism 8 does not
depend on the choice of f provided the morphism @,(f) remains the same.

Proposition 1. If [®(L); {P(np): P (L)~ D, F(D)}pcol is the projective
limit of ®,F: D—~Gr,,,, then [L; {np: L—~F(D)}, 4l is the projective limit of
F: 9-Gr,,,.

Proof. From Lemma 8 it follows that & satisfies the assumption of Lemma 1.
Then, by Lemma 1, &, reflects projective limits; which is what was to be proved.

The theorem converse to Proposition 1 is not true in general. This was already
indicated in [7], where an example was shown to demonstrate that @ does not pre-
serve the Cartesian product. On the other hand, in [7] a sufficient condition was
given which, when imposed upon a diagram scheme 2, made @ preserve the projective
limits of diagrams F: 2—Gr, ;.

Now we show that this condition fails to be necessary. Moreover, we charac-
terize the categories & for which @ preserves projective limits. Theorem 1 of [7] is
a particular case of the theorem given below.

Theorem 1. Let @ be a nonempty diagram scheme. The functor @, preserves
the projective limits of all diagrams F: 9—Gr,.; if and only if 9 is connected.

Proof. Let & be connected and let

[L; {mp: L~F(D)}pegl and [L'; {yp: L' ~ &;F(D)}pol

be the projective limits of F: 2—Gr,,, and &,F: 2—-Gr, ., respectively. The
family {®;(np)}pcs is compatible with & F, and so there exists a morphism
u: O (L)~L" with ypu=P,(np) for DeD. Fix some (arbitrary) object U€Z.
Then yyu= &,(ny). By Corollary 6 of [5] the object [L'; {yp}pcs] (determined up
to isomorphism) can be chosen in such a way that L'= &,(G), yp = D.(1y), u= P,(3),
where G€Gr, 4, ny: G—~F(U), 6: L-~G. We show that every morphism y, is
of the form y,=®,(n,) for an appropriately chosen #5,: G—~F(D). To verify
this, take an object 4¢2. The connectivity of & implies the existence of a finite
sequence of objects A, ..., 4,62 such that A,=U, A4,=A4, Mor (4;, 4;,1)U
UMor (4; 41, 4)#9 for i=0,...,I—1. The morphisms 7, will be constructed by
induction, step by step, starting with #n, . If Mor (U, 4,)#0 (i.e., there exists a
morphism a: U—~4,), we put 7, =F()ny. By the compatibility of the family
{vp}pco With &, F and by the faithfulness of @, it follows that F(a)ny does not
-depend on the choice of « (note that the set Mor (F(U), F(4,)) may consist of a
lot of morphisms!). So the morphism # 4,0 G—=F(4y) is well-defined. If, on the
other hand, Mor (4,, U)#0 (ie., there exists an a: 4,~U), then by Lemma 8
there exists a morphism 7, : G+F(4,) which is well-defined (independently of



78 J. Michalski

the choice of «). In this way we get the morphism # 4, Further on, to obtain z Ao
from n, we proceed as in the first step, depending on which one of the sets
Mor (4;, A;41) or Mor (4;,,, 4;) is nonempty. After performing / such steps we
obtain n,: G—F(A). As is easy to verify the family {n,},., is compatible with F.
So there exists a morphism ¢: G—~L with npo=n, for DEZD (since by assunip-
tion [L; {n,}pcq] is the projective limit of F). The equalities n,06=n,0=mn,
hold for every D€2, whence ¢d=e,. Similarly, from the equalities y,®,(d0)=
= &,(m, 0)=D,(n,) it follows that P, (6g)=e,., whence dg=e;. Then § (thus also
®,(8)) is an isomorphism, which proves that [@,(L); {®s(np)}p¢ ] is the projec-
tive limit of @, F.

