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A reduction in case of compact Hamiltonian actions 

J. SZENTHE 

Dedicated to Professor K. Tandori on his 60th birthday 

The classical results of Jacobi and Liouville on reduction of phase spaces were 
put in a general setting by E. Cartan which in the up-to-date formulation of R. ABRA-
HAM and J. MARSDEN ([1], p. 298) runs as follows: Let Q be a smooth manifold 
and Q a closed 2-form on Q then the characteristic distribution E of g is given by the 
subspaces 

Es={v\ ivQz = 0, v£TzQ}, z£Q, 

and the 2-form g is said to be regular if E is a subbundle of TQ. If Q is regular then 
E proves to be an involutive distribution and thus generates the characteristic folia-
tion iF of g on Q. If the quotient space P= QjZF admits a smooth manifold structure 
such that the canonical projection 

is a submersion, then there is a unique sympletic form to on P such that Q=n*m 
holds. In this case the symplectic manifold (P, o>) is called a reduced phase space 
and the above procedure is said to be a reduction producing it. 

The existence of reductions in case of some Hamiltonian actions was observed 
by J. MARSDEN and A. WEINSTEIN [7]. In fact , let (P, co) be a symplectic mani fo ld , 
G a connected Lie group and 

<f>: GxP — P 

a Hamiltonian action with a momentum mapping J : P—g* which is equivariant 
with respect to <t> and to the coadjoint action Ad* of G on the dual g* of its Lie 

. algebra g. Assume that fi£g* is a regular value of the momentum mapping J then 

e „ = j-'Q*) 

Received April 17, 1984 and in revised form February 4, 1985. 



108 J. Szenthe 

is a smooth submanifold of P. Moreover, assume that the action of the isotropy 
subgroup G„ on the manifold Q„ is both free and proper, then the corresponding 
orbit space 

= QJG„ 

admits a smooth manifold structure such that the canonical projection 

V Qv-QJG^ P» 
is a submersion. Consider now the restriction gm of the symplectic form co to Q^, 
then the closed 2-form proves to be regular, the leaves of its characteristic folia-
tion being the orbits of GM on <2„ • Moreover, there is a unique symplectic form co)t 

on Pp such that 

is valid. Thus the reduction procedure applies to ( Q Q ^ ) and yields the reduced 
phase space (Pfí, co^). The above procedure is called the Marsden—Weinstein 
reduction and it has several important applications [8]. 

A generalization of the Marsden—Weinstein reduction is presented below in 
case of compact Hamiltonian actions. In fact, let (P, co) be a symplectic manifold, 
G a compact connected Lie group and 

<£: GxP — P 

a Hamiltonian action with a momentum mapping J: P-+ g* which is equivariant 
with respect to # and Ad* and has regular elements of g* in its range. It is shown 
that in case of a R a n g e / the set 

Q^J-'W 
is a smooth submanifold of P provided that G(z) is a non-singular orbit of <P for 
any zdQp. Assuming that the orbits of the isotropy subgroup G^ on <2„ are all 
of the same type it is shown that the orbit space P ^ Q J G ^ admits a smooth mani-
fold structure such that the canonical projection 

v e„ - QJG„ = p„ 
is a submersion. Moreover, the restriction g^ of co to OIL proves to be regular and 
the leaves of its characteristic distribution are shown to be the orbits of G„ on O^. 
Thus a unique symplectic form coM on P^ with Qlt=n*cofi is obtained. Consequently, 
the reduction procedure applies to (Q^, g j and yields the reduced phase space 
(P(1, co^. A simple example in order to show that the generalization is essential is 
presented as well. 

The author is indebted to J. J. Duistermaat for his remarks concerning the first 
version of this paper. , 
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First, a concise account of those facts is given which yield the prerequisites for 
the proof of the above mentioned result. 

