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Techniques of Finsler geometry in the theory of vector bundles

RADU MIRON

A topical problem in geometry is the study of the differential geometry of
vector bundles. For this study the classical methods are not convenient enough,
because of the very complicated analytical expressions of some important geometrical
objects defined on the total space of a vector bundle.

Using the ideas from Finsler geometry [10, 11, 12, 13] we can considerably
simplify the theory. For this, the notion of Finsler connection on the total space
E of a vector bundle ¢=(E, n, M) is fundamental. To define it firstly we define
the notion of the nonlinear connection N on E, then we use this concept to obtain
the algebra of Finsler tensor fields on E. A Finsler connection on the space E is a
linear connection V on E which preserves by parallelism the horizontal distribu-
tion N and the vertical distribution E¥ of & V has four local coefficients which
have very simple transformation laws to a change of canonical coordinates on E.
Also, its torsion and its curvature have a small number of nontrivial components
which are the Finsler tensor fields.

By applying this theory to the Riemannian structure G on E we get a Fmsler
canonical connection which has a simple form.

In this way the geometrical theory of ¢ can be constructed without difﬁculty.
This method was used in our talk “Vector bundles Finsler geometry” presented at
the second National Seminar on Finsler spaces [13], at the University of Brasov,
Romania, February 15, 1982. S

1. Vector bundles

Let ¢=(E,n, M) be a vector bundle of the class C=. We suppose that the
total space E has n+m dimensions, the base M has n dimensions and the local
fibre E,=n"(p), p€¢ M, is a real vector space of dimension n.
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If (U,, ®,) is a vectorial chart of &, determined by. the chart (U,, ¢,) of the
base manifold M, then &,: z~(U,)—~U,XR"™ is a diffeomorphism with the prop-
erty pyo®,=n and &@,,=9, E, : E,~R”™ is an isomorphism of vector spaces.

The mappings g.: UgNU, ——Gl(m, R), given by gg.(p)=9, 08, }, pEUZN
NU,, are the transition functions of &. To the vector chart (U,, §,) these cor-
responds a chart on the total space E, (a~Y(U,), &,), where &, is the diffeomor-
phism &,=(p,X 1gm)o®,. Therefore, the coordinates of the point wcn~YU)CE
in this chart, for u=®_(p, y), (p, y)EU,XR™, are

6,(11) = (¢¢X]Rm)°¢ao¢¢—l(p’ y) = (x: }’) = (xI: s X1, yly “ees )"")

and they are called the canonical coordinates of the point # determinated by the
coordinates (x) of the point p=mn(u). Everywhere, the indices i,j,k,1, ...;
i g kU, i 7 K7, 17, L. take the values 1,2,...,n and a,b,c,d, ..
a,b,c, d’, aah b’ d ", ... take the values 1,2, ..., m.

The transformations of the canonical coordinates (x, y)—~(x",y") of the points
.of E, are given by:

&, ¥) = 8,08 (x, ) = (95002 ) (%), 8(P)¥)-
We write these transformations in the form:
‘(1.1) = (., XN,y = ME(x)yS,  det (M (x)) = 0
and the inverse transformations: '
=Y, L8, Y= MA(x)y”, det(M2(x)) #0.

The map =n: E-~M induces the n"-morphism of the corresponding tangent
bundles nT: T(E)-T(M). Then VE=Ker=n” is.a subbundle of T(E) called the
vertical bundle. VE defines a distribution

EY: ucE —~ EY, ‘
where E! is the fibre of VE in the point u€E. EV is called the vertical distribution
of &. On the open set n~Y(U,), 7};, a=1, ...,m, is a local basis of the vertical

distribution EY. Therefore E” is integrable.

Definition'1.1. A non-linear connection on the total space E of £ is a dlf-
ferentiable distribution N: u€ E—~N,cE,, with the property

(1.2) h  E,=N,®E/},

where E, is the tangent space in the point u# to the manifold E.
It follows: .
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Proposition 1.1. If the base M of the vector bundle & is paracompact, then,
on E, there exist the non-linear connections.