Conversely, let @, preserve the projective limits of all diagrams F: 2—-Gr,
for a fixed category 9. Consider the functor F: 9—Gr,,, defined as follows: for
De2 let F(D) be a one-element (n+1)-group and for «: X—Y let F(ax) be the
unique morphism from F(X) onto F(Y). Let [L; {n,: L—F(D)}p¢5] be the projec-
tive limit of F. Since all objects F(D) for D€ are final in Gr,,,, the object L is
also a final object in Gr,,, i.e. a one-element (n+ 1)-group. Thus P (L)=C, , .,
(cf. [31,[7]). By assumption [P (L); {D(n,):P(L)—~ P ,F(D)}pcq] isthe projective
limit of @ F. However, we can see that for any a: X—Y with X, Y¢9, the morphism
@, F(a) is the only isomorphism of the cyclic (k+ 1)-group @ F(A)=C, ;,, onto
the cyclic (k+1)-group @,F(B)=C, ., with the property @, F(x)(0)=0. There-
fore, in view of Lemma 5, [®,(L); {®,(n,): P,(L)~ D, Fs(D)}pe o, (where F, is
the restriction of F to 2,) is the projective limit of & F;: 2,—~Gr, ;. Since F, is
discrete, [®(L); {Ps(mp)}peo,] is simply the Cartesian product of the family of
(k+1)-groups {® F (D)}De@,,» i.e., the Cartesian power of the cyclic (k+ 1)-group
€, ;+1. On the other hand, the (k+ I)-group &,(L) is the cyclic (k+ 1)-group
C,.x+1, whence the family {®,F(D)},. 9, consists of one element, which means
that 9, consists only of one object. Hence 2 is a connected category. This completes
the proof of Theorem 1.

From Proposition 1 and Theorem 1 we immediately infer the following
Corollary 1. Let & be a connected diagram scheme. Then [L; {ny: L~ F(D)}, o}
is the projective limit of F: @—Gr,,, if and only if
[d)s(L)’ {Qs(nb): ¢3(L) - d’s F(D)}DEQ]

is the projective limit of ®,F: D~Gry, ;.

The question arises what are the free covering (k- 1)-groups of projective
limits of diagrams F: 2-Gr,,, in the case when the diagram scheme is not con-
nected. Note that a partial answer was given in Lemma 7. In our case of the category
of n-groups a more specific answer can be given.
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Take an arbitrary diagram scheme 9 and a diagram F: 2-Gr,,,. Let 2,
and F, have the same meaning as in Section 3. As is easy to see, @, F(E) is nothing
else than the cyclic (k+ 1)-group € ;. (cf. [3], [5]) and &, F(e,): @, F(D)~>C, ;41
are simply the morphisms (,: &;F(D)~C ;.1 (cf. [3], [5]). Every diagram & F
can be extended to &, F,: 2,—~Gr,., by adding the object €, ,,, and the family of
morphisms {{,: ®,F(D)—€,,.,}pc,. Hence we obtain

Proposition 2. If [L; {ny: L~F(D)pcsl is the projective limit of F: 9—
»Grn-l-la then [qjs(L)’ {¢s(nn): ¢S(L)_’(pch(D)}DEQG] (where QS(TCE):CE qss(L)»
—~Q, 1+1) is the projective limit of the extended diagram &.F,: Z,~Grp.,.

In this way free covering (k- 1)-groups of projective limits are always projec-
tive limits, but perhaps of an extended diagram.

5. The relation of the functor ¥ to inductive limits

As in the dual case of @ and projective limits, the functor ¥ reflects inductive
limits. To show this fact, we need the following lemma.

Lemma 9. If a composition of morphisms Y (2): P, (A)~¥ (D) and
y: Y (D)~ Y (B) with A,B,DEGry,, is of the form y¥(a)=Y,(B) for some
B: A—B, then v is of the form y=¥(5) where 6: D—~B.

Proof. Take any element cy6A and let d, be the skew element to ¢, in the
(k+ 1)-group A. Let d=a(d,), c=0(c,). It is easy to check that d is skew to-¢ in the
(k+ 1D-group D. On the other hand, the element y(d)=7ya{dy)=p(d,) is skew to
y(c)=ya(ce)=P(c;) (since f: A—B). Hence, by Corollary 3 of [6], y is a homo-
morphism of (k- 1)-groups, which is what was to be proved.