Two orbits of the action of a group are said to be of the same type if they have 
the same conjugacy class of isotropy subgroups. The orbit types of an action are 
relatively easy to survey in case of actions generated by compact connected Lie 
groups. Actually, a fundamental result on compact connected Lie group actions, 
the Principal Orbit Type Theorem, yields the following classification of the orbits 
of such an action: 1. There are principal orbits, they are all of the same type and 
of maximal dimension; the union of the principal orbits is an open everywhere 
dense subset of the manifold on which the group acts. 2. There may be exceptional 
orbits; they are also of maximal dimension but not of the same type as the prin-
cipal ones. 3. There may be singular orbits: they are not of maximal dimension [6]. 

In case of the adjoint action Ad: GXg—g of a compact connected Lie 
group, the regular elements of g have principal orbits, there are no exceptional 
orbits, and the singular elements of g have singular orbits. 

If G is a compact Lie group then its Lie algebra g is obtainable as a direct sum 

g = c©u 

of a commutative and of a semisimple ideal. Consequently, an arbitrarily fixed interior 
product on c and the negative of the Killing—Cartan form of u yield an interior 
product ( , )0 on g which is invariant with respect to the adjoint action 

Ad: G x g - g . 

The interior product ( , } 8 defines a vector space isomorphism g=g* which is 
equivariant with respect to the adjoint action and the coadjoint action of G. Thus 
the Lie algebra g will be identified with its dual g* in what follows on account of 
the above given isomorphism. Consequently, by a momentum mapping the map 

J: P — 9 

will be meant subsequently which is obtained from a usual momentum mapping 
through the above given identification. Moreover, the equivariance of J is under-
stood with respect to. the actions $ and Ad. 

Let G be a compact connected Lie group, P a smooth manifold and 

GXP — P 

a smooth action. It is a well-known fundamental fact, that there is a Riemannian 
metric ( , ) P on P which is invariant with respect to the action Assume that 
there is a symplectic form a> on P which is left invariant by the action then a 
unique almost complex structure J : TP-+TP of P can be obtained such that 

Y)P = a(JX, Y) 
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holds for any vector fields X, applying a basic construction ([1], pp. 
172—174; [8]). 

Moreover, it can be shown that J is equivariant with respect to the induced 
tangent action 

GxTP — TP; 

in other words, J:.oT„<Pg = Tz <Pg o J, holds for z' = 4>(g, z), g£G, z£P where 

<i>9: P ~ P 

is the transformation defined by <Pg(z)=<P(g,z), z£P, for g£G as usual [2], [9]* 
Consider for z£P the subspace R°„<zT.P defined by 

R% = {v\Tz<Pgv = v for g£G°z, v£TzP} 

where Gz is the identity component of the isotropy subgroup Gz. Then the equi-
variance of J obviously implies that 

« = K 

holds. Assume now that in addition to the former hypotheses the action <P is Hamil-
tonian as well and that 

J: P-Q 

is an equivariant momentum mapping for <£. Then according to earlier observations 

Kernel TZJ = 3.N.G (z) 

holds at any point z£P where NzG(z) is the normal space to the orbit G(z) at z 
with respect to the Riemannian metric ( , )P given above [2], [9]. Consider now 
a point z£P such that G(z) is a non-singular orbit; then NzG(z)cRz holds 
and thus 

Kernel TZJ = 3zNzG(z) c J Z R ° Z = R°z 

holds in consequence of the preceding observations and assertions. 
For some part of the subsequent arguments the fact is essential that the Riemann-

ian metric <, )P can be chosen so that it becomes Hermitian with respect to 
the almost complex structure J . In fact, starting with a invariant Riemannian 
metric ( , )p and with J defined by ( , ) P and co the definition 

2(X, = (JX, JY)P + (X, Y)P, X, YeST(P) 

yields a Hermitian metric ( , which is invariant, with respect to the action (P. 
Moreover, the equality 

' 2(X, Y)H
P = (JY,JX)p+(X, Y)p.= io(-Y, JX)+a)(JX, F) = 2m(JX, Y), 

' •>X, Y<LSr(P) 
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shows that ( , ) " and <, ) P are in the same relation to co; consequently, co and 
( , ) " define the same almost complex structure as co and ( , >P. Thus there is 
no loss of generality by assuming that ( , ) P is already Hermitian with respect 
to J . 

The following theorem concerns the originally indicated objective, a generaliza-
tion of the Marsden—Weinstein reduction in case of compact Hamiltonian actions. 