On =~ }(U,) the distribution N has a local basis of the form

T BN
F -(:)'F‘—N: (=, })';()—y;',
N¥(x, y) are called the coefficients of the non-linear connection N. Also, N can be
locally determined by the Pfaff system Jy®=0, where

(1.3)

(1.4) 8y* = dy*+ Nf(x, y)dx'.
For every vector field X on E there exists a unique decomposition
1.5 X=X"4X", XJCN,, XJCE!, VucE

X* is called the horizontal part and XV the vertical part of X.
If  is a 1-form field on E, then we can define the I-form field w® on E by the
condition: '
o(X) = o(X¥), VXcZ(E);

" is called the horizontal component of . Let " =w—o". Then w has a unique
decomposition

(1.6) w =¥ +o’;
o” is called the vertical component of ®. We have o¥(X") = (X¥)=0, ¥ XcZ(E).
é
Let us observe that T i=1, ..., n, being n horizontal independent fields and
X

9/0y°, a=1, ..., m, being m vertical independent fields, (8/6x%,d/dy*) provides a
local basis of the module of the vector fields Z(E) and (dx’, 6y°) is a local basis
of the module of 1-form ficlds on E. These bases are dual:

8 o N_si (S s N_o {2 o N_o [0 S
1) (g ) = ot (5 %) =0 <3y" it = <a—y“ ) = %

2. Algebra of Finsler tensor fields, Finsler connections -

Definition 2.]. A tensor field ¢ on the total space E of the vector bundle
"€ is called a Finsler tensor field of the type (z :] if it has the property

(o, ..., X; ... X, 0,.., 0, X,.., X) =
1 P 1 q p+l p+r q+1 q+s
v .
Q.1 = t{w?, ..., 0% XY, . X%, 0", .., 0", XY, .., XY),
1 p .1 q 2 N p+r q+1 q+s

| YoeZHE), YXEL(E)
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Proposition 2.1. A Finsler tensor field of the type [{; ;) on E has the fol-

lowing local form:

..®—‘-5-—®dxix® . ®dxia®

oxip

t = :‘1 'J";l .G Y) = 5x,
2)

9 9 , .

The coordinate transformation (1.1) changes the coefficients t‘l "l 4 (x, y)
according to the law:

i o It 9xr Oxt xds
1edp@iea N '1 i
(T A N VR NI W M- Ma LR

Theorem 2.1. If w is a tensor field on E of the type (p, q) then it determines
2°*¢ Finsler tensor fields on E of the type [Z:; ;] (r=0, 1, ...,p;5=0, 1, ..., q).

5. x ).

Proof. The sum

w(wf+o’, ..., 0+’ XT+ X7, ..., X2+ XY)
1 1 P rp 1 1 q q
has 2P*4 terms, each of them being a Finsler tensor field of the type mentioned.

The vector field X¥ is a Finsler tensor field of the type ((1) 8), the vector

field XV is a Finsler tensor field of the type (g (1)) , and w¥, @" are Finsler tensor

fields of the type ((1) g], (8 (l)]’ respectively.

A remarkable local vector field is y= y"F. It is called the intrinsic vector
y

field of &.
If 75 (E) is the #(E)-module of the Finsler tensor fields of the type (p ') ,
F

q s
then the #(E)-module
J(E)Y= & ITE(E)
F 0,9,7,5=0,1,... F

and the product tensor is a graded algebra, called the algebra of Finsler tensor
fields on E.

Definition 2.2. A Finsler connection on E is a linear connection V on E
with the property that the horizontal linear spaces N,, u€E, of the distribution N
are parallel with respect to V and similarly, the vertical linear spaces EY, u¢E,
are parallel with respect to V., '
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In what follows we shall prove the existence of a Finsler connection on E.
We observe that a linear connection V on E is a Finsler connection on E if and
only if
2.3) (VxYHY =0, (VxY")¥ =0, VX, YcZ(E).
Then, we have:

Theorem 2.2. The following statements are equivalent :

(@) V is a Finsler connection on E,
(b) V¥ = (VxYIZ+(VxY"), VX, YeZ(E),
©) Vyo =VxoH)Z+(Vyo"), YoeX*(E), VXCZ(E).