Proposition 3. If [¥(L); {¥s(vp)—~¥Y:(LY)pcol is the inductive limit of
VY. F: 9-Gr,,,, then [L; {yp: F(D)—~L}, 5l is the inductive limit of F: 9—
=+Griy;.

Proof. Lemma 9 shows that ¥, satisfies the assumption of Lemma 1*. Thus
¥, reflects inductive limits.

Theorem 1 describes the preservation of projective limits by @. Theorem 2 (dual
to Theorem 1), formulated below, gives a condition characterizing those diagram
schemes for which ¥ preserves inductive limits. The proof of Theorem 2 proceeds
via complicated calculations. To stress the main idea of the proof a part of those
calculations is presented in a sequence of five lemmas. All those lemmas have some
common assumptions. To avoid repetition, we formulate these assumptions before
starting the lemmas.
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Given a diagram F: 2—Gr, .y, let [L'; {y,: Y, F(D)—~L'},,] bé the induc-
tive limit of ¥, F. As was mentioned in Section 2, we deriote by g the (k+ 1)-group
operation in all (k+ 1)-groups (i.e., F(D), L, G), while by f the (n+ 1)-group opera-
tion in all (n+ 1)-groups (ic., ¥, F(D), ¥ (L), ¥,(G), L’). To avoid confusion we
assume that the symbol X always denotes the element skew to x in the corresponding

(n+1)-group (butnot in a (k+ 1)-group). The equivalence of polyads is understood
in the sense of [10].

Lemma 10. If for some objects A, BED we have Mor (A4, B)UMor (B, 4)=90,
then for an arbitrary element ac F(A) there exists an element b€ F(B) such that the

n—k k—1 n-k k-1
k-ads <')’A(g(s—1)(a: a)), ')’A(a» and <YB(g(s—1)(Ea b )), }’B(b» are equivalent.

Proof. Let a: A-B and b=F(x)(@). Take elements x;...,X;41_x€L".
Then :

FGus oo Farrto 74 (8@ @ Y, 7a(@) =
= S B W@ g0 B ) vnwk’%(a)(a))—
= foos Fnormns 1@ @y @ @ ), vB(F(a)(a)))~
= S Buermio 758y (FO @), F@Y(@), 70(b) =

n—k k-1
= f(xp sy Xpa1—ks )’B(g(s—l)(E, b)), Vs(b))-
Next, let f: B—~A. Take an arbitrary element b€ F(B). Then

SOy ooos Xuraons Va(8s- 1)(6,";k)), Y:Etll))=

= fioy (o Xur1-5 Va(8s-1y (@5 a)) vA(a) 5(b), vn(b))—~

S (oo Fnrroes FOa B @ Vs 74 (@) 74 ¥ FBOB), v4 B FB) B, 74 (D)) =
— F (s X1t FOa Bty @ @ s 72(@), 14 (FBY BN, 74 CFBYBY), 7a(b)) =

= F (o Xuortr V(80 @@ @), @ 5 FBYB), FBYBV), 74(D)) =

=1 X 74 (8o l)(g<s)<a,"2k, o OGN, FG®), 150 =

(e Rarroes T (@ "o, F®B, EB D), rab) =

= F(eos Farrois 2B @y B, 5, 15(5)) =

=f(oes Xns1-k Y4 s F(B)(8s-1y (D, "5, ?a(b))—

=f(x1’ cees Xpi1-k> ?B(g(s—l)(Ea b )), )’B(b))-
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Lemma 11. If a category 9 is connected, then for every pair of objects A, B9
and for any element ac F(A) there exists an element b€ F(B) such that the k-ads

n—k k-1 n—k k-1
<7A(g(s_1)(a, a))a y4(@)) and <7B(g(s-1)(5’ b )),478(b)> are equivalent.