T h e o r e m . Let (P, co) be a symplectic manifold, G a compact connected Lie 
group and 

4>: GXP — P 

a Hamiltonian action with an equivariant momentum mapping J\ P-+ g which has 
regular elements of g in its range. If ju€g is in the range of J and such that G(z) is a 
non-singular orbit for 

zíQ» = 0 

then Qp is a smooth submanifold of P. Furthermore, if the orbits of the isotropy sub-
group Gp on Qp are all of the same type then the orbit space Pl¡=Q/J/G/l admits a 
smooth manifold structure such that the canonical projection 

?V Qft — QJG» 

is a submersion and Q^, the restriction of co to Q^, is regular, the leaves of its char-
acteristic foliation being orbits of G„. Moreover, there is a unique symplectic form 
co, on P, such that 

Qfi = K^n 

holds. Thus the reduction applies to (Qll, Q,) and yields the reduced phase space 

P r o o f . Let P' be the union of the principal orbits of the action <P, then the 
isotropy subgroups are all conjugate in points of P'. The fact, that the set of regular 
elements of g is open, the assumption, that the range of J contains regular elements 
of g and the fact, that P' is everywhere dense in P together imply that there is a 
Z€JP' such that J(z) is a regular element of g. Thus the preceding observations and 
the equivariance of J entail that the isotropy subgroups in points of P' are all con-
jugate to a closed subgroup of an arbitrary maximal torus T of G. Obviously the 
same holds for the identity components of the isotropy subgroups in points of the 
exceptional orbits of the action 

Consider an element ¡i in the range of J such that G(z) is a non-singular orbit for 

It will be shown that the isotropy subalgebra gz as function of z€<2„ is constant 
on each connected component of the set Q 
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In fact, consider a point z0dQ„', then since G(z) is a non-singular orbit, the 
identity component G° of the isotropy subgroup G, is commutative by the preceding 
observation. Furthermore, by an earlier result already mentioned above 

Ker TZJ = J__ N. G (z) c R°z 

holds where R°:c.Tz P is the subspace of vectors left invariant by the identity com-
ponent of the isotropy subgroup. Consider the orthogonal decomposition 

9„ = t s ®fl„ 

then r2 is mapped into Ker (TZJ\ T:G (z))c: R°:(~)TZG (z) under the canonical iso-
morphism 

mz — T.G (z) (m. is the orthogonal complement of g. in g). 

Since the above isomorphism is equivariant with respect to the restricted adjoint 
action of Gz on m, and the isotropy action of G. on TzG(z), the following holds 

[ r„g 2 ] = {0}. 

The preceding observations obviously yield now that the following is valid as well 

[9M, g,] = [rz©g_-, fljcfc, g z]+[g, , Qz] = {0}. 

Since the isotropy subalgebras of the restricted action of G^ on Q^ are all conjugate 
in g,,, and since by the equivariance of J they coincide with the isotropy subalgebras 
of the action of G, the assertion that g. as function of z is constant on the connected 
components of Q„ follows. 

Consider now an element such that the orbits of the points zdQ t ¡ = 
are all non-singular. Let Q°f¡ be a connected component of Qlt, then the 

flat submanifold 

does not depend on the choice of z in according to the preceding observation. 
Fix a conic neighbourhood C of m. in g such that CPlgr={0}. Let W be an open 
and connected neighbourhood of which is disjoint from the other components 
of and such that m ^ c C for x(i W• It will be shown now that 

is valid. In fact, consider an xdW such that J(x)=£€q® holds. Then there is a 
smooth curve [0,1]—W with <p(0)=z€{2°, <p(l)=x. Consider now the curve 

x¡i = Jo(p: [0, 1] 
Let m ^ be the orthogonal complement of gp ( t ) , then by preceding stipulations the 
following holds: . . • •• 

= for T 6 [ 0 , 1 ] . 
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Consequently, £ , — \ ] / ( 0 ) £ C holds. On the other hand <!; — ¿¿£gz .is valid. 
Thus 

follows by the definition of C. Next, it will be shown that the restricted map J\W 
is transversal to the submanifold q°. In fact, assume that J(x)£ q° holds for some 
x£W. Then and J(x)=p. by the preceding observation. Consequently, former 
assertions yield that 

T„ 9 = 9 = m x ©0 x = TxJ(TxW)®TX 

is valid which yields the transversality of J\W. But the transversality of J\W 

entails that 

is a smooth submanifold by a fundamental theorem on transversal maps ([5], pp. 
22—23). 