For a Finsler connection V we put:
24 \% ] Y =VyxaY, VLYY =VyxY, VX, YEX(E).
The following theorem is easy to prove:

Theorem 2.3. For any Finsler connection V on E, V¥ and V¥ given by (2.4)
are the covariant derivatives in the algebra f’ (E).

VA is called the h-covariant derivative and V" is called the v~covariant deriva-
tive of the Finsler connection V.

Proposition 2.2. We have:

() Vif=X"f (VRY®)Y =0, (V¥Y")"=0,

@) VEY = (VEYHY+(VEYY,

B) Vif=X"f (ViY®' =0, (ViY")" =0,

(4) VXY = (VYT +(VEYY).
We have analogous formulas for Vy, too.

Theorem 2.4. If V¥ and V¥ are two covariant derivatives in the algebra of
Finsler tensor fields J(E), having the properties (1) and (3) from Proposition 2.2,
F

then there exists an unique Finsler connection V on E for which V¥ is the h-covariant
derivative and V¥ is the v-covariant derivative of V.
If ¢ is a Finsler tensor field of the type (Z :}, then for any Finsler connec-
tion V the following formulas hold:
Vit = VE14+V%1e,
VE)(@, .., X) = X210, ..., X)~t(V¥0, ..., X)—...—t(0, ..., V¥ X),
1 g+s 1 qts 1 q+s 1 q+s

Vi@, ..., X)=X"to, .., X)-t(Vkw,.., X)—...—t{o, ..., V% X).
1 q+s 1 q+s 1 g+s 1 a-+s
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In. the canonical coordinates (x‘,y”) there exists a well-determined set of
differentiable functions on.z=}U), (Fi.(x,y), Fg(x,), Ci,(x,), Ci.(x,¥)) such
that
] : é d o 0
ox = Fi(x, y)é_x"’ VZax" -5},—,, = Fg(x, J’)W,

5 . 5 > . 2
Viaye e Ci.(x, y)~5_xi'a Vo P Cre(x, }')-a?-

V&I&x"
Q2.5

Let us consider, for simplicity, the Finsler tensor field

ia o a Jj b
5(X5 ¥) 58 3y ®dx’' @ dy°.

] d

: H__vyk V__ ye
Then, if we put for X#=X T X=X peL
VEK = X*K% 6 3 —QRdx' @&’ VYK = X°K¥| —®dx'®5y°
)blk 3 7 > jble 5T 6 7 3y¢, Y,
we have:
0K . . .
K = 5 —+ FiKlg - FiKig+ F4Kjs— FL K,

(2.6)

. oKjg . . .
K;I‘;I(: - a c + Chc hl‘; - Cj'cKl:g + scK_;g - Cgc ;Z ’
which are the local expressions of the 4- and v-covariant derivatives.

Proposition 2.3. To a transformation of the canonical coordinates (1.1) the
coefficients (Fj, Fy) from (2.5) have the following transformation laws :

., ox¥ 9x) axt ox"  OPx
B ' y) = 55 57 o T D5 5w
o oHg
50y = M3 118 25 F e ) 4y O

and the coefficients (Ci., C3,) from (2.5) are the Finsler tensor fields of the type

[1 l)’ (O 2], respectively.

Remark. If Nf(x,y) are the coefficients of the non-linear connection N, then

ON{
0y’

These considerations allow to prove

have the same transformation law as Fg,.(x, y).
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Theorem 2.5. If ¢é=(E, n, M) is avector bundle with the base M paracompact,
and N is a fixed non-linear connection on the total space E, then there exist Finsler
connections V on E, which preserve by parallelism the distributions N and EY .

oy " ’
Jk(x, y) arbitrary, is called a Berwald connection. Its simplicity made it very
malleable in applications.

The Finsler connection V with the coefficients Fy;=—-, C,=0, C;.=0 and

3. Torsion and curvature of Finsler connections

We consider again a non-linear connection N on the total space E of a vector
bundle ¢=(F,n, M) and let V be a Finsler connection on E, which preserves by
parallelism the distributions N and EV.