Proof. The category 2 is connected by assumption, so for any pair of objects
A, BED there exists a sequence of objects A,, ..., 4,€2 such that A=A, 4,=B
and Mor (4;, 4;,.1)UMor (4;,,, 4,)#=9 for i=0, ...,r—1. Applying Lemma 10
r times, we infer the equivalence of the polyads in question.

Lemma 12. For any elements d, ye F(A) the (k+ 1)-ads

<?A (g(s—l) (a’ ":1“))’ V’;‘(:’), Va (y)> and <yA (y)’ Ya (g(s‘-—l) (t_l, ";k))., 7’;?;»
are equivalent.

Proof. Let x,, ..., x,_x€L’. Then
. n—k k-1
Sy ooy X 1a@s-1 @ @), vala), 74(0) =

= oo Tmis 7 Bsy @ @ N, 74 (@), 7490 74(@), V(@) =
= F(os Far SOy @ @ Dy 74(0), 740, 7408, 72(@Y), 24 () =
=S ot 7480 Bey@ @), @533, @ I, va(@)) =
=S Famts 24 @ @ @, @ @320 G N, pa(@) =

-

=f(’ Xn—ks VA(g(s—l)(f(a’ ";1’ y)’ a a ))’ VA(a)) -
= S Bt 14 @y (F0 @, @), 3, @ )y 7a(@)) =

= feees Xuck> Y4 (8(s-1y () (7> G ";1), a, —2 1)), yA(a)) =
. n—k k-1 —k-1
=f( Xn—k» yA(g(s)(y’ g(s~1)(a9 ak)a a,d, 2 ), yA(a)) =

n—1-

=f( Xn-ks SG4 ), YA(g(s 1)(“ a )) 'YA (a) y4(@), '}’A(a)) Ya (a)) =
=f(-~a Xyois Y4 (P F(4 (g(s—l)(a9 a )), Ya (a), 74(8), )’A (a), 74(2)), 4 (a)) =

n—k k-1
-—f(xl’ cees Xp— ks ‘))A(y)’ yA(g(s 1)(¢_l a ))’ 'yA(a))

«  Lemma 13. If for some objects A, BED we have Mor 4, B)UMor (B, )90,

then for an arbitrary element aE F(A) theze exlsts an element b€ F(B) such that
s—1 {k—1)(s—
the (n—k)-ads {y.(a,), yA(a) > and (yB(bs), y,,(b) )are equivalent (here a, and

¢
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b, dengte. Ihe skew- eIemems to a and b in the (k+1)- groups F(A) and F(B), respec-
fively ).~

Proof..Let «: A—-B and b=F(x)(a) (hence also bS=F(a)(a;)). Take ele-
ments X, ..., Xz41€L". Then )

C s—1  (k=1)(s—-1) - : (k—1)(s—1)
f(xls A xk+19 yA(a ) ‘yA(a) ) f( xk+1a Bql F(a)(a ) YBW F(a)(a)) - -
-1 (k=1)s—1)

=f() Xk+1> YB(F(a)(as))’ YB(F(a)(a))) =f(x19 . xk+1’ YB(bs)a ')’B(b) )

Next, let f: B—~A. Take an arbifrafy' element b€ F (B). Let b, be the skew element
to b in the (k+ 1)-group F(B). Then

s=1 (k—1)(s—1}
f(xl’ oo Xg+1s YA(as) YA(a) )

(k—1)}s—1

= £ Xesns 74 (8 (FCB) (b, F(B) ®).
s—2  (k=1)(s~1)
F(B)(by), FBYB), a). 14(@). va(a) )=

© (k—1)s—1)

= f(s xm,f()'A(F(ﬂ)(bs)) vA(F(lf)(b)),
- VBB, 1A F B, 14 @) 74, 7al@) ) =

: (k—1)(s—1

=f(.s XA+1,f()’,4 v, F(ﬂ)(bs) Ya¥ F(ﬂ)(b),
s~2 (k—1)(s~-1)