Moreover, the same theorem yields that 

dim/ '—dim fi® = codimfi^ = codimqJJ = dim g—dim g, = dim G(z). 

Consequently, all the connected components of Qfl are of the same dimension. Thus 
Qp is a smooth submanifold of P. 

The second assertion of the theorem that if the orbits of the points of Q , are 
all of the same type then the orbit space Q J G , admits a smooth manifold structure 
such that 

V Q, -QJG, 

is a submersion is a direct consequence of a basic theorem on orbit spaces of actions 
with a single orbit type ([6], pp. 6—9). 

In order to prove the third assertion of the theorem, that Q, the restriction of 
the symplectic form co to is regular, consider the above defined invariant Riem-
annian metric ( , )P and the almost complex structure J determined by ( , ) P and 
a) on P. According to former observations already mentioned above, the follow-
ing holds 

T:Q = Kernel TzJ = 3zN:G(z) for z(Efi„. 

Let now QM be the restriction of co to the submanifold Q,. Then the characteristic 
distribution E of Q, is given by the subspaces 

= {» I i,e„ = 0, fler.fi,,}, z€fi„. 

According to former observations the following equalities are valid: 

('«£„)(") = ®0>. ") = <J= v, u)P where u, v£T.Qlt. 
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Consequently, the subspace E. is formed by those vectors v^T.Q^ which satisfy 
the following condition: 

JzvA.T:Q)l = 3:N:G(z). 

Since by a former observation ( , )P is Hermitian therefore" Jz: T.P—TZP is 
an isometry and consequently the preceding condition is equivalent to the fol-
lowing one: 

u±NzG(z), v^TzQ,. 

Consequently, the characteristic subspace E. can be given as follows: 

E: = Kernel TsJClT.G(z) = TzG„(z). 

Therefore E is integrable and its leaves are the orbits of the action of GM on the 
submanifold Q/, since these orbits are all of the same type by assumption, Q , is a 
fiber bundle over Q J G , by a basic theorem ([6], pp. 6—9). Consequently, the 
characteristic distribution E of Q^ is regular. 

The existence of the symplectic form co, is now a direct consequence of the 
fact that the natural projection 

v Q» 
is a submersion. 

R e m a r k 1. The question that in case of a Hamiltonian action <P: GXP-^P 
of a compact connected Lie group G with an equivariant momentum mapping 
J : P-»g having regular elements of g in its range, which are those elements of g 
where the preceding theorem applies, seems to be open. In fact, if G(z) is a prin-
cipal orbit of <P, then, as it was observed above, Gz is conjugate to a closed sub-
group of a maximal torus T of G. Thus, provided that P is compact, a result of 
GUILLEMIN a n d STERNBERG [3] a p p l i e s a n d y i e l d s t h a t f o r a n y W e y l c h a m b e r t + e g , 

the set 
t + n / ( P ' ) 

is the union of a finite number of open /'-dimensional convex poly topes p l 5 ..., 
c r t + where r=rank G—dim Gz. Thus H0+ ClJ(P') corresponds to the assump-
tion of the theorem if it is not on the boundary of any one among the polytopes 
p l 5 ..., p,. Moreover, the theorem applies at any point of t + DJ(P') provided 
that the conjecture of Guillemin and Sternberg that 

t + n J(P') 

itself is a single r-dimensional open convex poly tope [3] proves to be valid. The 
question, which are those points of J(P') on the boundary of t + where the theorem 
applies seems to be open, too. 
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R e m a r k 2. The fact that the Marsden—Weinstein reduction in case of com-
pact Hamiltonian actions is included in the preceding theorem can be verified as 
follows. Let /¿6 9 be a regular value of the momentum mapping J. Then g .={0} 
for any z^J-^n) by a result of MARSDEN [8]; consequently G(z) is non-singular 
orbit in case of z€7 _ 10i) . If /i is a regular value of J then the range of J includes 
a neighbourhood of fi. But the set of regular elements of g is everywhere dense in 
g and P' is everywhere dense in P ; consequently, there is a z '£ P' such that J(z') 
is a regular element of g. 