Proposition 3.1. The torsion tensor field T of the Finsler connection V is
characterized by five Finsler tensor fields:

G [T YH, ([TXEYHY, [TEEYE, ([TEE Y)Y, ([T, Yy
.0
If Tk, T, P}, P§, and Sj, are their local components [where T}k—g—‘.z
X
[T{ o0 ]H tc.|, then we h
= = L’ o 1 , €lC. s
s 5x’] en we have

S .. SN' ON?
Ty = Fi— F;, k= K = ——éx;z ——_éx? ’
3.2)
ON}
Jb = C be = a b Fb}s S:c = Cgc—Cgb-

It follows that the torsions Pj,, Pj,, Si. of a Berwald connection vanish.

Proposition 3.2. The Finsler tensor field [T (X", YH)]" vanishes if and only if
the distribution N is integrable.

The curvature tensor field R of a Finsler connection V on E has only six non-
trivial Finsler components.

Proposition 3.3. The curvature tensor field R of a Finsler connection V on
the total space E of a vector bundle ¢ has the property

[R(X,Y)ZE) =[R(X,Y)Z"|¥ =0, VX,Y,ZcA(E).

Then, we have
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Theorem 3.1. The curvature tensor field R of a Finsler connection V on the
total space E of avector bundle & is characterized by the following six Finsler tensor
Sfields:

R(xH, yH)zH = vivizZ4 — \UAL VAR ’&H yin Z8 — V¥n ymy Z8,
3.3) { X [ ) [xH,YH)
: R(XH Y®ZY = VEVIZY —VEVEZY —VEu yi; ZV — Vin yy ZY,

(3.3) {R(XV YH)ZH = ViV ZE VY VR ZH Vv ymZ ~ Vv, v Z7,
3 VRKY, YH)ZV = VAV ZY —VEVLZY — VR o 2V — Vi g ZY,

3.3y {R(X V,YV)ZE = V§Vy ZH - VYV ZH — Vi yvy 2,

R(XY, YV)ZV = V4VEZY — VIV ZY — Vv vy Z°.

Let R, RS, Phos Poes Siver Shey be the local components of the Finsler

o .0
tensor fields (3.3), (3.3), (3.3)", respectively {R 5 Ek—)sz}k,g, etc.}.

Then, we have:

Theorem 3.2. The curvature tensor field R of a Finsler connection V with the
coefficients (F, Fp.,C%.,Cs) is characterized by the Finsler tensor fields (3.3),
(3.3), (3.3)", whose components are given by

. _OFy OF;
L
. 5F,,k OFf,
U B

+ Fi Fiy— Fi Fi +CLRY,
(.4)

(o a C
a—Fa Fa+ Co. Ry,

OF};

ke = 3 = C;c]k +Cjy P,

IF;;
ac

3.9
Py = —Clow+ Coa PL.,
3C,‘,, oCi.
jbe = 3 c 3 b
aCbc ade

Stea = oy

ChCie—CleCips
(3.4)” .
+ Cbc :d - led C:c .

Observe the simplicity of these expressions, as compared to the components
0
of the curvature tensor field R written in the natural frame (W’ 3_) , [4]).
yd

The Ricci and Bianchi identities can be written down without difficulty.
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4. Riemannian structures; Finsler connections compatible
’ with a metrical structure

The efficiency of the techniques of Finsler geometry in the study of vector
bundles is visible. In particular, its applications to the theory of several geometric
structures on the total space of a vector bundles are useful.

We study the Riemannian structure G on the total space £ of a vector bundle
E=(E, n, M). If EY is the vertical space at the point u of E, then the vectors ortho-
gonal to E!, with respect to G, uniquely determine the vector subspace N, com-
plementary to E!. That is, E,=N,®E,, ucE, and the map N: u~N, defines, in
a geometrical way, a non-linear connection N on the total space F.

Proposition 4.1. If G is a Riemannian structure on E, then there exists an
unique non-linear connection N on E with the property

CAY) G(X,Y)=0, VYXEN, VYCE".
Proposition 4.2. For a Riemannian structure G on E, there exist an unique
symmetric Finsler tensor field G¥ of the type [g 8) non-degenerate on the fibres of

the horizontal bundle HE, and an unique symmetric Finsler tensor field G¥ of the type
(8 g] non-degenerate on the fibres of the vertical bundle VE, such that

4.2) G = GH+G".