YW FB), 74 FB), 14(a)), ya(@),  7a(a) )=

s=1 (k 1)(s—1)—1

= S Xerns 0 Ve ®) S ra EGO), |
VACFBYBN: 14 F BN 14(a), v46ads val@) )=

s—1  (k—=1)(s—1)-1

=f(---s xk+1'Aa: va(b), ¥8(B) .74 (2 (F(B) (D), N
" B ' F(B)(b), F(B)(), a;, a )=
s—1 (k—Ius—1)—

*—'vav("'s'xk+l9 )’B,(bs)a yB(b) ’ yA (F(ﬁ)(b))) = v

Lo -1 .(k—1)s—1)
- .':f(?ﬁ, coos Xk Ya(bs) y8(b) ) ‘
Lemma 14. If a category 9 is connected, then for every pair of objects A, B¢

and for an arbitrary element a€ F(A) there exists an element b€ F(B) such that the
(k=1)(s-1)

-1
(n—k)-ads” (y A(as) y A(a) ) ‘and (yB(bs) v8(b) ) -are equivalent (here a, and-
b, denote the skew element 1o a and b in the (k+ l)-groups F (A) and 'F (B) respec-
tively). . : .

.- v'}
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Proof. The proof of this lemma is analogous to that of Lemma. 1. .
: Lemma 15 If a b.c are any elements of an object F(D) thh DE@ then the k-ads
(vp(g(s 1)(0, "a )) 'Yn(a» and (yp(8-1(b, ) )) ?o(b)> are equlem .

Proof. Let xl,... Xpt1- ,‘EL Then

f(xla- v Xp4+1-k> ?D(g(s 1)(‘1, a)) )’D(a))—

-f(z)( ’xn+1 —k> '}’D(g(s n{a, a )) YD(a) 'Yn(b) 'J’D(E))—

=St k,f(vp(g@ y(@ @) &D(a) %(b)) 100, 36) =

n—k k—1 n+l1-k

=f(\, xlll'*'l"'k, )’.D(g:(s)_.(g(sv—l)(a . a )9 a ’ b )) yD(b) YD(E)) -
n—1 n—k -
=f(’ Xn+1-k> YD(g(s—l)(f(a’ a b)a b ))9 vb(b), YD(B)) =

=f( s Xn+1-k> ¥D (g(s-'l';(f(B; ‘"Bl’ b)‘, "Ek)), y:EIi), 70(5)) =

n—k k~1 n+1i-k

o 3 k—2

=f("'s 'xf'n.+]t—.k" Yﬂ(g(s)(:g(s;l)(l;, b )s . b s b ))a YD(b)’ ‘yD(B)) =
. n—k k-1 n+l-k k-2

=f(s xn+‘1—k9f(-?D(g(s—1)(Ba. b ))9 yb(b), yD(b))9 yD(b), YD(B)) =

. n—k k—1 .
=f(x19 ceer 'xn+l—kls ‘YD(g(s.—l)(E’ . b )): yD(b))

Theorem 2. Given a diagram scheme 2, assume that 9 is nonempty or k> 1.
The functor ¥ preserves the inductive limits of all diagrams F: 9—+Gr,,, if and
only if the full subcategory @, of 9, which.consists of those objects D for which ¥ F(D)
is not an initial object in Gr, [;, is connected. . )

Proof. Assume that the nonempty category %, is connected. Let
[L; {op: F(D) = Lipegl and. [L%; {yp: ¥.F(D) ~ L)pes)

be the. inductive limits of F: 9~Gr,,, and ¥ F: 9-Gr,,,, respectively. Note
that for k=1 the diagram scheme 9, is equal to & (since ¥, F(D) is not an empty
(n+1)-group). On the other hand, for k=1 the full subcategory of 2 consisting
of those objects for which F(D) (but not ¥, F(D) as in the definition of ,) is a
nonempty (k+ 1)-group, equals 9, (since F(D) is nonempty iff ¥ F(D) is nonempty).
In view of Lemma 2, [L; {op: Fo(D)~L}pco] and [L'; {ro: ¥, Fo(D)~L'}pe 0}
(where F is the-restriction of F to 2,) are also the inductive limits of -Fy and ¥, F,.