R e m a r k 3. An example is presented below in order to show that there are 
cases where the Marsden—Weinstein reduction does not apply, however, the one 
given by the preceding theorem does so. 

Let M be a Riemannian manifold with Riemannian metric ( , ) M, G a compact 
connected Lie group and 

a: GXM — M 

an isometric action. Consider the tangent bundle P = T M with its canonical 
symplectic form ([1], pp. 182—183); then the induced action <P=Ta of G on P 
is symplectic. Moreover, the action <P is Hamiltonian, since an equivariant momentum 
mapping J: P—g*=g is defined for <t> by 

</(»), X ) = (v, X(z))M, V£T2M, XdQ, 

according to Noether's Theorem ([1], pp. 282—285); here of course X is the infinites-
imal generator of a given by X. 

Let now (XX, ..., X„) be an orthonormal base of g then obviously 

J(v)= ¿ ( ^ X ^ m X , v£TM, 
¡=i 

holds. If in particular G is semisimple then ( , )g the interior product of g is given 
by the negative of the Killing—Cartan form of g according to its definition. 

Consider now in particular an m-dimensional Riemannian symmetric space 
M=G/H where G is compact and semisimple and the Riemannian metric ( , )M 

is defined by the negative of the Killing—Cartan form of g. Consider the canonical 
decomposition 

g = m©i) 

and let the orthonormal base (Xt, ..., Xm) of g be compatible with this decomposi-
tion. Then 

( ^ ( 0 ) , ..., Xm(0)) 

is an orthonormal base of T0M where o=HdG/H. Consequently, the following 

8* 
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holds: 

J(v) = 2 (v, Xt(P))UX„ v£T0M. 
1=1 

But then J(T0M)=m is obviously valid. 
A more particular case is obtained as follows. Let A be a compact semisimple 

Lie group and consider the left action 

A: (AXA)XA - A 

of the direct product AxA on A given by X((g, h), a)=gah~1 for a,g, h^A. Then 
A is canonically a Riemannian symmetric space for the action A ([4], pp. 223—224). 
In fact, if 

G = AxA 

then A can be obtained as the canonical homogeneous coset space G/H where H 
is the diagonal in the direct product. Consequently, the canonical decomposition 
g = mffil) is given now by 

m = {(X, - X ) \ Z€a}, I) = {(.X:, X) | 

An element (X, Y) of the semisimple Lie algebra g is regular if and only if both 
X and Y are regular elements of a. Therefore, if A^a is a regular element then 

(X, -X)On 

is a regular element of g. But then the above observation yields that 

m = J(T0M) c J(TM) = J(P) 

holds and consequently, J(P) contains regular elements of g. However, Remark 1 
does not apply in this case since P=TM is not compact. 

In order to show that the momentum mapping J considered above has no 
regular values, it is sufficient to see that has no discrete isotropy subgroups; 
since the existence of a regular value of J implies the existence of trivial isotropy 
algebras by a result of MARSDEN [8]. Since a is transitive action, every orbit of the 
action <P = Tu intersects the tangent space T0M^m. Moreover, the isotropy sub-
group of the action at a point 

(X,-X)0 nasr0M" 

is a subgroup of H. But as a simple calculation shows the following holds: 

<K(g,g), - * ) ) = ( A d ( g ) J r , - A d ( g ) r ) where X€a, g£A. 

Consequently, the isotropy subgroup of <i> cannot be discrete at (X, —X); in 
fact, the principal isotropy subgroups of <P at points of in are given by a suitable, 
maximal torus T of A as the subgroup { ( g , g ) | g £ r } c i r . The existence of values 
H£J(P)C\g where the theorem applies is a consequence of the above observation. 
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