Indeed, from (4.1) we get G(X,Y)=GX% y*")+G(X",Y"). Putting
Gi(X,Y)=G(X", Y") and G"(X,Y)=G(X",Y") one obtains two Finsler tensor
fields with the properties mentioned above.

A Finsler connection V on E, which preserves by parallelism the distributions
Nand EY, is called compatible with the Riemannian structure G or is called a metrical
Finsler connection if V,G=0, YX€Z(E). '

Proposition 4.3. A Finsler connection V on the total space E is a metrical
connection, with respect to the Riemannian structure G, if and only if

@.3) VEGH =0, VEGY =0, V{G¥ =0, VYG¥ =0.

Theorem 4.1. If G is a Riemannian structure on the total space E of a vector
bundle ¢=(E,n, M), then the following Finsler connection is compatible with the
structure G :

2GH(VEYH, ZH) = XHGH(YH, ZH) 4 YHGH(ZH, X B)—ZHGH (X ¥, YH)—

— GP (X (Y™, ZPY) 1 GH (Y 7, [Z7, X+ G (2", [X ¥, Y ),
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vaYY =VEY  +B(YY, XT), GY(B(Y",X"),Z") = (1/2)(VEG")(Y", Z"),
ViYE = VEYE+D(YH, X7), GH(D(YE, X*), Z5) = (1/2)(V4 GH (Y, Z%),

2GY(V4YY, Z) = XV GV (Y, Z)+YVGY (Z¥, X)-ZV GV (XV, Y") -
—GV(XV, [YV, ZV]V)+GV(YV’ [ZV, XV}V)+GV(ZV, [XV, YV]V),

4.4

where V is a fixed Finsler connection, which preserves by parallelism the distributions
Nand E*.

Proof. We know that there is a Finsler connection V which preserves by
parallelism the distributions N and EY. In the condition [T(XH, YH)]7=0, by
the classical method, the first equality in (4.4) gives, uniquely, VZY¥ and the second
one VEYY It is easy to see that V¥, determined in this way, is a h-covariant deriva-
tive in the algebra f’ (E) and that we have VYG"=0, VJG¥=0. Analogously, the

third equation in (4.4) gives uniquely V}Y¥ and the last one, in condition

[T(X?,Y")]"=0, allows to determine uniquely V4Y". This V¥ is a v-covariant

derivative in the algebra J (E) and it has the properties V}G¥=0, VxG"=0. There-
< .

fore V=V#+V¥ is a Finsler connection on E compatible with the Riemannian

structure G. .

’ (0 é 0 2
In canonical coordinates, let g,-sz(g, KxT)’ g,,,,=G(W, —éy—"J The

equations (4.4) give the following coefficients of the metrical Finsler connection V:

; 1 0 o 0
Fu(oy) = o[98 08 O8] (e y) = e ) £ i

(4.5)

Chix ) = Ch (5, ) 88lns  Chilx, ) = %g‘“‘(%ﬁj’: + ‘?,f‘;’, - %i';]
where (F y. Fe, Ciy, C?)) are the coefficients of a fixed Finsler connection V, and
7, | are the h- and v-covariant derivatives with respect to V.

Observing that the distribution N is geometrically determined by the structure
G we get that Fi(x,y) and Cj.(x,y) are well-determined by G. Then, considering
as a fixed Finsler connection V the Finsler connection with coefficients

. _ . O ONE s, \
(46) F}k(x’ y) = F}k(x9 y)’ FL‘;(X: y) = 'WII:_’ Cjb(x: y) = 09 C:c = Cl;’ry

we have

Theorem 4.2. The Finsler connection (4.5), (4.6) is metrical and depends only
on the Riemannian structure G. -

This connection can be called the canonical metrical Finsler connection. We
get without difficulty:
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Theorem 4.3. The Riemann—Christoffel connection of a Riemannian structure
G on the total space E of a vector bundle ¢ coincides with the canonical metrical Finsler
connection of G if and only if

(1) the horizontal distribution N is integrable,

(2) the metrical tensor field G is constant on the fibres of vertical subbundle VE,
@) [rTx", YN =o0.
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