34
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Take an arbitrary (but fixed) object - C€9, and choose an element c¢,€C. Let
¢,€C be the skew element to ¢; in the (k+1)-group F(C). We prove that the element
d—'yc(c) is an s-skew element to the element ¢= yc(co) in the (n+ 1) group L’.
Indeed, for any element x¢ L’ we have

k—1

s ( )s 5 (k—ljs n—-1
f(d’ ¢ , x) =f(yC (Cs)’ YC(CO)’ f(yC (60)9 )’C(CO)’ X)) =
= F(fOeed Yeleh ve (@), 1e(en), ) =
= S c(@e s o 2 2, Yol X) = S(rc(E, voleah %) = x,

which shows that the elements d and ¢ satisfy condition 1° of the definition of an
s-skew element (cf. [6]).
Next, take elements x, ..., X,;1_x€L" and fix i=1,...,n+1—k. Then

k-1
f(xls CRRE} xi9 d; 4 ’ xi+15 evrs xn+1—k) =

=f(---: Xi» Yc(cs), VZZ;O):f(YC(Eo)"'YZEéo)a Xiith Xives ) =

k—1 n—k k-1
=f("'r' xi’f(YC (cs)’ 7C(co)a YC(Ed)s 'YC(CO))9 ‘yC(CO)’ Xit1s ) =

k-1 —k k-1
=f( > Xis yC(g(s)(Csa Coacm CO)) ')’c(co) Xi+1s ‘--)=

k—1 n— k—1
=f(s Xis Yc(g(s)(COsCs, Co>- CO)) '}’C(co) X1 )=

=f(’ xisf(yzz‘l:OL Yc (Cs), Yc (Eo)a )'ZE:O))’ Yz‘zclo), Xi+1s -“) =

k-1 n—k k-1
=f(“" Xis €, d:f(?C(EO)’ YC(CO)’ ')’c(co), xH-l), Xi+2s ) =

k-1
=f(’ Xis €, d) Xit1s ooy xn+1-k)'

Moreover, by the definition of the (n+.1)-group L’ (as an inductive limit of (n+ 1)-
groups) it follows that the elements of L’ are generated by the set | 7p(F(D)).
‘ 2L

‘Hence in particular xi=ji_)(yp;(y1), -+ ¥p, (7)), where r=1 (modn), y,cF(D,)
for j=1,...,r, and x1=f(_)(yAl(zl), -~-,7A,(Z:))’ where t=1 (mod n), z;€ F(4,)
for j=1,...,¢

To explain the sequence of transformations, we .will write the numbers of the
lemmas we refer to, below the sign of equality. The elements chosen according to
Lemmas 10and 11 will be denoted by d; in the (k4 1)-groups F(D;) and by a;in the
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(k+ 1)-groups F(A;). Then

k—1
f(x19 vees X d, C 5 Xit1s --o» xn+1-k) =

= £ %00 2eeds Vel ST 1ol Xuads Fovas ) =

= f (s %5 SO (e, Ye(eo), ve(Zo), Ye(eO)s Teleo)s Tinn, )=

= £ T Fir@on s s 70, (3 Y8y Car €05 Eos 0 s Pelad Xiins ) =
AT W O SV e s SV S

n—k k—1 .
(;‘l‘)_f( )( 5 Xi—1s yD;(yl), (] 'YD,_;(yr—l)’ YDr(yr)a 'YD,.(g(s-})(an dr ))’ yD,(dr): Xi+1 )=

k—
(1—2)f( )( ] i—l,,YD1(yl) .2 ‘)’D,- (yr 1) ’)’D,-(g(s 1)(dr’ d )) yD,-(dr) YD,.(yr)9 i+l ...) =

(ﬁ)ﬁ )( o Xi—1, ')’D,(.Vl)a a)’p, 1(yr V> ¥p, - 1(g(s ])(ar -1, G, 1))

k—1
‘YDr—l(dr_l)’ ‘)’D,.(yr): Xiv1s ) =

. - n—k
(;)f( )( oy Xi—1, )’n.(}’l), cees YI),.-n(yr—2)s YD,_,(g(s—l)(dr-l, d,_y)),

k—1
'YD,_l(dr—l)’ 'YD,_I(yr—l)i 'YD,(yr)’ Xit1s ) ==
. o=k k~1
Zﬁ-)('YA_,(g(s-l)(au a,)), 4 (ay), )’A,(zl): ey ')’A,(Z:)s Xy, o) =

n—k k—1
(ll;,__(15) f(yC (g(s— 1) (EO s Co ))7 Yc (CO)’ X5 .- ) =

- . k—1 _ n—k - k-1
=f(yC(g(s)(cs’ Co s Cos c,o)), ')’C(c())y X1 ) =

=f(f(YC(cs)a ')’ZEZO)’ ?C(Eo)y ‘y:(_c’:)))’ ‘)’Ck—(—:())’ X1, ) =f(d’ kzl: X1 )3

which proves that the elements d and c satisfy condition 2° of the definition of an
s-skew element (cf. [6]). Therefore the element d is s-skew to ¢ in the (n+ 1)-group
L’. Thus, by Proposmon 1 of [6] (cf. also Theorem 5 of [5]), the (n+ l)-group @, n
is derlved from some (k+ 1)-group G,9), ie., ¥ (G)=L’. Furthermore, the (k+1)-
group operanon gin G is ‘given by

s—1 (k=IUs~1)
g(xy, 5 Xpa) =000, s Xpr, d s c
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By Corollary 2 of [6] the element d is skew to ¢ in that (k+ 1)-group "G. Let
o Xes1€ F(D) for any D€2. Then

s—1 (k 1Xs5—1
8('}’0("1), ey )’D(Xkﬂ)) = f(YD(xl) - Yn(xkﬂ) vc(cy), )’C(Co) )) =

s—1 (k—1)4s—1)
f()’o(xl) o> Yo (Xk +1), 'Yo(ds) ¥p(do) ) = )’D(g(xls iy xkn))s

where d, is some element of F(D) and d, is the skew element to d, in this (k+ 1)-group
F(D). This shows that y,, is of the form y,=¥,(8,) with B,: F (D)—»G for De2.
The faithfulness of ¥, implies the compatibility of the family. {f,: (D)—»G}Deg
with F,,. So there exists a unique morphism é: L—-G suchthat do,=p, for Dc2,.

The family {¥,(op)}p¢o is compatible with ¥ F, which implies the existence of a
unique morphism w: ¥ (G)—~ ¥, (L) with wy,=Y¥ (aD) for D€ (since L'=¥ (G)
is the inductive limit of ¥ F). Then ¥ (8)wy,=¥(d0,)="¥,(Bp)=7p for D€,
which shows that ¥ (5)w e... Hence ¥ (5) is an epimorphism, and so & is an
epimorphism, too. It is easy to verify that the element w(d) is skew to w(c) in the
(k-+1)-group L. As was proved above, d is skew to ¢ in the (k+ 1)-group G. There-
fore by Corollary 3 of [6] w is of the form w=% (v) where v: G—~L. Hence
Y (vdop)=w¥ (By) =¥ (0p) for DED,. By the. faithfulness of ¥, we obtain
véap=0, for DED,. Then vd=e,, whence § is a monomorphism. The morphism
¥.(8), being an epimorphism and a monomorphism, is an isomorphism. Therefore

[Yo(L); {¥(op): ¥ Fo(D) ~ ¥(L)}peg]

19)

is the inductive limit of Y F,, and so by Lemma 2
[Y(L); {¥(op): W F(D) ~ ¥s(L))peg)

is the inductive limit of ¥ F. The functor ¥ preserves the inductive limit of F.

Conversely, let ¥, preserve the inductive limits of all diagrams F: 9-Gr,,,
where 9 is nonempty. Consider the functor F: 2-Gr, ., ~defined as follows:
for De@ the object F(D) is a one-element (k+1)-group and for o: X—Y ‘the
morphism F(x) is the (unique) isomorphism of F(X) onto F(Y). By the definition
of F it follows that in this case D,=9. Let [L; {y,: F(D)~L};.,] be the inductive
limit of F. By assumption, ‘¥ preserves inductive limits, therefore

[‘1’ (L); {¥(rp): PF(D) ~ W(L)}DGQ]

is the mductlve hmlt of ¥, F. Note that for.any, morpmsm o X ~>Y w1th X YE@
the morphlsm ¥;F() is .the (unique) 1somorph1sm of the one- element (n+1)-
group ¥, F(X) onto the one-element (n+ 1)—group Y’ F ). Therefore in view of
Lemma 5%, [¥, (L) {¥,(vp): P Fy(D)-—-Y, (L)},,w] (where F; is the restnctlon
of F to 9,) is the inductive limit of ¥,F,. The category 9, is discrete, and hence
[¥(L); {¥s(rp)}pcg,] is simply the free product of the family of (n-+1)-groups
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{¥:Fa(D)}pcg,- According to Theorem 3 of [8] the free product of at least two
nonempty (n+ 1)-groups is not an (n+ 1)-group derived from a (k+ 1)-group; so
the family of (n+ 1)-groups {¥, F4(D)}peg, is a one-element family: (smce Y.(L)is
obviously derived from the (k+ 1)-group L) Thus @d consists of one object only,
whence 2 is a connected category.

If 9 is an empty category and k=1, then L (as the inductive lumt of the. empty
diagram F) is the empty (k+ 1)-group. Hence ¥,(L) is the inductive limit of ¥, F.
The empty category is obviously connected. This completes the proof of Theéo-
rem 2.

Corollary 2. Let 9 be a nonempty connected diagram scheme. TI hen
[L; {op: F(D)>L}pc o]l is the inductive limit of F: 2+Gr,y if and only if
[Ps(L); {Ps(op): P F(D)>P(L)}pcql is the inductive limit of ¥ F: '@éGr"nL{.

Note that in the case k=1 we always have 2,=92 (since (n-+ 1)-groups derived
from groups are always ho‘nempty). But for k=1 the (n+ 1)-group derived from
the empty (k+ 1)-group is empty. That case has to be excluded. This is the reason
for considering the category 9, instead of 2. This, however, is only a minor restric-
tion since, as mentioned in Lemma 2, in considering inductive limits of (n+ l)~
groups the empty (n+ 1)-group is inessential.

As in the dual case of @ (Section 4), the question arises what are the (n+ 1)
groups derived from the inductive limits of diagrams F: 2-Gr,,, in the case
when 2 is not connected. As in the case of &, a partial answer is offered by Lemma 7*
for k=1, but here too (i.e. in the case of Gr,) more details can be given.

Take any diagram scheme 2 and a diagram F: 2-Gr,. Let 9, denote the
category obtained from 2 by adding an initial object I and F; the functor F extended
to that category 2;. The object F{(I) is obviously a trivial (i.e., one-element) group.
For De@ let p,: Fi(I)>F,(D) denote the embedding of the trivial group into
any group F(D). Every (n+ 1)-group ¥ F;(D), being derived from a group, contains
an invariant element of order one (cf. [2], [10]). The embedding of that element
(treated as a one-element group) is just the morphism ¥,(up): ¥, F:(I)-¥,F;(D).
Thus every diagram ¥, F can be extended to ¥, F; by adding the one-element (n+1)-
group ¥,F,(I) and the family of morphisms {¥,(up): ¥, F,(I)~¥,F(D)}pcs-
Hence we obtain

Proposition 4. If [L; {y,: F(D)—~L},,] is the inductive limit of F: 2—Gr,,
then [¥,(L); {¥.(vp): Yo Fi(D)~ ¥ (L)}pea] is the inductive limit of the extended
diagram ¥, F;: 9-Gr,,,.

In particular, for the case when 2 is a discrete category we get

Corollary 3. An (n+1)-group derived from a free product of groups is the
free product of (n+ 1)-groups with an amalgamated one-element sub~(n+1)-group.
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